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Simultaneous perturbation for single hidden layer
networks — cascade learning
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Abstract

A simultaneous perturbation approach for cascade learning of single hidden layer neural net-
work is presented. A sigmoidal hidden neuron is added to the single layer of hidden neurons
after training until the error has stopped decreasing after a certain limit. Then, the cascaded
network is again trained using simultaneous perturbation. Perturbation employed on the weights
connecting to hidden neurons are changed to detrap the local minima in training. The proposed
technique gives better convergence results for the selected problems, namely neuro-controller,
XOR, L–T character recognition, two spirals, simple interaction function, harmonic function and
complicated interaction function. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, neural networks have been well studied and widely used in many 8elds
to model complex systems. Its capability has been well demonstrated both in practical
applications [5] and in theoretical study. Feedforward neural networks are powerful
models for solving non-linear mapping problems. Despite advances in neural networks,
determining the most appropriate network size for solving a speci8c task is yet to
be solved. Feedforward neural network model selection techniques can be classi8ed
into three groups: (i) perform a selection through arbitrary models, (ii) begin with a
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complex model and then simplify, and (iii) begin with a simple model then increase
its complexity.
In the 8rst method, several arbitrary structures are tried and the one giving the best

performance is selected. Such neural networks could have more hidden neurons than
necessary [4,11,14,23]. In the second method, a large network is trained 8rst and its size
is reduced by removing redundant hidden neurons using the network pruning technique
[2,8,15–17]. Castellano et al. [2] have described an iterative pruning algorithm to
remove such redundant hidden neurons. Pruning requires advanced knowledge of what
size is large for the problem at hand but this is not a serious concern as upper bound
on the number of hidden units have been established [8]. In the third one, start with
a small network and then add additional hidden units and weights until a satisfactory
solution is found. This is called constructive method [9,19,24,25]. The small network
to start with has no hidden units. If prior knowledge of the problem is available, an
alternative initial state may be supplied by the user. Constructive algorithm searches
for small network solution. Smaller networks are more eGcient in feedforward com-
putation and can be described by a simpler set of rules. If the initial network selected
is too small, it may not converge to a good solution and hence under8t the data. On
the other hand, selecting an initial network that is much larger than required makes
training computationally expensive. Constructive algorithm will spend the majority of
their time training the networks smaller than the 8nal networks as compared to algo-
rithms that start training with an oversize network. This method has been proved to be
powerful for training feedforward neural networks.
Recently, several researchers [3–8,10,13,20–25] have proposed diHerent approaches

to 8nd the structure of the neural network. Chen et al. [3,4] have proposed a procedure
for determining the neurons in radial basis function networks using orthogonal least
squares regression. Holcomb and Morari [7] have proposed a local training method for
radial basis function network training and to 8nd the number of hidden neurons. Wang
et al. [21] have described a procedure to 8nd the number of hidden layers and hidden
neurons in it. Yam and Chow [23] have proposed a training algorithm for feedfor-
ward neural networks based on the linear least squares and modi8ed gradient descent
method. Fahlman and Lebiere [6] have proposed the cascade-correlation learning ar-
chitecture for feedforward neural networks. The cascaded-correlation learning network
[1,6] adds a new candidate hidden unit that receives weighted connections not only
from the input, but also from any hidden unit already present in the network. These
cascaded connections enable the new candidate unit to approximate the complex map-
ping of residual error which cannot be accomplished either by existing hidden units or
by the new hidden sigmoidal unit without cascaded connections. Riedmiller and Braun
[15] have proposed a learning algorithm Resilient backpropagation [RPROP] for mul-
tilayer feedforward neural networks. RPROP performs a local adaptation of the weight
updates according to the behaviour of the error function. Cybenko [5] has shown that
a continuous function can be approximated by a feedforward neural network with only
a single hidden layer, where each unit in the hidden layer has sigmoidal non-linear
activation function. Hush and Horne [9] have presented a constructive algorithm with
piecewise linear sigmoidal nodes for non-linear function approximation. Young and
Downs [24] have described an algorithm that constructs a feedforward network with
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a single hidden layer of threshold units which implements the task for any consistant
classi8cation problem on real valued training vectors. Treadgold and Gedeon [20] have
proposed an algorithm in which, once new hidden neuron is connected to the net-
work, all weights are trained using RPROP algorithm [15]. SARPROP regularization
term [15] is added to the algorithm in order to test the eHect of regularization on a
constructive algorithm. Zhang and Morris [25] have described a sequential orthogonal
training method for single hidden layer network with sigmoidal activation function and
also for the neural networks with mixed type of hidden neurons and hybrid models.
Hwang et al. [10] have examined the structural and algorithmic similarities and diHer-

