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1 Introduction

Stochastic approximation is a widely applica-
ble recursive procedure for finding roots of equa-
tions in the presence of noisy observations. Spall
(1987, 1988a) has previously demonstrated that
an SA procedure based on simultaneous perturba-
tions about the estimate (SPSA) has the potential
to be significantly more efficient than the stan-
dard multivariate algorithms that are based on
finite difference gradient approximations (Kiefer
and Wolfowits (1952), Blum (1954)).

The basic problem consists of finding the root
8* of the gradient equation

o(6) = ‘-9%9 =0 (1.1)

where L(0) is a function of the parameter vector
feRP. L(0) is a differentiable function, L : R? —
R, and p represents the dimension of the param-
eter vector. When L and ¢ are observed directly,
there are several methods for finding 6*, including
steepest descent, Newton-Raphson, or scoring. In
the case where L is observed (computed) in the
presence of noise, an SA algorithm is appropriate.

SA algorithms based on finite difference meth-
ods (FDSA) require 2p observations of L at each
iteration. When FDSA is applied to a higher order
problem, say p = 20, the computational burden of
forming an approximate gradient can be signifi-
cant. In contrast, the simultaneous perturbation
algorithm (SPSA) requires only two observations
of L at each iteration regardless of the sise of p.

This paper will show that, under certain condi-
tions, the computational savings of SPSA at each

iteration will more than offset the added num-
ber of iterations generally required to reach con-
vergence. Additionally, this paper will discuss
SPSA algorithm enhancement techniques such
as gradient averaging and gain sequence selec-
tion/modification that further improve the rela-
tive performance of SPSA (with respect to FDSA).

2 The SPSA Algorithm

The SPSA methodology was presented in pre-
liminary form by Spall (1987) in which the tech-
nique of forming the SA gradient approximation
through simultaneous perturbations of the param-
eter estimate was discussed. Spall (1988a) fol-
lowed up his initial study by considering the per-
formance of SPSA in the presence of observation
noise. This paper presents the SPSA methodol-
ogy, but it will not repeat the theoretical material
from the above-mentioned references.

The SPSA methodology as applied to a stan-
dard first order minimization problem is given by

Ok = Br—1 — akdr(fr-1) (2.1)

where

k = iteration count
a)= gain sequence {(a; = '(k_-f-A_lF)
gx= SPSA gradient approximation.

Note that the difference between (2.1) and the
method of steepest descent is that the exact gra-
dient is replaced by the SPSA gradient approxi-
mation.

The SPSA gradient §; is given by
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where
fx—1 = initial/previous parameter estimate
L = observed function value at the perturbed
estimate
A, = vector of random (Bernoulli)
perturbations to fx—1, A(s)x = £6
ck = scale factor for Ag(ck = (1+k)7)
ex = independent (Gaussian) noise N(0,0?)

Each element 5(i)k_1 in the parameter vector is
perturbed by the corresponding element in the A
vector. The corresponding gradient element §()x
is then formed as the divided difference of the like-
lihood function values computed at the perturbed
estimates over the size of the interval of perturba-
tion. '

Since all elements of ék_ 1 are perturbed simul-
taneously, only two function evaluations are re-
quired to form §x. The formulation of the stan-
dard finite difference SA (FDSA) gradient is simi-
lar to (2.2), except that each element of the param-
eter estimate 0x_; is perturbed separately. Thus,
2p function evaluations are required in forming the
FDSA gradient.

The values of the likelihood function L represent
the measurement observation. Observation noise
is introduced (simulated) by considering a non-
zero scale factor to the Gaussian noise terms c:,
¢; . In the numerical study, values of 0 = 0 (no
noise), 20 and 40 are used to evaluate the effect of
observation noise on the performance of the SPSA
and FDSA algorithms.

