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Abstract

Simultaneous perturbation stochastic approximation (SPSA)
is an optimization method which requires only & few
objective function evaluations to obtain gradient information.
In this paper, a first-order SPSA algorithm is described,
which makes use of several mmmerical artifices, including
adaptive gain sequences, gradient smoothing and a step
rejection procedure, to enhance convergence and stability,
This algorithm is particularly well suited to problems
involving a large number of parameters and its potentialities
are demonstrated in the context of nonlinear system
identification. First, a relatively simple example is considered,
i.e. the development of a neural network state space model for
a level-control system. Second, & more advanced application
is studied, ie. the estimation of the most-likely kinetic
parameters and initial conditions of a bioprocess model
describing the evolution of a few macroscopic components in
batch animal cell cultures.

1 Introduction

Over the past several years, nonlinear models have been
increasingly used for simulation, state estimation and control
purposes. Particularly, the rapid progresses in computational
techniques and the success of nonlinear model predictive
control have been strong incentives for the development of
such models as neural networks or first-principle models.

Process modeling requires the estimation of several unknown
parameters from noisy measurement data. A Iecast-squares or
maximum likelihood cost function (depending on the
assumptions on the measurement noise) is usvally minimized
using a gradient-based optimization method.

Several techniques for computing the gradient of the cost
function are available, including finite difference

approximations and analytic differentiaticn. This latier
technique leads to backpropagation in neural networks {(NN)
or sensitivity eguations in the case of conventional first-
principle models.

In the above-mentioned techniques, the computational
expense required to estimate the current gradient direction is
directly proportional to the number of unknown model
parameters, which becomes an issue for models involving a
large number of parameters. This is typically the case in NN
modeling, but can also occur in other circumstances, such as
the estimation of parameters and initial conditions in first
principle models. Moreover, the derivation of sensitivity
equations requires analytic manipuiation of the model
equation, which is time consuming and subject to errors (note
that an important stream of current research and
developments is dedicated to the antomatic generation of such
equations using symbolic manipulation).

In contrast to standard finite differences which approximate
the gradient by varying the parameters one at a time, the
simultaneous perturbation (SP) approximation of the gradient
proposed by Spall [6] makes use of a very efficient technique
based on & simultaneous (random) perturbation in sll the
parameters. Hence, one gradient evaluation requires only two
evaluations of the cost function. This approach has first been
applied to gradient estimation in a first-order stochastic
approximation (SA} elgorithm [6], and more recently to
Hessian estimation in an accelerated second-order SPSA
algorithm [7].

In previous works [4, 9], the authors have applied the above-
mentioned first- and second-order SA algorithms (1SPSA and
28PSA) to weights and biases estimation in NNs. Efficiency,
simplicity of implementation and very modest computational
costs make 1SPSA particularly attractive, even though it
suffers from the classical drawback of first-order algorithms,
i.e., @& slowing down in the convergence as an optimum is
approached (note that this phenomenon is even more
pronounced in the case of SP techniques since the gradient
information is more delicate to "extract” in the — usually
rather "flat™ - neighborhood of the optimum).



In this study, a variation of the original first-order algorithm
is considered which makes use of adaptive gain sequences,
gradient smoothing and a step rejection procedure, to enhance
convergence and stability. To demonstrate the algorithm
efficiency and versatility, attention is focused on two
application examples:

1. the estimation of the weights and biases of a neural state
space model for a level-control system (i.e., the classical
one tank problem, which is investigated in simulation
here);

2. the estimation of kinetic parameters (and initial
conditions) of a macroscopic model of animal cell
cultures by minimizing a maximum-likelihood criterion
based on the experimental measurements of biomass,
glucose, glutamine and lactate concentrations.