ences between a cascade-correlation learning network (CCLN) and a projection pursuit
learning network (PPLN) and carried out a comparative study for regression and clas-
si8cation applications in feedforward networks. A universal acceleration technique for
the backpropagation algorithm based on extrapolation of each individual interconnec-
tion weight was proposed by Kamarthi and Pittner [11]. Kwok and Yeung [12] have
studied a number of objective functions for training new hidden units in constructive
algorithms for multilayer feedforward networks. In [12] modi8ed quickprop algorithm
has been used to train the hidden layers while output layer was trained by comput-
ing pseudoinverse exactly. They have proposed few computational tricks that can be
used to improve the optimization of the objective functions under practical compu-
tations. Maeda and De-Figueiredo [14] have used simultaneous perturbation to train
a neuro-controller for controlling a robot arm. They have used neural network as a
neuro controller to learn an inverse of a plant without any information about the sensi-
tivity function of the objective plant. Simultaneous perturbation technique for training
feedforward technique has been introduced by Spall [18].
In this paper, we propose a technique by combining cascade learning and simulta-

neous perturbation approach for constructing a single hidden layer neural networks. In
this method, a sigmoidal hidden neuron is added to the single layer of hidden neu-
rons after a period of training when the error has stopped decreasing below a certain
limit. After the addition of new hidden neuron the whole network is again trained
with simultaneous perturbation technique. Simultaneous perturbation is used to 8nd the
local minimum and to minimize the cost function. To detrap the local minima, added
perturbed values on the connection weights are changed neuron by neuron starting
from the output layer. The eGciency of the proposed method is demonstrated for the
selected example problems namely neuro-controller, XOR, L–T character recognition,
two spirals, simple interaction function, harmonic function and complicated interaction
function. The next section describes the proposed method of simultaneous perturbation
for cascade learning. Section 3 describes the performance of the proposed algorithm
with diHerent examples. Section 4 contains the concluding remarks.

2. Training of single hidden layer neural network

We consider a single hidden layer neural network. The activation function of hidden
layer neurons are assumed to be sigmoidal. The output layer neuron(s) can have linear
activation function or non-linear activation function depending on the problem. In this
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Fig. 1. Single hidden layer neural network.

paper for simplicity we consider networks with single output neuron having linear
activation function. The input to the neural network may be received from outside the
network. We use the cascading approach for constructing the network architecture.

2.1. Training method

We consider a single hidden layer neural network as shown in Fig. 1, in which X =
[x1; x2; : : : ; xn]T is the input vector. Superscript T denotes transpose. Wi=[w1

i ; w
2
i ; : : : ; w

n
i ]

T

is the weight matrix associated with the ith hidden neuron including thresholds as
weights with input value 1. W = [W1; W2; : : : ; Wk ]T is a weight matrix associated with
the hidden layer neurons. V = [v1; v2; : : : ; vk ]T denotes the weight matrix associated
with the output layer neuron. Superscript k denotes number of hidden neurons. The
sigmoidal function

f(x) =
1

(1 + e−x)

is used for the hidden neuron to represent its input–output characteristic. Therefore, the
output of the jth neuron corresponding to the input is

Hj =
1

(1 + e−
∑n

p=1 wp
j xp

j )
:

[H1; H2; : : : ; Hk ]T is a vector which corresponds to the output of the hidden layer neu-
rons.

Yi =
k∑

j=1

VjHj

is the system output for the ith input pattern.

