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Abstract—This paper considers the design of robust neural net-
work tracking controllers for nonlinear systems. The neural net-
work is used in the closed-loop system to estimate the nonlinear
system function. We introduce the conic sector theory to establish
a robust neural control system, with guaranteed boundedness for
both the input/output (I/O) signals and the weights of the neural
network. The neural network is trained by the simultaneous per-
turbation stochastic approximation (SPSA) method instead of the
standard backpropagation (BP) algorithm. The proposed neural
control system guarantees closed-loop stability of the estimation
system, and a good tracking performance. The performance im-
provement of the proposed system over existing systems can be
quantified in terms of preventing weight shifts, fast convergence,
and robustness against system disturbance.

Index Terms—Conic sector, dead zone, neural network, simulta-
neous perturbation stochastic approximation (SPSA).

I. MAIN NOTATION LIST

Discrete time step.

Dimension of the plant input/output
(I/O) variables.

Number of time-delayed plant
outputs.

Number of time-delayed plant inputs.

. Number of input
layer neurons.

Number of hidden layer neurons.

. Dimension of the output
layer weight vector.

. Dimension of the hidden
layer weight vector.

. Dimension of the total
weight vector.

. Plant input vector.
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. Desired and plant output
vectors, respectively.

. Total disturbance vector.

. Neural network input vector.

. Estimated and plant nonlinear
functions, respectively.

. Estimated weight, ideal
weight, and weight estimate
error vectors of the hidden layer,
respectively.

. Estimated
weight, ideal weight, and weight
estimate error vectors of the th
hidden layer neuron, respectively.

. Estimated weight, ideal
weight, and weight estimate
error vectors of the output layer,
respectively.

. Scalar component
of the estimated weight vector .

. Estimated weight
vector of the output layer with inputs
from the th hidden layer neuron.

. Tracking error vector of the
control system.

. Estimation error vector.

. Normalized estimation error
vectors of output and hidden layers,
respectively.

. Equivalent disturbances of the
conic sector analysis for output and
hidden layers, respectively.

. Equivalent approximation
errors of output and hidden layers,
respectively.

Gain parameter of the proportional
controller.
Perturbation gain parameter of the
SPSA.

. Perturbation vectors of the
output layer.

. Perturbation vectors of the
hidden layer.
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. Nonlinear activation
function matrix.

. The nonlinear
activation function and the scalar
element of .

. Error function
approximation matrix for the
hidden layer analysis.

. Mean value of the
th hidden layer neuron.

Constant of the sigma activation
function.
Nonlinear operators of the conic
sector for the output and hidden
layers, respectively.

Linear operators of the conic sector.

. Regression vectors of the
output and hidden layers, respectively.

. Normalized regression vectors
of the output and hidden layers,
respectively.

Learning rates of the output and
hidden layers, respectively.

Normalization factors of the output
and hidden layers, respectively.

II. INTRODUCTION

RECENTLY, there have been significant progresses in the
area of robust discrete-time neural controller design for

nonlinear systems with specific nonlinear functions [1]–[6],
[14], [23], [24]. For example, a first-order approximation is
applied in the convergence proof of [1] and [2] to deal with the
nonlinear activation function. Variable structure and dead zone
schemes have also been introduced to design robust adaptive
algorithms of neural control systems so as to achieve improved
tracking performance [3]–[5]. An important achievement is
that the well-known persistent exciting (PE) condition has been
removed in the presence of disturbance [6]. More recently, the
idea of simultaneous perturbation stochastic approximation
(SPSA) has been introduced as a model-free control method
for dynamical systems [7], [8], [14], [17].

In this paper, we will propose an SPSA-based neural control
structure and derive a general stability proof when it is applied to
a nonlinear input/output (I/O) dynamical plant. The plant under
consideration is nonlinear and the neural network in the system
is used to estimate the nonlinear function in closed loop. The
conic sector theory [9]–[11] is introduced to design the robust
neural control system. We aim to achieve guaranteed weight
convergence and boundedness for both the I/O signals and the
weights of the neural network via a deterministic approach.