This paper is organized as follows. Section 2 introduces the
basic principle of the first-order SPSA algorithm used
throughout this study. In section 3, the algorithm is applied to
NN modeling of a level-control system. At this stage,
attention is paid to the careful selection of input signals and to
the NN parameter estimation procedure. Section 4 deals with
a more advanced application, namely the maximum
likelihood estimation of kinetic parameters and inmitial
conditions of & bioprocess model from experimental
measurements of several macroscopic component
concentrations. Direct and  cross-validation  results
demonstrate the good model agreement. Finally, section 5 is
devoted to some concluding remarks.

2 A first-order SPSA algorithm

Consider the problem of minimizing a, possibly noisy,
objective function J(8) with respect 1o a vector 8 of unknown
parameters

ISPSA is given by the following core recursion for the
parameter vector @ [6]

8, =818y £ (B (1)
in which a, is &8 non-negative scalar gain coefficient, and
8, (8,;) is an approximation of the criterion gradient
obtained by varying all the elements of ék-l simultaneously,
ie.,
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where ¢ is a positive scalar and Ay = (g, Az, ..., Ayp)’ With
symmetrically Bernouilli distributed random variables {As}.

In its original formulation, 1SPSA makes use of decaying
gain sequences {a,} and {c,} in the form
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Numerical experiments show that the algorithn may therefore
get stuck somewhere in the parameter space if the criterion
value becomes significantly worse (due to a poor current
gradient approXimation, a mnon-convex optimization
problem,...) and the gain sequences are too small to recover
from this situation.

(3)
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In order to enhance convergence and stability, the use of an
adaptive gain sequence for parameter updating is considered
in this study, i.e.,
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In addition to gain attenuation when the value of the criterion
becomes worse, "blocking” mechanisms [7] are also applied,
i.e., the current step is rejected and, starting from the previous
parameter estimate, 8 new step is accomplished (with a new
gradient evaluation and a reduced updating gain). The
parameter P in (4) represents the permissible increase in the
criterion, before step rejection and gain aitenuation occur.

A constant gain sequence ¢, = ¢ could be used for gradient
approximation, the value of ¢ being selected so as to
overcome the influence of (numerical or experimental) noise.
In the optimum neighborhood, a decaying sequence in the
form (3) is required to evaluate the gradient with enough
accuracy and avoid an amplification of the "slowing down"
effect mentioned in the previous section.

Finally, a gradient smoothing (GS) procedure is implemented,
i.e., gradient approximations are averaged across iterations in
the following way

Gy =Py Gy +1-pi )8 By}, 05p; <1, G =0 (5)

where, starting with an initial value of p = p,, p, is decreased
in a way similar to (4) when step rejection occurs (i.e.
P =Upy_; with p<1) and is reset to its initial value afier a
successful step.

The use of these numerical artifices, i.e., adaptive gain
sequences, step rejection procedure and gradient smoothing,
significantly improves the effective practical performance of
the algorithm (which, in the following, is denoted "adaptive
18P-GS").

Inequality constraints can also be taken into account by a
projection algorithm introduced in [5] {the current parameter
estimate is projected onto a closed set included in the
admissible region in such a way that no function evaluation is
required outside this latter regiom). In this study, bound
constraints (e.g., positivity constraints) are handied in this
way.



3 NN modeling of a level control system

Consider a cylindrical tank which is operated with inlet and
outlet flow rates Qu(t) and Q, (1), respectively. Qg u(t)

results from the liquid free flow through the outlet valve and
can be computed using a Toricelli law in the form

Qou (1) = S, (1)28h(1) ©

where h(t) is the liquid level in the tank, g is the gravity
acceleration, S.(t) is the surface area of the valve (whose

aperture will be kept constant in the following) and ais a
correction factor.

The inlet flow rate Qg (1} can be manipulated (via a pump) to
control the liquid level in the tank, which is simply given by

st%whm—om(t) ™

where 8, is the cross section area of the tank.

Equations (6-7) define the process which is investigated in
simulation in the rest of this section. Our objective is to
develop a NN model describing the dynamic evolution of the
tank level h(t) in response to changes in the inlet flow rate
Quit).

