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A Neural Network Controller for Systems
with Unmodeled Dynamics with
Applications to Wastewater Treatment
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Abstract— This paper considers the use of neural networks
(NN’s) in controlling a nonlinear, stochastic system with unknown
process equations. The approach here is based on using the output
error of the system to train the NN controller without the need to
assume or construct a separate model (NN or other type) for the
unknown process dynamics. To implement such a direct adaptive
control approach, it is required that connection weights in the NN
be estimated while the system is being controlled. As a result of
the feedback of the unknown process dynamics, however, it is not
possible to determine the gradient of the loss function for use in
standard (back-propagation-type) weight estimation algorithms.
In principle, stochastic approximation algorithms in the standard
(Kiefer—Wolfowitz) finite-difference form can be used for this
weight estimation since they are based on gradient approximations
from available system output errors. However, these algorithms
will generally require a prohibitive number of observed system
outputs. Therefore, this paper considers the use of a new stochas-
tic approximation algorithm for this weight estimation, which is
based on a “simultaneous perturbation” gradient approximation.
It is shown that this algorithm can greatly enhance the efficiency
over more standard stochastic approximation algorithms based
on finite-difference gradient approximations. The approach will
be illustrated on a simulated wastewater. treatment system with
stochastic effects and nonstationary dynamics.

Index Terms— Adaptive control, gradient estimation, neural
networks, simultaneous perturbation, stochastic approximation.

I. INTRODUCTION

NE OF THE major problems faced by system designers

in many fields is finding a means to control and regulate
the system under consideration given uncertainty about the
nature of the underlying process. Adaptive control procedures
have been designed to address this problem for certain types
of system models (e.g., linear or special forms of nonlinear
models) where only the parameters (not the model structure)
are unknown. These techniques are based on using the known
model form to construct a control law with unkiown pa-
rameters and then using the system data to estimate these
parameters. Although adaptive control procedures have been
applied in a variety of areas (e.g., robot arm manipulation,
aircraft control, etc.) they are limited by the need to assume
that the forms of the system equations are known. For a
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complex process, however, the forms of the system equations
may be unknown, making it impossible to determine the
required control law for use in existing adaptive control
procedures. This provides the motivation for considering the
use of neural networks (NN’s) in adaptive control.

Artificial neural networks, or more commonly just NN’s,
have recently attracted much attention for their potential to
address a number of difficult problems in modeling. One of
the areas receiving a significant portion of the attention is the
use of NN’s for controlling and regulating nonlinear dynamic
systems. Traditionally, developing controllers for nonlinear
systems has been extremely difficult, even in deterministic
settings where the equations governing the system dynamics
are fully known (see Pao, Phillips, and Sobajic [20] for a brief
review of the nonlinear control problem). NN’s, however, offer
the potential for addressing control problems even broader than
this, including the control of stochastlc systems with unknown
nonlinear dynamics.

A number of others have con51dered using NN’s for the
problem of controlling uncertain nonlinear (usually deter-
ministic) systems (see, e.g., the April 1990 and April 1992
special issues of the JEEE CONTROL SYSTEMS MAGAZINE,
Narendra and Parthasarathy [18), [19], Tulunay [32], Hunt
and Sbarbaro [11], Pao, Phillips, and Sobajic [20], or Yamada
and Yabuta [34]). Although these methods are useful under
certain conditions, they often lack the ability 0 control systems
with minimal prior information. In particular, they require
an explicit model (either NN or other parametric type such.
as linear or nonlinear ARMA) for the underlying process
equations; this model is assumed to be equivalent to the
“true” process equations so that it is possible to calculate the
gradient needed in back-propagation-type learning algorithms.
These techniques typically require off-line identification of the
process model before implementation of the adaptive control
algorithm.