To the best of our knowledge, we cannot mix the determin-
istic approach of convergence and stability analyses adopted in
this paper, where we treat disturbances as bounded signals, and
the stochastic approach presented in the original SPSA papers

[7], [8], where statistical properties of disturbances are consid-
ered and well established under certain regularity conditions [7],
[8]. However, we will provide an in-depth analysis to reveal the
inherent relationships between the two different approaches to
a certain extent, especially, the gain parameter of perturbations
and its effect on weight convergence in the framework of deter-
ministic systems.

One of the main advantages of the conic sector approach is
that it provides a model-free analysis. The neural controller is
superior as compared to its conventional adaptive control coun-
terpart in that the latter requires linear-in-parameters representa-
tion for system estimation. Our neural network is trained by the
SPSA algorithm in closed loop to provide an improved training
performance over the standard methods, such as the backprop-
agation (BP) algorithm, in terms of guaranteed stability of the
weights. This in turn will yield a good tracking performance for
the dynamical control system. The main motivation for using the
SPSA instead of the popular BP algorithm is its excellent con-
vergence property. The SPSA algorithm which was proposed by
Spall [7] provides a good parameter estimate through simulta-
neous perturbation of the weights.

In addition to the general stability proof, one of the most inter-
esting contributions of this paper is the revelation of the relation-
ship between the conventional adaptive control system and the
generalization theory, which is mainly developed for neural-net-
work-based pattern recognition systems [21] and, to the best of
our knowledge, is not widely acknowledged by the control com-
munity. That is, a relatively large learning rate with a reason-
able number of neurons will contribute to a faster convergence
speed of the SPSA training algorithm and in turn will yield a
good adaptive learning capability. This is closely linked to the
concept of generalization of neural network theory [21]. The
early neural control system approaches, including the classical
BP-based training algorithm, tend to emphasize the approxima-
tion property of a large neural network. It is only recently that
good generalization property has attracted more interests, for it
suggests that a network with a reasonable number of neurons
may be the best way to approximate a nonlinear system rather
than an overfitted large network. As will be shown later, in the
theoretical analysis about the learning rate, and in the simulation
results, an optimal number of neurons (not necessary the biggest
network) can be derived based on the maximum learning rates
calculated by the conic sector condition. Thus, it allows one to
achieve good generalization performance in terms of reduced
control signal error and fast tracking speed. This idea can also
be further developed into an adaptive pruning-based SPSA al-
gorithm to automatically search for an optimal neural network
structure [20].

Because stability is the primary issue in a closed-loop
system, instead of a stochastic convergence analysis in [7], we
will follow the traditional approach of adaptive control system
to provide a robust I/O stability design and weight convergence
analysis for our proposed SPSA-based neural control algorithm
in the framework of a deterministic system. We do not require
the weights to converge to the ideal values exactly and we use
the dead zone concept [5], [9]–[11] to provide an insight to
the important role of the perturbation gain parameter and its
relationship with the stochastic approach in [7] and [8]. We
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apply the conic sector theory to isolate the SPSA algorithm
from the rest of the closed-loop system. Unlike the robust conic
sector analysis for a pretrained neural network [16], we provide
an online scheme for the robustness analysis of the neural
control system. A special normalized learning law is designed
for the SPSA algorithm to reject disturbance and solve the
so-called vanished cone problem [11]. A two-stage normalized
training strategy is proposed for the SPSA training to achieve
guaranteed I/O stability using the conic sector condition. The
performance improvement of the proposed algorithm can be
measured in terms of preventing weight shifting, fast conver-
gence, and robustness against system disturbance.

III. CONTROL SYSTEMS AND SPSA TRAINING ALGORITHM

A class of dynamical nonlinear plants, which has wide appli-
cations in robotics and tracking control systems [5], [6], [15],
[18], can be represented as an I/O form as follows:

(1)

where is the output,
is a dy-

namic nonlinear function ( is an ideal weight vector),
denotes the overall bounded noise vector of the

control system, and is the control signal vector
with a unit time delay (which can also be extended to a -step
delay system by using a linear predictor [18]).