When modeling nonlinear dynamic systems, several
alternative NN architectures can be used (see, e.g. [3]). Here,
a neural state space model [8] is selected

Xya1 = Wpptanh(V, Xy + Vi uy +Ban)
¥ = Wep tanh{Ve Xy + Vpuy +fcp) (8)

As illustrated in Fig. !, neural state space models are
recurrent NNs. The dimensions of the weight matrices and

bias vectors are W, € R™™=, V, € R™=", Ve R™="",
BpeR™, WepeR™™, VoeR™™, VpeR™™,

Bop € R™™ , wheren=1,m=1,1= IL,n,=5andn, =2are
the selected number of states, inputs, outputs and hidden
neurons, respectively.

The 28 unknown parameters are estimated from a set of N
system outputs y, (at times t, i=1,...,N) by minimizing a least-
square criterion, i.e.

N,
min Jiu(®) = min 3 (y; - 5@ L)
i=1

where ¥(8) is the NN prediction.

In this application example, a particular choice for the
training data set is made, which consists of the system
response to three input step sequences with decreasing step
duration, i.e., AT, = 1000s, AT, = 3005 and AT, = 100s. The
idea here is to first use the data set with a relatively low
frequency content and to minimize the least-square criterion

(9) in order to obtain first parameter estimates, Then, starting
from these first estimates, the criterion (9) is minimized using
the data corresponding to the first two sequences. Finally, the
procedure is repeated with the complete data set. This
multistep training procedure appears to be particularly useful
to alleviate the problem of local minima. The system response
to the three input step sequences is compared to the prediction
of the NN model in Fig. 2, which demonstrates the very good
model agreement.
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Figure 1; Neural state space model
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Figure 2: Comparison of the system response (solid line) to

three input step sequences with decreasing step
duration and the NN model prediction (dashed line)
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Figure 3: Convergence of the 1SP-GS algorithm (evolution of
the criterion value as a function of the number of
iterations) in the first training step
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Figure 4: Convergence of the 1SP-GS in the third training
step

The tuning parameters of the adaptive 1SP-GS algorithm are
as follows: c = 10", v = 1 (8 decaying sequence c; in the form
(3) is used to evaluate the criterion gradient), ay = 10, i =
1.05, u = 0.85, f = 0.02 (a relative increase of 2% in the
criterion is allowed), p, = 0.75. The convergence of the
algorithm in the first wraining step (based on the first input
sequence) is shown in figure 3 for the a totel number of
iterations N = 5000. The convergence of the algorithm in the
third step (based on the complete data set) is shown in figure
4 for N = 1000 iterations, The slowing-down effect as an
optimum is approached is clearly apparent.

4 Macrospic modeling of animal cell cultures

Consider batch animatl cell cultures described by a simple
Macroscopic reaction scheme

%
Yon Glno* X

growth: (10)

(11)

where X, G, Gln and L represent biomass, glucose, glutamine
and lactate, respectively, and vgy,, Vx and v, are pseudo-
stoechiometric coefficients. The symbol " —"" means that
the growth reaction is auto-catalyzed by X and the presence
of "vx X" in both sides of the maintenance reaction means
that X catalyzes this latter reaction.

o
maintenance:  G+vy Xovy X+v L

The growth rate @, and the maintenance rate @y are described
by a general kinetic model structure proposed in [2]

P (X,G,GIn) = (;.x7l£ G lnTson e—ﬁ. a0
P (X,G) = 0y XT2XGTn0 e Pk

(12)
(13

Simple mass halances allow the following dynamic model to
be derived

X - @x,6,61m) X(0) =X, (14)
ia“ti=_q,m(x,c) G(0) = Go (15)
ditl“ =—VouPy(X,G,Gin) Gn(0)=Gln,  (16)
%‘t-.= ViPa(X,G) L(©0)=Lo (amn

where X(t), ((t), Gin(t) and L{t) denote the respective
component concentrations.