Ydi =
k∑

j=1

VjHj + Ei

is the desired output for the ith input pattern, where Ei is the model residual. De8ne
the error function J (W; V ) as

J (W; V ) =
∑

i

(Yi − Ydi)2:
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Here, every hidden neuron is used to model the relationship between input data and
model residuals. For the 8rst hidden neuron the model residual is the desired output.
The weights corresponding to the hidden neurons and the output neurons are modi8ed
by the learning rule via simultaneous perturbation technique.

2.2. Learning rule and simultaneous perturbation

We use the learning rule via simultaneous perturbation technique proposed by Maeda
and De-Figueiredo [14] for cascade learning. The ith component of the modifying
quantity corresponding to the tth iteration, of the weights Qwi

t is de8ned as follows:

Qwi
t =

J (Y (Wt + Ct; Vt + Dt))− J (Y (Wt; Vt))
ci
t

; (1)

where Ct = [c1t ; c
2
t ; : : : ; c

n
t ]

T and Dt = [d1
t ; d

2
t ; : : : ; d

k
t ]

T are the perturbation vectors with
uniformly distributed random numbers in the interval [ − 0:01; 0:01] except [ − 0:001;
0:001] for adding small disturbances to all weights, J (Y (Wt; Vt)) is the error function
of the neural network model for the weights associated with the connections, and
J (Y (Wt +Ct; Vt +Dt)) is the error function of the neural network model when all the
weights of the connections in the network are disturbed, that is added, simultaneously
by perturbation vectors. The properties of the perturbation vectors are assumed to be
as described by Maeda and De Figueiredo [14]. Weights of the network are updated
using the following learning rule,

wt+1 = wt − �Qwt; (2)

where � is a positive learning coeGcient. The error function is measured using for-
ward operation of the neural network for all input patterns. Then, add small perturba-
tion to all weights simultaneously and observe the value of the error function using
forward operation of the neural network for all input patterns. Detailed strict conver-
gence conditions of this simultaneous perturbation algorithm have been described by
Spall [19].

2.3. Training via simultaneous perturbation

2.3.1. Training single hidden unit
Select one hidden neuron unit for training as in Fig. 2. This neuron is used to model

the relationship between input value and model residual. The weights are uniformly
distributed random numbers in [− 1; 1]. The output of the feedforward neural network
and its error function for all training patterns are calculated and accumulated. The
random numbers for the perturbation vectors Ct and Dt are generated and added cor-
respondingly with the weights Wt and Vt simultaneously. Again, calculate the output
of the feedforward neural network and its error function for all desired input patterns
and obtain the total error. If the mean squared error (MSE) of the network after per-
turbation is less than the MSE of the network before perturbation then use the learning
rule to 8nd the modi8ed weight and update the weights otherwise change the perturbed
weights of the network neuron by neuron from the output layer until the MSE after
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Fig. 2. Structure of the new hidden unit.

perturbation is less than the MSE before perturbation. If the MSE of the network after
weight updation is greater than the MSE of the network before weight updation then do
the modi8cation by adding perturbation on the updated weights of the network neuron
by neuron.

2.3.2. Training cascaded neural network
New hidden unit created as in Fig. 2 will be cascaded with the already created

neural network structure. After cascading the new hidden unit, the whole structure will
be trained by the simultaneous perturbation technique. During training after perturbation
if the MSE of the network is greater than the MSE of the network before perturbation
then change the perturbed weights of the network neuron by neuron in the output layer
and then in the hidden layer. Using the learning rule 8nd the modi8ed weight and
update the weights of the neural network. If the MSE of the network after updation is
greater than the MSE of the network before updation then change the weights of the
network by adding perturbation on the connection weights of the network neuron by
neuron in the output layer and then in the hidden layer until the MSE of the network
after updation is less than MSE of the network before updation. Selection of new
hidden unit and cascading process will be continued until the training of the cascaded
neural network structure results in giving small enough error.

2.3.3. Algorithm
• Training

Step 1. Enter input values and expected output values.
Step 2. Generate random numbers for the weight vectors.
Step 3. For each input pattern

compute output of the feedforward network, 8nd the square error,
accumulate (

∑
(Y − Yd)2) and then 8nd MSE.

Step 4. Generate perturbation vectors and add with weight vectors simultaneously.
Step 5. For each input pattern

compute output of the feedforward network, 8nd the square error and
accumulate (

∑
(Y − Yd)2) and then 8nd P1 =MSE.