The tracking error of the control system is defined as

(2)

where is the command input signal. Let the control
signal be defined as

(3)

where is the gain parameter of the fixed proportional con-
troller and is the estimate of the nonlinear
function by the neural network to be defined later, and

is the estimated weight vector of the neural net-
work. Then, the estimation error vector of the neural network
can be presented as

(4)

This error is to be used to train the neural network as shown
in Fig. 1. However, this estimation error may not be directly
measurable, so we will use the tracking error to generate it by
using the closed-loop relationship via (1)(4) (see Fig. 1 and sum-
mary of the SPSA algorithm in Section V), so that

(5)

where is backward shift operator, i.e., .
The loss function for SPSA is defined as

(6)

Fig. 1. Structure of the control scheme.

Because is a function of and is a function of ,
the SPSA algorithm seeks to find an optimal weight estimate to
approximate the ideal weight vector of the gradient equation
(the ideal weight may present a local minimum point rather than
a global one; see discussion in Sections IV–VI), i.e., the weight
vector that minimizes differentiable , through

That is, our proposed SPSA algorithm for updating
as an estimate of the ideal weight vector is of the form

(7)

where is an adaptive learning rate and is an approx-
imation of the gradient of the loss function. Note that we do not
require the weights to converge to the ideal values exactly be-
cause the adaptive learning rate is based on the traditional dead
zone approach [9]–[11]. This approximated gradient function
(normalized) is of the form

(8)

where can be interpreted as an equivalent approximation
error of the loss function, which is also called the measurement
noise in [7], and , and are the con-
trolling parameters of the algorithm, and is the normaliza-
tion factor to be defined later for the output and hidden layers,
respectively. These parameters are defined as follows.

1) is a bounded random
directional vector that is used to perturb the weight vector
simultaneously and can be generated randomly.

2) The sequence of is defined as

(9)
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3) a constant is a sequence of positive num-
bers in [7], [8], and [17], which can be chosen as a small
constant number for a slow time-varying system targeted
in this paper as pointed out in [17].

We will show later that the choice of does not affect
the stability of the system in the sense of bounded system I/O
signals, but it will affect the level of system noise in terms of
the equivalent disturbance, and in turn, the weight convergence
property (see Section IV and Remark 2).

In a multilayered neural network, it may not be possible to up-
date all the estimated weight vectors with a single gradient ap-
proximation function (8) to meet the stability requirement. We
will partition the weight estimate into two components:

as the estimated weight vector of the output layer and
as the estimated weight vector of the hidden layer

of the neural network with and ,
where and denote the numbers of neurons in the input
and hidden layers of the network, respectively. Then, the esti-
mated weight vectors and are to be updated separately
in the SPSA algorithm using different gradient approximation
functions as in the standard BP training algorithm. This point
will be examined in the robustness analysis of Section IV and
V. In what follows, the notations with superscripts and will
be used to denote the variables/parameters associated with the
output and the hidden layers, respectively.

The output of a three-layer neural network is the estimate
of the nonlinear function , and is further presented as the
following:

(10)

where is the input vector
of the neural network defined by

(11)

and is the nonlinear activation block-
diagonal matrix given by (12), shown at the bottom of the page,
where with is one of the most popular non-
linear activation functions, especially for neural control systems
[1], [2], [5], i.e.,

(13)

with
being the estimated weight vector linked to the th hidden

layer neuron, and the gain parameter of the threshold
function that is defined specifically for ease of use later when

deriving the sector condition of the hidden layer. Note that
and are related by .

IV. CONIC SECTOR CONDITION FOR ROBUSTNESS ANALYSIS

OF THE OUTPUT LAYER

Because we cannot mix the deterministic and stochastic ap-
proaches for convergence and stability analyses [7], [8], the gen-
eral idea of this paper is to address the convergence property and
stability of the weight estimate of the proposed SPSA training
algorithm by strictly following the deterministic approach. We
will prove that the estimation error (and the tracking error) of
the output layer of the neural network is bounded by using the
conic sector theory under some mild assumptions. This agrees
with the boundedness of the weight estimate error vector of the
output layer in terms of the convergent weight error norm.
The boundedness condition for the weight estimate error vector
of the hidden layer will be derived in Section V. In our proposed
SPSA training method, the estimated weights are perturbated si-
multaneously to solve the weight drifting problem of a normal
BP training while minimizing a loss function, which is similar
to the original SPSA algorithm in [7] and [8]. Moreover, we will
justify why a small constant gain parameter for the perturba-
tion signal is preferred in our deterministic convergence analysis
of the proposed SPSA algorithm. This is similar, to a certain ex-
tent, to the stochastic approach in [7], [8], and [17]. The adaptive
scheme also provides the guidelines for the selection of the pro-
posed SPSA learning rate and the number of neurons to obtain
an improved performance.