Identification of bioprocess models is a delicate task and in
[2], a systematic procedure is proposed, which allows the
pseudo-stoechiometric  coefficients to be  estimated
independently of the kinetic coefficients 1] by minimizing a
maximum likelthood criterion. This procedure also considers
the estimation of the most likely initial conditions (since the
concentration measurements are corrupted by noise at each
sampling time, including the initial one).

In this study, we assume that the pseudo-stoechiometric
coefficients have already been estimated following the above-
mentioned procedure and that only the kinetic coefficients
and the initial component concentrations have to be inferred
from rare and asynchronous measurements of biomass,
glucose, glutamine and lactate concentrations,

The measurement equation is given by
y(ti)=x(t)}+2(t;) i=1,..,N (18)

where x(t) = [X(1) G(t) Gln(t) L())", y(t) and e(t) are the
state, measurement and noise vectors at time t, respectively.
The measurement errors are assumed to be normally
distributed, white noises with zero mean and variance matrix

Q®)-

Data are collected from seven batch experiments
corresponding to different initial glucose and glutamine
concentrations. Five of these experiments are used for
parameter estimation, the two remaining ones being used for
cross-validation tests.

The 28 unknown parameters (8 kinetic coefficients and 20
initial concentrations) are estimated by minimizing a
maximum likelihood cost function taking into account the
measurement noises, i.e.,

N
min Joy(8) = mein%Z(y‘- ~%i(@)' Q™ (v - %:(8))

i=l

(19)

where v, Q; and £;(9) are the measurement vector, the
measurement erTor covariance matrix and the state estimate
obtained by integration of the model equations (12-17) with
the parameters @ at time t;, respectively,

The tuning parameters of the adaptive 1SP-GS algorithmn are
selected as follows: ¢ = 105, = 1.5 (a decaying sequence ¢,



is used for gradient evaluation), ao= 105, 4= 1.01, p=0.
= 0 (no relative increase in the criterion is allowed), pp=(
Starting with the measured initial concentrations {which
affected by measurement errors) and an initial guess for
kinetic parameters corresponding to a criterion value J
65760, the minimization (19) leads to a criterion value J
308 in 50000 iterations. This number of iterations m
appear quite large at first sight, but the computational co
very modest as each iteration only requires two crite
evaluations (each of these evaluations involves 53 m
simulations corresponding to the 5 experimental batches i
in this identification phase). On the other hand, stan
centered finite difference approximations would require
criterion evaluations per iteration !

The parameter estimates are listed in Table 1. Figw
compares the measurement data of one of the
experimments used in the parameter identification proce
with the model prediction {direct validation), whereas Fi;

5 shows the same kind of comparison with the measurer
data of one of the remaining two experiments (cross-
validation). In these graphs, the circled points are the
measured data and the bars represent the 99% confidence
intetrvals. The solid lines are the concentration trajectories
predicted by the identified model.

These figures demonstrates the excellent model agreement

o = 0.0892 Oy = 0.0341
Yo.x = 0.4609 Ymx = 1.1395
Yeom = 0.1728 Yoo = 0.0822
Bgc =0.0089 By x =0.0980
Table 1: Parameter estimates
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Figure 4: Direct validation
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Figure 5: Cross-validation

5 Conclusion

The simultaneous perturbation approach developed by Spall
[6, 7] is & very powerful technique, which allows an
approximation of the gradient of the objective function to be
computed by effecting simultaneous random perturbations in
all the parameters. Therefore, this approach is particularly
well-suited to problems involving a relatively large number of
design parameters. In this study, a first-order SP algorithm is
described and applied to application examples in nonlinear
system identification. First, the weights and biases of a neural
network modeling a level control system is accomplished by
minimizing an output error least-square criterion, Second, a
maximum-likelihood approach is used to estimate the kinetic
parameters and the initial condition of a bioprocess model
from experimental measurements of a few macroscopic
components. These applications, as well as previous authors
studies [4, 9], demonstrate the usefulness of the proposed SP-
algorithm.
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