Step 6. If the MSE before perturbation is less than the MSE after perturbation
namely P1 then do Detrap local minima.
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Step 7. Find the modifying quantities for all weights using Eq. (1) and update
the weights of the network using Eq. (2).

Step 8. Find the output of the network and mean squared error namely P1. If this
P1 is greater than the MSE obtained in step 3 then do Detrap local

minima.
Step 9. Repeat steps 3–8 m times, where m is a user de8ned number.

• Detrap local minima
Step 10. Select neurons from output layer and then from hidden layer one by one

and
do the steps 11–15 repeatedly.

Step 11. Set the weights of the connection lines for the selected neuron with
the new perturbation values.

Step 12. For i = 1–n times do steps 13–15, where n is a user de8ned number.
Step 13. Add the connection weights of the selected neuron with the new

perturbation values.
Step 14. Find the output of the network for all training patterns and 8nd the MSE.
Step 15. If this MSE is less than P1 then exit from this part.

3. Simulation results

All the example problems were simulated in C on a Pentium III with 550 MHz
system. In all examples the activation function used in hidden neurons are sigmoidal.
The network has been trained with diHerent initial weights to test the robustness.

3.1. Two-link planar arm

First, we consider a static problem of Neuro-controller namely two-link planar arm
which is described in Maeda and De Figueiredo [14]. We prepare 10 positions of the
top of the arm to be learned. Top of the arm (x; y) is represented as follows using
arm length l1; l2 and angles �1; �2 as follows:

x = l1 cos(�1) + l2 cos(�1 + �2);

y = l1 sin(�1) + l2 sin(�1 + �2);

where �1 and �2 are angles as shown in Fig. 3. We have used the above cascading
approach to 8nd �1 and �2 for the desired input x and y. The network has been trained
with four diHerent data sets. Each set of data has been trained with 10 diHerent initial
weights. The actual positions and the positions predicted by the network are shown in
Figs. 4 and 5 for two sets of data. It has been found that four neurons are needed for
each data set to reach the sum of squared error (SSE) 0.046898, 0.048605, 0.048949
and 0.049982, respectively, to the data set 1,2,3 and 4 to learn the 10 positions. The
results are shown in Table 1. The learning rate � is assumed to be 0.00001. Whereas
Maeda and De Figueiredo [14] have used two hidden layer neural network with 10
neurons in each hidden layer for learning the 10 desired positions of the top of the
arm.
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Fig. 3. Two-link planar arm.
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Fig. 4. Actual points and predicted points of the 8rst set of data for the two-link planar arm.

3.2. XOR, L–T character recognition and two spirals

Next, we consider the standard XOR problem. The proposed algorithm has been
executed with 25 diHerent initial weights. It has been found that 3.32 hidden neurons
and 3241.91 epochs are required on the average to reach the SSE 0.00008 within
5 s for training the single hidden layer network. The average time needed per epoch
was 0.00146 seconds. The learning rate � = 0:001 has been used. Whereas Kamarthi
and Pittner [11] have used 2-3-1 network structure for backpropagation with weight
extrapolation (BPWE) with SSE of 0.00008 and epochs 4886. They have further shown
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Fig. 5. Actual points and predicted points of the second set of data for the two-link planar arm.

that the conjugate gradient with line search method was not able to train the network
below the error value 0.012 for the termination condition of 10−4.

Next, we consider L–T character recognition problem. The training set consisted of a
3×3 pixel binary image for each letter with its four orientation, in total eight patterns.
The target values for the letters L and T are choosen to be 0.05 and 0.95 corresponding
to the output unit. The proposed algorithm requires 9-2-1 network structure to converge
to SSE of 10−4. The network is trained with 25 diHerent initial weights. It has been
found that the network converged with an average of 547.2 epochs and 3:2 s. The
learning rate � is assumed to be 0.1. Kamarthi and Pittner [11] had 9-2-1 structure
to converge in 1811 epochs using the BPWE method. Further, they have pointed out
that their structure did not converge using conjugate gradient with line search method
and was locked in a local minima after reaching the SSE 0.011 for the termination
condition 10−5. Fig. 6 shows the decrease in the error corresponding to epochs of the
network.
Then we consider two spirals problem with 82 original input patterns. The input pat-