The purpose of the SPSA training algorithm in (7) is to make
the estimated weight vector approximate the ideal one,
and in turn produce an optimal tracking error for the control
system. To achieve this, one important condition is that the slow
time-varying gradient approximation function in (8),
the estimated parameter vector , and the input should
all be bounded as required for adaptive control systems [11].
To guarantee the boundedness condition, the robust neural con-
troller shown in Fig. 1 uses a normalized SPSA training algo-
rithm, which is isolated from the rest of the system, and a de-
terministic analysis is applied. Interestingly, a different deter-
ministic treatment of the SPSA algorithm can also be found in
[12]. In our paper, the robustness of the system is analyzed by
using the conic sector theory. A two-stage normalized training
strategy is then proposed for the SPSA training with guaranteed
I/O stability using the conic sector condition.

In this paper, except for some specified cases, we use to
denote both the “row sum” norm of a matrix and the Euclidean
norm of a vector [22]. Our main concern is with the discrete
time estimation error vector , which is an infinite sequence
of real vectors. Following [13], we consider the extended space

...

. . .
... (12)
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, consisting of those elements whose truncations lie in ,
e.g., belongs to the extended space if

(14)

(the set of positive integer).
The following theory is an extension of the conic sector sta-

bility of Safanov [13] for discrete time control systems, like the
one given in Fig. 1.

Theorem 1: Consider the following error feedback system:

with operators , and discrete time signals
and . If

1) satisfies

and
2) satisfies

for some , then the previous feedback system is
stable with .
Proof: See [11, Corollary 2.1].

Note that operator in Theorem 1 represents the SPSA
training algorithm, where the input error signal is the estima-
tion error and the output is , which will be defined later,
and it is related to the weight estimate error vectors. The esti-
mation error and the tracking error are related by a stable
first-order controller (i.e., ) in (5). Thus, a bounded es-
timation error will yield a bounded tracking error (see [5,
Corollary 1] for more details). The operator usually repre-
sents the mismatched linear model uncertainty in a typical adap-
tive linear control system [9], but here it is just a simple operator

.
The first step to use the conic sector stability of Theorem 1 is

to restructure the control system in Fig. 1 into an equivalent error
feedback system as shown in Fig. 2. Then, the weight estimate
error vector could be derived and referred to as the output signal

. For this purpose, the desired output of the neural network
is defined as the plant nonlinear function given in (1) and is
assumed to be given by

(15)

Fig. 2. Equivalent error feedback system using the conic sector condition for
output layer.

where and are, respectively, the ideal
weight vectors in the output layer and the hidden layer of the
neural network. Then, the weight estimate error vectors of the
output and hidden layers are defined, respectively, as

(16)

and

(17)

We further assume that the system under consideration satis-
fies the following assumptions.

Assumptions:
1) The system disturbance defined in (1) is bounded.
2) The ideal weight vectors and are bounded.

These can be justified as follow. The external system distur-
bance is an uncontrollable variable, which must be bounded
in a normal control system. The bounds for the ideal weight
imply that the nonlinear function itself is bounded if the input
variables are bounded.

To establish the relationship between the estimation error
signal and the estimated weight vectors of the neural net-
work, which is referred to as the operator in Theorem 1,
i.e., the SPSA algorithm, we need to express the error signal in
suitable forms.

Define the variables

(18)

(19)

(20)

where is as defined in (16).
According to (4) and , the estimate error signal can

be expressed as

(21)
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From the previous derivations, an equivalent error feedback
system of Fig. 1 can, therefore, be represented as in Fig. 2, where
the operator represents the SPSA training algorithm of the
output layer.