The NN in the approach of this paper is used to directly
model the resulting unknown control law without the need
to construct a separate model (NN or other type) for the
unknown process dynamics. The basis for this approach is
the now well-known fact that any continuous function can be
approximated to within any degree of accuracy by some single
(or multiple) hidden-layer feed-forward NN (e.g., Funahashi
[8] or Homik, Stinchcombe, and White [10]). Three of the
major advantages of such model-free direct control techniques
(versus the indirect control approaches mentioned above) are
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that they: i) require no “open loop” training data, ii) tend
to be better able to handle changes in the underlying system
behavior (since they are not tied to a prior model), and iii) tend
to be more robust in the face of widely varying control inputs
(i.e., the indirect approach may perform poorly for closed-
loop controls outside of the range of open-loop controls used
in the a priori training step). Of course, in some systems
(such as when the dynamics are well understood) the more
traditional model-based approaches may be more effective; see
Passino [21, p. 15] for discussion of this (since the technique
here is based on formal estimation principles of stochastic
approximation, it does, however, seem to eliminate one of the
issues raised by Passino, namely that “heuristics are all that is
available to perform controller design”).

To implement such an adaptive control approach, it is
required that the connection weights in the NN be estimated
while the system is being controlled. As a result of the
feedback of the unknown process dynamics, however, it is
not possible to determine the gradient of the loss function
for use in standard (back-propagation-type) weight estimation
algorithms, as described below. Therefore, this paper considers
in Section III the use of a relatively new stochastic approxi-
mation algorithm for this weight estimation, which is based on
a “simultaneous perturbation” gradient approximation. Based
on a simulated wastewater treatment plant, it is illustrated
in Section IV that this algorithm can greatly enhance the
efficiency over more standard stochastic approximation algo-
rithms based on finite-difference gradient approximations.

II. OVERVIEW OF NEURAL NETWORK APPROACH TO CONTROL

Consider a system state vector at time k + 1 given by

Trr1 = Ok (@k, Uk, wi) (2.1)
where ¢;(-) is an unknown, nonlinear function governing the
dynamics of the system, u; is the control input applied to
govern the system at time &£ + 1, and wy is a random noise
vector. Our goal is to choose the control vectors {u;} in
a manner such' that the state values {r;} are close to a
corresponding set of target (reference) vectors {ti}, where
“close” is relative to the magnitude of the noise and the cost
associated with the control. The information being fed into
the controller includes the M most recent state values and N
most recent controls; in addition other information such as the
next target vector or certain known system characteristics (e.g.,
exogenous inputs) may be included as input to the control.
Note from (2.1) that this paper is focusing on the case of direct
state measurements (as with most of the cases considered in
[18]); this restriction is not critical since the basic ideas here
transfer readily to the more general case of separate state and
measurement relationships as discussed in Spall and Cristion
[29].

In the approach here, the output of the NN will correspond
to the value of the control uj, as shown in Fig. 1 for

"Note that although (2.2) is a one-step-ahead error function, much of the
adaptive control literature focuses on minimizing a loss function over an
infinite time horizon. Moden and Soderstrom [17] is one of a number of
references that discuss the relationship between the two approaches.
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Fig. 1. Control system with NN as approximator to optimal w; when
M =N =1.
the case where M = N = 1 (for the setting where

M and/or N is >1, the figure would be modified in
an obvious way). Associated with the NN producing uy
will be a vector of connection weights 8, € RP that
must be estimated. We will assume that the NN structure
(e.g., number of nodes and layers) is given. Hence the
adaptive control problem of finding the optimal u; =
Uk (Ok3 Thy The 1y - o s TR AI15 Whm 15 Uk 25 -+« Ukm N3 ERg1 )5
given that {xy,Tg_;,...:Uk—1,Uk—2,-..} have already
occurred, is equivalent to finding the 6, that minimizes
some loss function L;{f;) measuring system performance.
A common function is the one-step-ahead quadratic loss

Li(6y) = E[(a?k,+1 — tk+1)TAk_(.’L‘k+1 —tht1) + u{Bkuk]
2.2)

where Ay, By are positive semi-definite matrices reflecting
the relative weight to put on deviations from the target and
on the cost associated with larger values of u;. Note also that
if the unconditional loss function L;(f)) were replaced by a
conditional loss, as is sometimes seen in the control literature
(e.g., (2.2) replaced by an expected tracking error conditional
on previous measurements and controls), the same optimal
6;. would typically result. This follows since under standard
analysis conditions on the interchange of a derivative and an
integral, E(OL{"™/86,,) = OE(L{*"Y) /06, = 8Lk /08r = 0
at only the optimal 8, (within the domain of interest) as
discussed below, where L{P“" represents the conditional loss.
The approach of this paper would apply equally well with
other (nonquadratic) loss functions, as might arise, e.g., in
constrained problems where penalties are included on certain
values of x441 and/or wuy.