SPSA Gradient Averaging. This paper con-
gsiders using (2.1) with several independent SPSA
gradients averaged at each iteration. In particular,
gx in (2.2) is replaced by

1
§k=EZ§;¢

i=1

(2.5)

where each §j is generated as in (2.2). It will be
shown in Section 4 that gradient averaging can
enhance the performance of the SPSA algorithm,
particularly when measurements are observed in
the presence of non-gero noise.
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3 Defining the Minimization
Problem

The problem used to evaluate the performance
of the various minimization algorithms is the max-
imum likelihood estimate (MLE) of the covariance
of an indirectly observed random variable. That
is, a random variable z, with (known) mean zero
and unknown variance L, is measured to obtain
observations z;, where z; = z + w;. The w;’s are
random variables with mean sero and known co-
variance P;. The equation to be minimized is given
by

I

N
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The value p determines the size (number of es-
timated parameters) of the minimization problem
to be evaluated. A 5-dimensional system repre-
sents a moderately sized minimization problem
that is small enough to support a large number
of computer studies without requiring excessive
computer system resources. A 20-dimensional sys-
tem demonstrates the applicability of the SPSA
methodology to high order systems.

4 Numerical Studies

Earlier work on the SPSA methodology and its
performance relative to the FDSA approach con-
centrated primarily on the theoretical considera-
tions necessary to justify the applicability of SPSA
to the solution of maximum likelihood estimation
problems (Spall (1987, 1988a)). The numerical
analyses for these papers represent a starting point
for the analysis to be discussed here.

In Spall (1988a), the performance of SPSA (rel-
ative to FDSA) was evaluated for the observation
plus noise problem. The technique of gradient
averaging was introduced as a means to improve
SPSA performance, and contributed significantly
to the relative superiority of SPSA over FDSA in
handling noisy measurements. The same study is
discussed in this paper, but results are presented
with a different focus and additional detail.

In all numerical studies performed, the basis for
comparing the relative merits of the SPSA and
FDSA algorithms is the value of the normalized



function L for an equivalent number of function
evaluations. L is defined by

L= L(6) - L(6*) (4.1)

where

L(6x) = function value at the current estimate
L(6*) = function value at the point of
convergence (previously determined).

4.1 SPSA vs FDSA Given Noise-
Free Observations.

This numerical study attempts to verify the re-
sults of Spall (1987) for the 5- and 20-dimensional
problems, thus to further demonstrate the superi-
ority of SPSA over FDSA when both algorithms
are applied to higher order problems. When the
SPSA and FDSA algorithms were applied to the
5-dimensional problem, the ax and cx sequences
were initialized (identically) with A = 1500,a =
0.7501, and 4 = 0.25.

The SPSA algorithm converged in 170 iterations
(340 function evaluations), while the FDSA algo-
rithm required 90 iterations (900 function evalua-
tions) to converge. For FDSA, the value of L at
340 function evaluations corresponded to an equiv-
alent value of I reached by SPSA in 168 function
evaluations. These observations lead to the con-
clusion that SPSA is two to three times as efficient
as FDSA for the noise-free 5-dimensional problem.

The comparative study was repeated for the 20-
dimensional problem, except that the stepsise co-
efficient (A) in the ax gain sequence had to be
lowered to 500. (SPSA diverged for higher values
of A). Both algorithms were permitted to run for a
total of 1000 function evaluations. Because of the
reduced magnitude of the gain, neither algorithm
converged. The value of L for the SPSA algorithm
was approximately 0.1, while it was roughly 24 for
the FDSA algorithm. Moreover, SPSA required
only 180 function evaluations to reach the value of
T that was reached in 1000 function evaluations
for FDSA (an advantage of more than 5 to 1).

These results not only succeed in verifying the
superiority of SPSA over FDSA as applied to a
noise-free minimisation problem (for a given gain
sequence), but also suggest that the difference is
magnified for higher order problems. However, it
also points out that higher order problems may
tend to be slower to converge.
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4.2 SPSA vs FDSA for Observation
Plus Noise Problem.