Remark 1: There is an important implication in (21). The es-
timation error signal is directly linked to the output signal ,
and in turn via (18) the weight estimate error vector of the
output layer of the neural network. This implies that the training
procedure of the output layer of the neural network should be
treated separately from the hidden layer of the network in order
to obtain a bounded disturbance term as defined in (19), i.e.,

as required by Theorem 1 (where it is defined as ).
Therefore, using (21), we are able to form an equivalent error
feedback system of Fig. 2 for Theorem 1. Note that usually
represents the mismatched linear model uncertainty in a typical
adaptive linear control system [9]. Because the neural network
has powerful approximation ability to match the nonlinear func-
tion, there is no need to worry about any linear model mismatch
with the simple operator . Furthermore, the condition 2)
of Theorem 1 can be treated as a positive real function, i.e., the
plot of should be in the positive half of a complex plane as
discussed in [10].

Now, our algorithm for updating the estimated weight vector
of the output layer is

(22)

where the adaptive learning rate of the output layer is defined
as (23), shown at the bottom of the page, with

being a constant and being the max-
imum value of the bounded equivalent disturbance in (19);

and are, respectively, the first com-
ponents of perturbation vectors and defined in (8) and
(9); is the normalized gradient approxima-
tion that uses the simultaneous perturbation vectors and
to stimulate the weight of the output layer, i.e.,

(24)

and the bounded normalization factor , which is traditionally
used in adaptive control system to bound the signals in learning
algorithms [11], [23], [24], is updated via

(25)
with

and being two arbitrary small positive constants.
The previous implementation of ensures that it satisfies

The nonzero learning rate value in (23) has an upper bound
as defined in the following:

(26)

where and
are the nonzero minimum values of the

activation function defined in (13) and perturbation vectors of
the output layer, respectively, and .

Lemma 1: It can be shown that (22) is a realization of the
SPSA algorithm of the form (8) and the SPSA measurement
noise can be defined as .

Proof: To show this, we will use the definition of the loss
function (6) and rewrite it as

(27)

Further, we use in (10) to define

(28)

(29)

so that

(30)

Then, with (6), (4), and (30), we can derive (24) from the general
form of the gradient function (8) for the specific output layer
case as shown in (31), at the bottom of the page, where, except
the normalization factor , the fourth equality is in an identical

if

if

(23)

(31)
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format as the original SPSA algorithm in [7, eq. (2.2)], and the
third equality is derived by defining the measurement noise ,
which is related to the overall system disturbance according
to

(32)

(Otherwise, no disturbance is introduced for the output layer of
the SPSA learning algorithm.)

We are now ready to establish the convergence and stability of
the robust neural controller via the conic sector condition. This
requires the feedback system in Fig. 2 to meet certain dissipative
condition as in Theorem 1. This is established in the following
theorem.

Theorem 2: The operator , which represents
the SPSA learning algorithm for the output layer (see Fig. 2),
satisfies the conditions 1) and 2) of Theorem 1, i.e.,
and the weight is convergent in the sense that the -norm

is a nonincreasing sequence as .
Proof: To establish the weight convergence and conic

sector condition of the estimation error , we use a similar
SPSA approach in terms of simultaneous perturbation (except
for the noise properties) as in [7] and note that (22) gives

(33)

where is defined in (16). Then, rearranging (33) by using
the trace property of

, and (18), we get

(34)

Further, considering the definition of the equivalent error system
in (21) with , we have the first in-

equality of following Lyapunov function extended from the pre-
vious equation for weight convergence in the sense of a

nonincreasing sequence of weight error vector -norm

(35)

Note also that the second inequality is from the fact that
. The last two inequalities are based on the def-

inition of in (23). In particular, the normalized factor is
designed as in (25) such that we can guarantee

(36)

Furthermore, due to the definition of the adaptive learning rate
in (23), we only need to consider the case of in the

rest of proof of Theorem 2; otherwise, the weight is kept con-
stant from the previous iteration. Defining the normalized esti-
mation error and the normalized error system
output in
Fig. 2, we can rewrite the inequality (34) into

(37)

where the normalized factor in (25) is chosen to guarantee
that there exists a constant such that

(38)

Summing (37) to steps, we have

(39)
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Note that we can also simply present the sum of
on the right-hand side of the

previous equation because the item is smaller or equal to zero
for every according to the convergence property (35).