Given the goal of minimizing L,(6;) at each k, we are
seeking the optimal d;, say 8}, such that at 8}

oL _Bu 9Ly (g
df)k ()9)\ duk

where we assume that all indicated derivatives exist. We
assume that 8} corresponds to a global minimum or at least a
sufficiently good local minimum. Since the system dynamics .
¢r(-) are unknown, the term OL;/duy, which involves the
term J¢y. /Duy, is not generally computable. Thus the standard
“back-propagation” algorithm (i.e., steepest descent—see, e.g.,
Narendra and Parthasarathy [18], {19]), or any other algorithm
involving 9L, /06, is not feasible. This contrasts with imple-
mentations of indirect feedback controllers where a separate

(i) =




SPALL AND CRISTION: NEURAL NETWORK CONTROLLER

NN is used to model the unknown system dynamics and the
identification and adaptive control is performed as if the NN
model was identical in structure to the true system dynamics.

Therefore, we consider a stochastic approximation (SA)
algorithm of the form

ék = ék—-1 — ay(gradient approx.); 2.4

to estimate {6} }, where 6;. denotes the estimate at the given
iteration, {ax} is a scalar gain sequence (see discussion
below), and the gradient approximation is such that it does
not require knowledge of ¢, (-). This algorithm is a stochastic
version of the well-known (deterministic) gradient descent
algorithm. The next section is devoted to describing in more
detail the SA approach to this problem.?

III. WEIGHT ESTIMATION BY SIMULTANEOUS
PERTURBATION STOCHASTIC APPROXIMATION

A. Overview of Approach

This subsection gives an overview of the simultaneous
perturbation SA (SPSA) approach to the problem in (2.3);
the next subsection considers some more detailed aspects of
practical implementation. Spall [24] gives a thorough analysis
of the SPSA approach to general optimization problems. It
is shown that the SPSA algorithm can, under fairly general
conditions, achieve the same level of asymptotic accuracy in
estimating the NN weights as the standard finite-difference SA
(FDSA) approach of Kiefer-Wolfowitz with only 1/p the total
number of system measurements. This is of particular interest
in neural network problems since p can easily be on the order
of 10 or 10°.

In line with (2.4), the SPSA algorithm has the form

Ok = 0k — ardr(br—1) (3.1a)
where gk(ék_l) is the simultaneous perturbation approxi-
mation to gi(fx-1). In particular, the ¢th component of
9x(Ok-1), £ =1,2,...,p, is given by

e

SorDre (3.1b)

Gre(Or—1) =

where
. Ii,(ci) are estimated values of Lk(ék_l + ¢, Ay) using the

observed zii)l and ugf), e.g., for Li(6:) as in (2.2),

LD = (@)~ ter) T Aol — ter) + 0l B,
. uff) are controls based on a NN with weight vector
81 = Or_1 % ciDy, where Ay, = (Ar1, Ar2, ..o AT,
with the {4} independent, bounded, symmetrically
distributed. (about 0) random variables V&, 1, identically
distributed at each k, with E(A,?) uniformly bounded
Vk.i (note that Ay; can not be uniformly or normally

2Chen [5], Goldenthal and Farrel [9]. and Milito er al. [16] have also
described techniques for NN weight estimation in adaptive control when
the gradient is not available, but their techniques still require considerable
information about the process dynamics; in particular they require knowledge
of the sign of the terms that appear in the gradient dL;./du,. in (2.3). Spail
and Cristion [26] includes a more detailed analysis of this type of technique.
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distributed; it can be symmetrically Bernoulli distributed,

which we use in Section IV).

o piE) (£)

141 are state values based on w,

* {ar} and {c¢} are sequences of positive numbers. In

a setting where the system dynamics and loss func-
tion are constant (ie., ¢i(-) = ¢(-), {w,} iid. and
A = A, B, = B.Vk), the SA coefficients af, Cr
should satisfy standard conditions (e.g., ap — 0,¢ —
0,3 720tk = 00, Y peolar/ck)? < oc) given, say, in
[23] or [24] to have ék converge to the unique #* that
generates the optimal control function u(-) = u(-) (this
assumes that the NN structure is rich enough in its ability
to replicate the true optimal control function so that such
a unique 6 exists). On the other hand, if the dynamics
or loss function are changing, it is best to pick constant
coefficients, a; = a,c;, = ¢ Vk, (in order to track the
time-varying solution 8}) as discussed in [3], [13], and
[14].