This numerical study considers the relative per-
formance of SPSA vs. FDSA when the likeli-
hood function is observed in the presence of noise.
Again, the 5- and 20-dimensional problems are
considered, with the focus being placed on demon-
strating the applicability of SPSA for higher or-
der problems. This study also considers the tech-
niques of gradient averaging and, to a lesser ex-
tent, gain sequence selection as means for acceler-
ating the rate of convergence.

The analysis was accomplished by performing a
set of 48 computer simulations (plus a set of 15
additional sensitivity analysis runs) to cover the
following set of combinations:

(5 and 20)

(SPSA-1, SPSA-2,
SPSA-4, and FDSA)
(o = 0,20,40

(a =.7501, a = 1.0)

two problem sizes
four algorithms

three levels of noise
two ax gain sequences

The large and moderate scaled problems were
evaluated for FDSA and SPSA, where three levels
of SPSA gradient averaging were considered.

The noise levels 0 = 20 and o = 40 represent
low and moderate values of observation noise asso-
ciated with the likelihood function value. Select-
ing the o = 0 case provides a baseline for compar-
ison with the other cases. Two choices of the ax
gain sequence were considered in this study.

500/(1 + k)*°
400/(1 + k)O.’ISOl.

Gk

ak

The first ax gain sequence starts off with a larger
initial stepsise, but contains a standard 1/k rate
of decay. The second gain sequence possesses a
smaller initial stepsise, but it also decays more
slowly than its counterpart. The value o = 0.7501
is selected because of regularity conditions appear-
ing in Spall (1988a).

SPSA vs FDSA in the Presence of Noise.
Earlier, it was shown that SPSA consistently out-
performed FDSA (for a given gain sequence) when
no observation noise was present. The results
in Tables 4.1 through 4.4 indicate that the same
is true in the presence of observation noise. Of
the twelve FDSA results that appear in Table 4.1
through 4.4, there are two instances where FDSA



Noise  Algorithm L SPSA Eval.
SPSA-1 1.58 145
o=0 | SPSA-2 2.02 260
SPSA-4 3.12 480
FDSA 6.40
SPSA-1 1.60 360
o =120 | SPSA-2 2.49 160
SPSA-4 3.95 800
FDSA 4.46
SPSA-1 11.09 >1200
o =40 | SPSA-2 5.15 120
SPSA-4 6.60 360
FDSA 10.62

Table 4.1: SPSA vs FDSA for 5-dimensional Prob-
lem and Rapidly Decaying ax Gain Sequence

Algorithm T (includes sensitivity SPSA
analysis results) Eval.
SPSA-1 0.011 200
SPSA-2 0.410 360
SPSA-4 0.200 650
FDSA 0.900
SPSA-1 2.160 250
SPSA-2 1.190 232  1.850 250
SPSA-4 0650 061 1810 1668 | 226
FDSA 8180 7.09 8.320
SPSA-1 7.600 80
SPSA-2 4650 9.61 4220 1053 | 870
SPSA-4 2670 663 1476 541 | 115
FDSA 13.430 34.833 22.690 0.914

Table 4.2: SPSA vs FDSA for 5-dimensional Prob-
lem with Slowly Decaying a; Gain Sequence

appears to perform as well as SPSA-1. However,
in these cases, along with all the others, there are
gradient averaging results that indicate SPSA will
always outperform FDSA to a significant degree.
Furthermore, there is evidence in Table 4.2 that
suggests the apparent FDSA superiority may have
been spurious. The sensitivity studies for SPSA
and FDSA indicate that a wide range of L val
ues can result, especially for FDSA, depending on
the nature of the random stream of measurements
that are generated.