This implies that the normalization factor guarantees the
satisfaction of the conic sector condition in Theorem 1. Further-
more, the specified normalized factor , defined in (25), plays
two important roles in relation to the conic theory. First, it guar-
antees to avoid the so-called vanished cone problem
[11]. Second, it guarantees that the sector conditions of The-
orem 1 are satisfied simultaneously by both the original equiv-
alent feedback system in Fig. 2 and the normalized equivalent
feedback system [9]–[11]. Therefore, both conditions 1) and 2)
of Theorem 1 are fulfilled. Hence, and using the
results of [11], we have .

With the specific normalization factor , and ap-
plying the results of [11] and Theorem 1 on the original

, we obtained a bounded
weight estimate error vector with the training law (22) for
the output layer.

Furthermore, from (38), we have the nonzero learning rate
value in (23) meeting the stability condition

(40)

Note that the matrix “row sum” norm [22] is used in (40).
As for the number of neurons of the output layer of the
SPSA training algorithm, clearly, a larger bound on the nonzero
learning rate value can be obtained with a smaller number
of neurons.

Remark 2: The stability condition (38) agreed with the
weight convergence condition (36) because both the conic
sector and the Lyapunov convergence conditions provide sim-
ilar stability results. Furthermore, according to [9] and [11]
with the specific selection of the normalization factor (25), it
is easy to extend the convergence and stability results into

stability conditions with the bounded supremum according
to (38).

However, the weight convergence property (35) is a bit more
demanding than (38) in the sense that an adaptive dead zone
learning rate is required. This, in turn, it reveals the real
reason why a small constant gain parameter for the pertur-
bation is preferred in our deterministic approach, similar to the
suggestion in [17].

An interesting point is that does not appear explicitly in
the proposed SPSA learning law (22). The basic reason is that
we deal with the output layer first, which is linear in parameters.
Therefore, there is a direct cancellation between the denomi-
nator and numerator, which is revealed by the derivation in (31).
On the fourth equality of (31), the gradient approximation pre-
sentation appears exactly the same as the original one in [7] (see
[7, eq. (2.2)]). However, there is no linear layer in the original
SPSA papers [7], [8], therefore, the cancellation is not explicit
(we have the similar case for the hidden layer; see Section IV for
more details). Then, a natural question is whether will affect

the learning procedure as discussed in the original SPSA papers
[7], [8]. The answer is yes. This can be seen by expanding the
error signal as in (21) and using (42) as presented
in the following to replace in (22), then the gain parameter
will appear explicitly in one of the additive terms of the SPSA
learning law (22) as follows.

Using (32), we have the presentation of the system distur-
bance in terms of the measurement noise of the SPSA algo-
rithm as

(41)

Furthermore, according to the equivalent disturbance (19) of the
system with , we have

(42)

The equivalent disturbance is important in two ways. First, it
can be presented in the SPSA learning law (22) as additive terms
of (42) by expanding as discussed above. Second, its max-
imum magnitude decides the range of the dead zone for

in (23). Note also that the measurement noise is defined
the same way as in [7], which measures the difference between
the true gradient and the gradient approximation as derived in
(31). Because the system disturbance is decided only by ex-
ternal conditions, therefore, a relatively smaller gain parameter

will imply a smaller measurement noise according to (41).
This allows us to choose the dead zone range mainly according
to the external system disturbance . Furthermore, if the ex-
ternal disturbance is also small, then we can choose a small dead
zone range, which ensures that the adaptive leaning rate has
the nonzero value for extended learning capability and better
tracking performance.

Interestingly, this also agrees with, to some extent, the orig-
inal stochastic approach in [7], where is presented as an ad-
ditive term in the original SPSA learning law (see the equation
below Section III-B in [7]). This explains why the gain param-
eter is indeed presented implicitly in our SPSA learning law
(22). Moreover, the randomness of the perturbation also guar-
antees the nonsingularity of in (42), which co-
incided with the discussion in [7].