The key fact to observe is that at any iteration only rwo
state measurements are needed (i.e., the numerators are the
same for all p components of §i(fx_1)). This is in contrast
to the standard FDSA approach where 2p measurements are
needed to construct the approximation to gk(ék_ 1) (e, for -
the /th component of the gradient approximation, the quantity
Ay is replaced by a vector with a positive constant in the
¢th place and zeroes elsewhere; see, e.g., Ruppert [23] for
general discussion or Bayard [2] for an application of such
techniques in adaptive control). A variation on the form in
(3.1b) is to average several gradient approximations, with each
vector in the average being based on a new (independent)
value of A; and a corresponding new pair of measurements.
This will often enhance the performance of the algorithm as
illustrated in Section IV, although at the cost of additional
measurements. A further variation on (3.1b) is to smooth
across time by a weighted average of the previous and current
gradient estimates (analogous to the “momenturn” approach
in back-propagation); such smoothing can often improve the
performance of the algorithm (see Spall and Cristion [28]
for a thorough discussion of smoothing in SPSA-based direct
adaptive control). Finally, it should be noted that SPSA is
generally guaranteed to yield only a local minimum of the
loss function (as is the case with back propagation when that
type of algorithm can be applied); extension of the approach
to the global optimization setting seems possible using ideas
such as in Styblinski and Tang [30], Chin [6] or Yakowitz [33],
although these algorithms are naturally more complicated to
implement.

B. Implementation Strategies and Use of Prior Information

This subsection presents two ways in which (3.1a) and
(3.1b) can be implemented in practical problems. As discussed
below, the variations in implementation strategies depend on
whether a nominal state is or is not being produced. We also
consider a theoretical issue associated with the validity of the
SPSA gradient approximation in the control framework here.
The subsection closes with a brief discussion on the use of
prior information on the system (if available).
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Although every iteration of (3.1a) and (3.1b) requires that
xﬁ)l be produced, it may sometimes be desirable to also
produce a “nominal” state z;.; based on a control u; with
#r = 6. Such a state provides an indicator as to how well
the estimation procedure is performing since it relies on the
updated weight estimate in the controller (versus perturbed
previous weight estimates for use in generating uff and hence
xﬁ)l) Thus two possible sequences of states would be

(+ (=) (+) 2

) {zo,z,"’,2; ’,z1,25 ,Zy ,T2...} (with nominal
state).
i) {zo,z\ z g),zgﬂ,xé—),...} (without  nominal
state).

In many practical applications it would be desirable to adopt
a hybrid of i) and ii). For example, in the standard SA setting
where ¢ — 0, the perturbations cxA; would be relatively
large during the early iterations, and so it may be desirable
to produce x4 in order to monitor the performance of the
estimation algorithm. On the other hand, in the later iterations,
when the perturbations are small and 05 has nearly converged,
it may not be necessary to produce the nominal states since
the 2\, values would (to within the noise level) differ little
from z.;. There may also, of course, be periods when
only nominal states might be generated (i.e., no updating of
6r), e. g., when 6 has effectively converged and the process
dynamics are stationary.

The specific method by which (3.1a) and (3.1b) would be
implemented depends on the type of system being controlled
and whether or not a nominal state is being produced. We out-
line below a general implementation strategy. This discussion
assumes that M = N = 1 in (2.1); obvious modifications
cover other cases.

In particular, when the nominal state is being generated [i.e.,
i) above applies], there are three basic operational steps in
going from zj t0 Zg4i.