The extent to which SPSA outperforms FDSA
can be seen in the data from the last column of
Tables 4.1 through 4.4. This column reveals that
the SPSA computer runs generally required far
fewer function evaluations to reach the same level
of performance as corresponding FDSA runs. Al-
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Noise Algorithm L  SPSA Eval
SPSA-1 28 88
o=0 | SPSA-2 22 80
SPSA-4 22 80
FDSA 70
SPSA-1 40 80
o =20 | SPSA-2 34 60
SPSA-4 33 80
FDSA 95
SPSA-1 64 30
o =40 | SPSA-2 85 40
SPSA-4 54 40
FDSA 149

Table 4.3: SPSA vs FDSA for 20-dimensional
Problem and Rapidly Decaying ax Gain Sequence

Noise  Algorithm jA SPSA Eval.
SPSA-1 1.22 120
=0 | SPSA-2 1.69 120
SPSA-4 8.51 220
FDSA 39.70
SPSA-1 12.20 120
=20 | SPSA-2 7.00 120
SPSA-4 7.70 220
FDSA 44.10
SPSA-1 116.00 >1200
o =40 | SPSA-2 45.00 200
SPSA-4 30.00 100
FDSA 91.00

Table 4.4: SPSA vs FDSA for 20-dimensional
Problem and Slowly Decaying ax Gain Sequence

though there is a fair amount of variation in in-
dividual runs, particularly for the 5-dimensional
problem, averaged results seem to indicate that
SPSA is roughly four times more efficient than
FDSA on the 5-dimensional problem. For the 20-
dimensional problem, SPSA appears to be roughly
10 to 15 times more efficient. Figure 4.1 presents
a graphic illustration of the relative performance
of SPSA to FDSA for a selected set of computer
runs. The values of L are plotted at intervals of 40
function evaluations. In this example, the FDSA
algorithm outperforms the SPSA-1 algorithm, but
both gradient averaging cases yield significantly
better results.

SPSA vs FDSA as a Function of Prob-
lem Sise. The advantage of SPSA over FDSA
is greater for the 20-dimensional problem. That
is, the FDSA computer runs generally required 10
to 15 times the number of function evaluations to
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Figure 4.1: Gradient Averaging Improves SPSA
Performance (p = 20,0 = 40)

reach the same values of L for the 20-dimensional

problem. The SPSA to FDSA advantage for the
5-dimensional problem is only about four-to-one.

Moreover, SPSA is more consistent than FDSA
for higher order problems. There is much less
variation in the number of function evaluations
in the 20-dimensional examples than for the 5-
dimensional examples. The reason for this might
be that, while there is always a chance for a bad
perturbation about 6, the chances of a bad step
resulting from 20 perturbations of # is less than
that of getting a bad step from perturbing a 5-
dimensional 6 vector.

Finally, the results on Tables 4.1 through 4.4
indicate that problem size may also contribute to
the rate of convergence for SPSA and FDSA algo-
rithms. Consider, for instance, the problems for
which the slowly decaying gain sequence was con-
sidered, (i.e., Table 4.2 vs. 4.4). In all SPSA and
FDSA examples, the 5-dimensional case clearly
outperformed the 20-dimensional case. This result
had been observed in the earlier noise-free study
and seems to hold true for general classes of min-
imisation problems (Vandergraft (1976)).

Effects of Gradient Averaging. Two factors
that contribute to the effectiveness of SPSA gradi-
ent averaging for the observation plus nosse prob-
lem are problem size and levels of observed noise.
Gradient averaging tended to be effective more of-
ten when applied to the 20-dimensional problem
than it was for the 5-dimensional problem for vary-
ing levels of observation noise. This suggests that
gradient averaging should be considered for higher
order problems, even when the expected noise con-
tribution might be negligible.
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Gradient averaging was also effective for the 5-
and 20-dimensional problems for high levels of ob-
servation noise (0 = 40). Figure 4.1 contains a
plot of L for SPSA-1, SPSA-2, SPSA-4, and FDSA
for the 20-dimensional problem where the obser-
vation noise was high. As was mentioned earlier,
it appears that FDSA outperforms SPSA-1 in this
example. But on closer inspection, both curves are
rather erratic. It might also be reasonable to con-
clude that the two algorithms are indistinguish-
able, given the variation in values of L (which is
due to the observation noise).