V. ROBUST CONIC SECTOR CONDITION FOR THE HIDDEN

LAYER TRAINING

We will now derive the weight convergence and boundedness
condition for the estimation error of the hidden layer. Similar
to the result for the output layer, the hidden layer parameter of
the network should also be estimated separately. A conic sector
condition and weight convergence will be established for the
hidden layer training so that we can prove stability of the whole
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system. The development is similar to that in Section III but with
significant differences in the detail mathematical derivations.

First, from the mean value theorem and that the activation
function in (13) is a nondecreasing function, it can be readily
shown that there exist unique positive mean values , such
that

(43)

where are the estimated weight
[also see the definition below (13)], ideal weight, and weight
estimate error vectors linked to the th hidden layer neurons,
respectively. From (13), the maximum value of the derivative
of
is , and hence

(44)

Then, from (43) and the matrix in (12), it can
be shown that

(45)

where the matrix is defined
as (46), shown at the bottom of the page, with

being the estimated weight vector of the
output layer with inputs from the th hidden layer neuron.

Now, similar to the error (21), we can rewrite the estimation
error as

(47)

where

(48)

(49)

(50)

Note that is a bounded signal because has been proven
to be bounded in Section III. Further, similar to the definitions
of and in (28) and (29), we define the following two
perturbations functions to , i.e.:

(51)

(52)

where is the last components of used in (8).
From (51) and (52), we have (53), shown at the bottom of the
page, with the matrix being similar to in
(46) except with different mean values .

Note also that the constant will be cancelled between the
denominator and numerator of (53) if the mean value theorem
is applied, similar to the case of output layer (see Remark 2 for
more details).

Then, similar to the SPSA training for the output layer, we
propose the following normalized hidden layer SPSA training
algorithm:

(54)

where the adaptive learning rate of the hidden layer is defined
as (55), shown at the bottom of the page, with and

; and the normalized factor is updated as

(56)

...
...

(46)

(53)

if

if

(55)
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with being the constant of the activation function [which is
also the maximum of the mean values in of (53)],
and is the minimum of the mean values in of
(46). In practice, can be a small fraction of .

The nonzero learning rate value has an upper bound as
defined in the following:

(57)

where is the minimum
nonzero value of the elements of defined in (53), while

are the nonzero
minimum values of the perturbation vectors of the hidden layer,
and .

Lemma 2: We will also show that (54) is derived from the
SPSA algorithm of the general form (8).

Proof: Indeed, the normalized gradient approximation
(against the hidden layer weight vector ) can be derived
as (58), shown at the bottom of the page, where the equivalent
disturbance is defined as

(59)

The main result concerning the hidden layer of the neural
network can now be stated as the following.

Theorem 3: The operator , which represents
the SPSA learning algorithm of the hidden layer, and sat-
isfying the conditions 1) and 2) of Theorem 1 provide guaran-
teed stability under the conic sector framework, if the nonzero
learning rate value satisfies (57). Furthermore, the hidden
layer weight is convergent in the sense that the -norm of
is a nonincreasing sequence.

Proof: Consider that the SPSA is an approximation of the
gradient algorithm [7], and using the property of local minimum
points of the gradient [5],
we have

(60)

where is the maximum value of the derivative of the ac-
tivation function in (13), and is the minimum nonzero
value of the mean values defined in (44). (Note that the
inequality is always true if , which implies

.)
Now, from (54), we have

(61)

where is as defined in (17). Then, using (61), (53), and (60),
and similar to the proof of Theorem 2, we get

(58)
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(62)

Similar to the output layer case, we have the following Lya-
punov function for convergence analysis:

(63)

Now, similar to the case of output layer, for the nonzero
learning rate value by defining the normalized estima-
tion error and the normalized output

, we have

(64)

if the normalized factor is chosen to guarantee the existence
of a constant such that

(65)

Summing (64) to steps, we have

(66)
Therefore, the conic sector conditions of Theorem 1 are satisfied
and hence , and with the results of [11] we have

.
To derive the theoretical upper bound of the nonzero learning

rate value , we note from (53)

Hence, we have

Note that the matrix “row sum” norm [22] is used to derive the
last inequality.