1) Determine u§c+) based on ék_l + Ak, Tk, Uk-1, and

tr+1- Generate a corresponding output xfc':)l and ob-

served loss ﬁ(+)

2) Given the system at mi +)1’ use uk - based on Hk 1 —

cr Ak, 1:5;)1, uff and ¢4, to generate an output xgc +)1

and observed loss L( ).
3) Use algonthm (3.1a b) to generate Gk Then based on
Hk,xk+1,u§c , and tx41, generate ug and the corre-
sponding zpi1.?
If the nominal state is not being produced (i.e., ii) above
applies), then these three steps are modified in an obv1ous

way. (That is, operationally, with the system at state $ k thls
implementation would then proceed to :1:5c +)1 by applying ul k
based on fx_1 + ckAk,xfc_),ufc__)l and t,4,; after observing

to zfc’:_)l, it then generates a:f;)l. Now f;_; is updated to §;

by (3.1a,b) and the process is repeated).

31f the gradient averaging method mentioned in Section III-A is used, then
steps 1-3 are modified in the obvious ways to accommodate the fact that at
each iteration, we generate 2¢ (say) values of the control (instead of just two),
with each pair of controls based on a new (independent) value of Ay.

" In light of the constant evolution of the state vector, let us
now discuss an issue associated with the theoretical viability
of the SPSA-based approach. In particular, since we seek
a stochastic version of a gradient descent algorithm, it is
important to establish that Gk (fr—1) is related to the true
gradient gk(ék_l) in a meaningful way. Under conditions
such as those given below (3.1b), Spall [24] establishes
the near unbiasedness of the SP gradient estimate (the bias
is O(ci),ck — 0) in a static optimization context (i.e.,
Ly(-) = L(-) Yk with no feedback). Although this paper
will not present a formal convergence theory (see Spall and
Cristion [29]), there is an intuitive basis for the gradient
approximation described above to be appropriate in the control
context. Namely, if the dynamic system is nearly statistically
stationary over the period in which one gradient approxmation
is generated, then that gradient approximation will be nearly
an unbiased estimate of the true (unknown) gradient. This
near-unbiasedness is a factor in the convergence analysis. We
use “nearly” here to encompass nonstationarities due to ck
In particular, if the nonstationarities in going from L
I:Sc_) are decreasing in ¢ in a manner such that E(L(+)
I:fc_)) = O(c3), then §x(x) will retain the O(c?) bias of the
static optimization context. With additional conditions very
similar to [24] this is sufficient for convergence of ék to
the best possible weight vector—when such a weight vector
exists—given the chosen NN structure and number of terms
within the information set being provided to the controller. In
fact, however, convergence can be shown in some cases where
the nonstationarities do not decrease in ¢ (see [29]).

Let us close this subsection with a brief discussion of
how certain types of prior information on the system, if
available, can be used in the algorithm to help improve system
performance. The most obvious way is through prespecifying
certain values of 00 to produce a desirable value of ug. For
example, if it is known that a nominal value of the control,
say u*, will typically produce a state value relatively close to
the target then certain bias weights on the output layer of the
NN (corresponding to certain elements within 60) could be set
to yield a up near u*. Another way in which prior information
can be introduced is through the self-tuning method discussed
in Spall and Cristion [26]-[29]. Here the prior information
corresponds to partial knowledge of the system equation (2.1).
The self-tuning method is a slight modification of the approach
of this paper in that the NN output is no longer uj directly;
rather it corresponds to an approximation of certain unknown
functions within the system equation, which are then used
in a control law that is derived from the prior information.
Numerical studies in [28] and [29] indicate that the self-tuning
method can yield a lower level of tracking error than the
baseline method of this paper if the required prior information
is available and reliable.

IV. EMPIRICAL STUDY: WASTEWATER TREATMENT

This section presents the results of a study on a waste-
water treatment model from Dochain and Bastin [7]. Similar
wastewater treatment models may also be found in the biore-




SPALL AND CRISTION: NEURAL NETWORK CONTROLLER

Methane Gas
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(Control 1) (State 1)
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Fig. 2. Wastewater treatment system.

mediation literature (e.g., Andrews [1], Cardello and San [4],
Metcalf and Eddy [15], Renard er al. [22], and Thibault, Van
Breusegem, and Cheruy [31]). This is a model of affine-
nonlinear multiplicative control form (e.g., Chen [5]) where
the aim is to control the output substrate concentration and
the methane production rate based on adjusting the input
concentration and the input flow rate at the input to a anaerobic
digestion process (see Fig. 2). (Note that [7] controlled only
the output substrate concentration or the methane production
rate using the input flow rate as their only control and that
they used an indirect controller, where a general form for the
model of the wastewater treatment system was assumed to be
known with unknown parameters that were estimated.)