terns use points within a radius of 3 units and are randomly merged for training. The
input coordinates represent the points of two interwined spirals in the two-dimensional
plane. The network is trained to classify the points of two separate spirals. The points
lying on the spirals are recognised with its corresponding target values 0 and 1. The
proposed algorithm uses 11 hidden neurons with SSE 0.000097, and requires 7546.93
epochs and of time 1711:5 s on the average for 15 diHerent initial weights in train-
ing. The average time needed per epoch was 0:2268 s. But Kamarthi and Pittner [11]
have used 2-8-2-1 two hidden layer network to converge to SSE 0.0001. The BPWE
[11] method converged within 3798 epochs and 78618 s whereas they have speci8ed
that the conjugate gradient with line search method did not converge after reaching
SSE 18.16 in 17 epochs for the termination condition 10−4. The decrease of SSE af-
ter addition of each neuron in the proposed algorithm is depicted in Fig. 7. Results
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Table 1
Simulation results for the two link planar arm problem

Number of hidden neurons SSE Termination condition

I data set 3 0.049694 0.05
3 0.049148 0.05
3 0.046875 0.05
3 0.049234 0.05
2 0.049932 0.05
4 0.046898 0.05
3 0.048200 0.05
3 0.049911 005
2 0.049574 0.05
3 0.049421 0.05

II data set 3 0.045961 0.05
3 0.048974 0.05
3 0.049241 0.05
3 0.048928 0.05
3 0.048132 0.05
2 0.049949 0.05
3 0.048852 0.05
3 0.047214 0.05
4 0.048605 0.05
3 0.049219 0.05

III data set 3 0.049953 0.05
3 0.048601 0.05
3 0.047015 0.05
3 0.049886 0.05
3 0.049790 0.05
3 0.049961 0.05
3 0.043492 0.05
3 0.049612 0.05
3 0.049569 0.05
4 0.048949 0.05

IV data set 3 0.049217 0.05
3 0.049975 0.05
3 0.049814 0.05
4 0.049982 0.05
3 0.049218 0.05
3 0.049104 0.05
3 0.048048 0.05
3 0.049628 0.05
3 0.046983 0.05
3 0.047699 0.05

of this section are tabulated in Table 2. Kamarthi and Pittner [11] have simulated
the XOR, L–T and two spirals problems in C on a Sun SPARC-4 Ultra 5 work-
station.
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3.3. Two dimensional regression problems

In this subsection we consider the following two-dimensional regression problems

• Simple interaction function

f(x1; x2) = 10:391((x1 − 0:4)(x2 − 0:6) + 0:36):

• Harmonic function

f(x1; x2) = 42:659(0:1 + x̃1(0:05 + x̃41 − 10x̃21x̃
2
2 + 5x̃42));

where x̃1 = x1 − 0:5, x̃2 = x2 − 0:5.
• Complicated interaction function

f(x1; x2) = 1:9(1:35 + ex1 sin(13(x1 − 0:6)2)e−x2 sin(7x2)):
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Table 2
Comparison table for the worst case results of the proposed method, conjugate gradient with line search and
BPWE for XOR, L–T and two spirals problems

Conjugate gradient Back propagation Proposed algorithm
with line search with weight extrapolation

XOR
No. hidden neurons 3 3 5
SSE 0.012 0.00008 0.00008
Total epochs 14 4886 3398
Time(s) per epoch 0.1 1.0 0.0015

L–T
No. hidden neurons 2 2 2
SSE 0.011 0.0001 0.00009
Total epochs 5 1811 770
Time(s) per epoch 0.1 0.6 0.0026

Two spirals
No. hidden neurons 10(8-2) 10(8-2) 11
SSE 18.16 0.0001 0.000099
Total epochs 17 3798 8891
Time(s) per epoch 1.6 20.4 0.3558

For training the above functions 225 points have been generated from uniform distri-
bution U [0; 1]2. 2500 set of points have been generated for testing from a regularly
spaced grid on [0; 1]2 for the above functions. The fraction of variance unexplained
(FVU) on the test is used for comparison. It is de8ned as