This is not the case for the SPSA-2 and SPSA-4
plots. Not only are the values for L significantly
lower than SPSA-1 and FDSA at the conclusion
of 1200 function evaluations, but the plots are far
smoother than the other two (with SPSA-4 be-
ing better than SPSA-2). This means the SPSA-4
not only provides a better estimate of the param-
eter vector § than the other algorithms, but that
one can be more confident of the parameter values
that are obtained whenever the SPSA-4 algorithm
is terminated. The improved results may be due to
the tendency for the observed noise contributions
to cancel each other out as the SPSA gradients
are averaged. This also suggests that higher levels
(than 4) of SPSA gradient averaging might be ef-
fective when considering high levels of observation
noise.

Effects of Rapidly vs Slowly Decaying Gain
Sequence. The analysis of the SPSA and FDSA
algorithms in the presence of observation noise
was conducted for two choices of the ax gain se-
quence. In Spall (1988b), it was shown that the
slowly decaying gain sequence gave optimal results
for SPSA and FDSA in the noise-free case. This
turned out to be the case in the noise free results
shown in Tables 4.1 through 4.4. It also turned
out to be the case for all noise levels in the 20-
dimensional problem. However, this was not the
case for the 5-dimensional problem for noise lev-
els of 20 and 40. The reason for this does not lie
with the similarity of the gain sequences in ques-
tion, but rather that both algorithms succeed in
reaching a point such that the noise level inter-
feres with any further advance of the algorithm
after that point.

Noise Threshold for the 5-dimensional
Problem. Spall (1988a) proved that the SPSA
algorithm would converge, even in the case of
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Figure 4.2: Rate of Convergence Slows at “Noise
Threshold”

noisy observations. But when many of the com-
puter runs for the 5-dimensional problems were
analysed, it was almost always the case that the
value of L at 1200 function evaluations was not
the lowest value of L over the course of the iter-
ations. It appears that some sort of threshold is
reached early on, and that the algorithm simply
bounces around from that point onward. Figure
4.2 provides an illustration of this occurrence for
two examples. From the SPSA and FDSA exam-
ples shown in Figure 4.2, it appears that both al-
gorithms succeed in reaching a minimum point at
around 400 function evaluations. From that point
on, they seem to wander about with no apparent
movement in the direction of convergence. It is
expected that the 20-dimensional problems would
exhibit a similar pattern if they had been allowed
to continue for more than 1200 function evalua-
tions. From these results, it must be concluded
that it may not be feasible to consider SPSA as
an algorithm of choice to carry a minimisation
problem to convergence given noisy observations
(of the function).

5 Conclusion

Spall (1987) presented the argument that the
SPSA algorithm was superior to the more stan-
dard FDSA algorithm and supported his claim
with a numerical study for a low order noise-free
minimisation problem. A similar conclusion was
reached in this paper for a higher order problem.

The Spall (1988a) argument that maintains the
superiority of SPSA over FDSA in the observation
plus noise problem was also found to be appropri-
ate based on the results of this study. The key to
SPSA’s superior performance appears to be in the
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way SPSA with gradient averaging handles very
high levels of observation noise. Still, there are
some concerns that remain. Spall (1988a) proves
that an SPSA algorithm applied to an observation
plus noise problem will converge asymptotically.
Yet, the (preliminary) results from this study sug-
gest that attaining the designed result may not be
practical from a numerical standpoint. Moreover,
the convergence rate of SPSA (and FDSA) slows
down significantly when it is applied to higher or-
der minimisation problems. While this observa-
tion is nothing new, dealing with its consequences
is a problem that must be overcome if SPSA is to
serve as a viable algorithm for solving high order
problems.
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