In the wastewater treatment system of Fig. 2, the influent
wastewater is first mixed (as determined by a controller) with
a dilution substance to provide a mixture with a desired
concentration of contaminants. This diluted mixture is then
sent to a second tank at a controlled flow rate. In the second
tank the mixture goes through an anaerobic digestion process,
where the organic material in the mixture is converted by
bacteria into depolluted water and byproducts such as methane
(Metcalf and Eddy [15], p. 420). Therefore, the system consists
of two controls (the mix of wastewater/dilution substance and
the input flow rate) and results in two outputs (an effluent
depolluted water with a lower concentration of contaminants
than the influent and methane gas, which is useful as a fuel
[7]). Since this system relies on biological processes, the
dynamics are nonlinear and usually time-varying (Thibault,
Van Breusegem, and Cheruy {31] and Cardello and San [4]).
Also, the system is subject to constraints (e.g., the input and
output concentrations, the methane gas flow rate, and the input
flow rate all must be greater than zero), which presents an
additional challenge in developing a controller for the system.

The study here is based on A; = A (a constant weighting
matrix) and By, = 0 in the loss function (2.2) (i.e., a minimum
variance regulator). The performance of the technique will
be evaluated by presenting the observed weighted root-mean-
square (rms) measurement error, i.e., the observed weighted
mms at time k is [(zi — t)T A(zr — tk)]l/z, where, for our
studies here, we used a two-dimensional diagonal weight
matrix A with a value .01 as the first diagonal element and
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99 as the second diagonal element (reflecting the relative
emphasis to be given to methane production and water purity,
respectively). The (feedforward) NN’s considered here have
nodes that are scaled logistic functions (i.e., 1/(1 4+ e~Y) for
input ). Each node takes as an input (y) the weighted sum of
outputs of all nodes in the previous layer plus a bias weight
not connected to the rest of the network as in Chen [5]. For
the weight estimation, we will consider different forms of the
SPSA algorithm, denoted SPSA-q, where q denotes the number
of individual gradient approximations of the form (3.1b) that
are averaged to form §i(-). For the SPSA algorithms we
take the perturbations Aj; to be Bernoulli +1 distributed,
which satisfies the relevant regularity conditions mentioned
in Section III.

The model we used for producing the measurements closely
follows that of [7, egs. (8) and (9)] with the addition of additive
(independent) process noise, i.€.,

Z1k+1 = 1k + Tprtyp — Tur xT1k + Wik,
(methane gas flow rate) (4.1a)
T py1 = Tok — -3636Tx1 i + Tur k(u2,k — T2.k) + Wk,
(substrate concentration) (4.1b)
(.425 + .025sin(27k /96))x2 &
A+ T2 ’
(bacterial growth function) (4.1c)

Hie =

" where we used wy ~ N(0,0%I) and a sampling period of

T = .5. (The control algorithm, of course, has no knowledge
of (4.1a)~(4.1c).) The bacterial growth function in (4.1c) is in
the so-called Monod form, which is the most popular form
considered in the literature [7]. For our target sequence t; we
used a periodic square wave, with values (.97, .13)T for the
first 46 updates and (1,.1)T for the second 46 updates, similar
to Fig. 4 in [7]. We modeled the controller using a NN with
two hidden layers, one of 20 nodes and one of 10 nodes. The
inputs to the controller were the current and most recent state
(M = 2), the most recent control (N = 1), and the target
vector for the next state, yielding a total of eight input nodes
(so an Ng 20.10,2 network was used for the controller in the
notation of [18], which has 180 + 210 + 22 = 412 weights
to be estimated).