FVU =
∑N

i=1(f(xi)− fn(xi))2∑N
i=1(f(xi)− Sf)2

;

where Sf = 1=N
∑N

i=1 f(xi), N = number of training patterns. The learning rate � is
assumed to be 0.00001 for the above three functions. Termination condition used and
the hidden neurons needed are 0.0005, 0.05, 0.05 and 6,10,7, respectively, for the
corresponding simple interaction, harmonic and complicated interaction functions. The
obtained networks for the functions are tested with 10 diHerent trials each containing
2500 sets of points. Mean testing FVU’s of 10 diHerent trials are 0.00092, 0.091284 and
0.092709 for the functions simple interaction, harmonic and complicated interaction,
respectively. Whereas Kwok and Yeung [12] have obtained the minimum FVU’s on
mean testing in 100 trials for the simple interaction function, harmonic function and
complicated interaction function are 0.00258, 0.24738 and 0.11126, respectively. They
have selected this minimum FVU’s among the networks ranging 1–15 hidden neurons
with 10000 input patterns when testing but 225 input patterns at training.
Hwang et al. [10] have simulated complicated interaction function using cascade-

correlation learning network. They have used 225 input patterns for training and 2500
input patterns for testing. Ten hidden neurons with 88 connection weights required for
CCLN to reach the testing error (FVU) of 0.359. Whereas the proposed algorithm used
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Table 3
Comparison table for the test mean FVU’s of the proposed method with CCLN and Kwok and Yeung’s
result for selected problems

Function Cascade-correlation Kwok & Yeung’s Proposed
learning result algorithm

Simple Neurons — 15 6
interaction FVU error — 0.00258 0.00092
function connection weights — 60 24

Harmonic Neurons — 15 10
function FVU error — 0.24738 0.091284

connection weights — 60 40

Complicated Neurons 10 15 7
interaction FVU error 0.359 0.11126 0.092709
function connection weights 88 60 28
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Fig. 8. Simple interaction function for the expected values.

only seven hidden neurons with 28 connection weights to reach the mean testing FVU
0.092709 with sigmoidal activation function for 10 diHerent trials. Table 3 shows the
comparative results for the above problem. Figs. 8–13 show the three-dimensional plots
of the expected and the network results for the above three functions using 2500 test
data sets.

4. Conclusion

A simultaneous perturbation training algorithm for building and training single hidden
layer neural network is proposed. In this method, all hidden neurons are used to model
the relationships between input data and model residuals. A sigmoidal hidden neuron
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Fig. 10. Harmonic function for the expected values.

is added to the single layer of hidden neurons after a period of training when the error
has stopped decreasing below a threshold value. After the addition of the new hidden
neuron, the whole network is again trained with simultaneous perturbation. In training,
perturbed values to the connection weights are changed to detrap the local minima.
The method has been tested with selected examples. It has been observed that for the
selected examples the number of neurons and epochs have been reduced compared to
the related results in the literature.
The proposed algorithm is very simple and easy to implement and requires less

number of manipulations. The value of the cost function, number of epochs, the number
of neurons and number of layers are reduced in the proposed work when compared
with the Maeda and De Figueiredo [14]’s work in the two-link planar arm problem. In
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Fig. 11. Harmonic function for the network values.
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Fig. 12. Complicated interaction function for the expected values.

the XOR and L–T character recognition problems number of epochs and time needed
for the proposed algorithm is less than the Backpropagation with weight extrapolation
algorithm and conjugate gradient with line search method. In the two spirals problem
eventhough the number of neurons and epochs needed for the proposed algorithm are
greater than the Backpropagation with weight extrapolation algorithm, the proposed
algorithm needs only single hidden layer network, less connection weights and less
time to converge to the expected result.
The proposed algorithm needs less number of neurons, connection weights to reach

the minimum cost function than the cascade-correlation learning [10] and the con-
structive algorithm [12] using diHerent objective functions for training hidden units in
two-dimensional regression problems. The results obtained for diHerent initial weights
show the robust learning of the proposed algorithm.
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