Fig. 3 shows the main results for our study of the model in
(4.1a)—(4.1c) based on the three-step procedure in Section III-
B (including the generation of the optional nominal state
for purposes of plotting the weighted rms error). The rms
error curves in the figure are based on the sample mean of
four independent runs with different initial weights 6o, where
the elements of 6, were generated randomly from a uniform
(-.1,.1) distribution. The value zo was set to (.5,1.6375)T
and ¢ = .01, so the initial weighted rms error is 1.5 and the
minimum achievable long-run weighted rms error is 01. To
further smooth the resulting error curves and to show typical
performance (not just case-dependent variation), we applied an
expanding window smoother (which allows for rapid changes
in the early iterations and little change in later iterations)
to the error values based on the average of ten runs. The
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16
AN Total no. of required measurements
Y - -~ SPSA-1 2,000
\ — SPSA-8 16,000
121 FDSA 824,000

0 10
Iterations (Log scale)

100 1,000

Fig. 3. Weighted rms error for SPSA and FDSA algorithms (minimum
achievable long-run weighted rms = 0.01).

curves shown in the figure are based on this combination of
across-realization averaging and across-iteration smoothing.

For this study, we used constant SA gains of the form
ar = a and ¢t = ¢ with a,c¢ > 0 (constant gains were
used to accommodate the time-varying nature of the system
as discussed in Section III). We attempted to tune a¢ and ¢ to
maximize the rate of decay in weighted RMS error (as would
typically be done in practice); the values satisfied a = .1 and
.05 < ¢ < .1. The choice of a,c is important for adequate
performance of the algorithm (analogous to choosing the step-
size in back-propagation). For example, choosing a too small
may lead to an excessively slow reduction in tracking error
while choosing an a too large may cause the system to go
unstable (so for practical problems, it might be appropriate
to begin with a relatively small a and gradually increase it
until .there is an adequate convergence rate but little chance
of going unstable).

Fig. 3 shows that both the SPSA and FDSA algorithms
yield controllers with decreasing rms tracking error over
time. We see that the long-run performance of SPSA-8 and
FDSA is virtually identical and SPSA-1 performs almost as
well as both FDSA and SPSA-8. The critical observation
to make here is that the SPSA algorithms achieved their
performance with a large savings in data: each iteration of
SPSA-1 and SPSA-8 required only two measurements and
16 measurements, respectively, while each iteration of FDSA
needed 824 measurements. Hence Fig. 3 illustrates that SPSA-
8 yielded the same level of tracking error as the standard FDSA
algorithm with a 51-fold savings in state measurements and
the performance of SPSA-1 was comparable to FDSA with
a 412-fold savings in state measurements. The data savings
seen in Fig. 3 is typical of that for a number of other studies
involving SPSA and FDSA that we have conducted on model
(4.1a)—(4.1c) as well as on other nonlinear models (see e.g.,
[26] or [29)); in fact even greater data savings are typical
with more complex NN’s (as might be needed in higher-
dimensional systems). Note also that the curves in Fig. 3 have
the typical shape of many optimization algorithms in that there
is a sharp initial decline followed by a slow decline. Hence
over 80% of the possible reduction in RMS error, which may

be all that is required in some applications, is achieved by all
three algorithms with fewer than ten iterations.

V. CONCLUDING REMARKS

This paper has discussed an approach for direct adaptive
control that does not require a model (NN or otherwise) for
the process dynamics. In particular, the method here addresses
the shortcoming noted in Narendra and Pathasarathy [18,
p- 19] that “At present, methods for directly adjusting the
control parameters based on the output error (between the
plant and reference [target] outputs) are not available.” The
approach applies under general conditions in control problems
with a one-step-ahead loss function. (Although this paper
considers the case of direct state measurements, extensions
to indirect measurements are possible as in [29].) Perhaps the
main restriction is that the system dynamics be approximately
stationary while an individual SPSA gradient approximation is
being generated for one iteration of the estimation algorithm
(the dynamics can be nonstationary over longer time intervals).
A further restriction is one common to perhaps all control
techniques that rely on imprecise a priori system knowledge:
namely, that the system be able to tolerate suboptimal centrols
as the learning process takes place.

The approach was illustrated on a simulated nonstationary
wastewater treatment plant where the control objective was to
achieve time-varying target values for both clean water and
methane gas production. It was found that effective control
was achieved in this challenging problem at much lower
cost than the more standard finite-difference-type method.
There remain, however, several areas for further study
that could enhance the approach. These include a careful
stability/controllability analysis and the implementation of
an accelerated (say, second order) stochastic approximation
technique (see Spall [25]). Nevertheless, the approach as it
currently stands has broad applicability when little is known
about the equations governing the system.
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