VI. DISCUSSIONS AND IMPLEMENTATION OF

THE SPSA ALGORITHM

We can draw the following remarks about our SPSA con-
troller.

1) In addition to the stability proof, one of the most interesting
contributions of this paper is the revelation of the rela-
tionship between the conventional adaptive control system
and generalization theory. We know that a relatively larger
learning rate will contribute to a faster convergence speed
of the SPSA training algorithm, and our (57) and (40) re-
veal that a relatively small number of neurons, i.e., small
parameters and will yield relatively larger bounds for
the nonzero learning rate values and . This concept
is closely linked to the generalization property of neural
network theory. Although the theoretical upper bounds for

and in (57) and (40) may not be computed, they
serve the purpose of illuminating the generalization prop-
erty of neural network theory. As illustrated in the simu-
lation studies later, a reasonable number of neurons (not
necessary the biggest network) with maximum learning
rates bounded by (57) and (40), respectively, can indeed
achieve a good generalization performance in terms of re-
duced control signal error and fast tracking performance.
This can be further developed into an adaptive pruning
based algorithm in future research, following the ideas in
[20].

2) The estimation error vector and the tracking error vector
, which is linked to the former by (5) through a stable

first-order filter , are bounded as in Theorem 2
for the output layer training without any influence from the
hidden layer. The important role of Theorem 3 is that the
weight estimate error vector should be bounded to meet
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Fig. 3. (a) Tracking error s using the standard BP algorithm. (b) MSE of s using the standard BP algorithm.

the stability condition, and in turn yields small estimation
error and tracking error .

3) The SPSA measurement noises and are linked dy-
namically and proportionally to the overall control system
noise via (32) and (59), i.e.,

and

The previous equations imply that the gain parameter
is embedded in the training error signal , which can be
expanded by the equivalent disturbances and , in the
training laws (22) and (54) (see Remark 2 in Section III and
note that is also implicitly inside of the second equa-
tion), respectively. These require a small constant to re-
duce the perturbation level of the SPSA training.

4) To the best of our knowledge, it is not possible to mix the
stochastic and deterministic approaches as adopted in the
original papers [7], [8] and this paper, respectively. How-
ever, there are differences and similar relationships, to a
certain extent, as revealed by this paper. For example, the
stochastic approach in [7] and [8] relied on a number of as-
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Fig. 4. (a) Output y and reference signal y using the standard BP algorithm. (b) Reference signal y used for all the algorithms in the simulation studies.

sumptions and regularity conditions to adjust the gain pa-
rameter and achieves zero loss function as .
This is interesting and can be interpreted by our determin-
istic analysis [as in (31) and (32)] as follow (see also Re-
mark 2 in Section III): the original SPSA algorithm tends
to drive the loss function to approximate zero if the per-
turbation gain parameter under a number of as-
sumptions, which is clearly indicated by our (31) and (32)
(similarly for the hidden layer in Section IV), which in turn
implies that the optimal parameter estimate is reached by
the stochastic SPSA approach. However, we take a slightly
different route, as in the traditional deterministic study for
adaptive control systems [5], [9]–[11], which does not re-
quire the system estimate error to be zero. In other words,
we do not necessarily have the SPSA loss function (6)
approaching zero and neither the gradient approximation;

we minimize them instead. There is a good reason to do
this because we take the traditional adaptive control ap-
proach by introducing the system disturbance in (1),
which is uncontrollable under the traditional adaptive con-
trol system concept [9]–[11]. Then, we follow the tradi-
tional adaptive control design to minimize the learning
error rather than driving it to zero by implementing
the dead zone scheme (stop leaning when the error is
too small to prevent weigh drifting), because of the un-
controllable disturbance in (1). This makes things a
little bit easier for our deterministic approach to train the
SPSA because we will not be restricted by the assump-
tions and regularity conditions in the original stochastic ap-
proach [7], [8] (of course, as a tradeoff, we will lose some
of the nice properties of the stochastic convergence anal-
ysis because we ignore the statistical properties of distur-
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Fig. 5. Estimated parameter ^� of the hidden layer using the standard BP algorithm.

Fig. 6. Output y and reference signal y using the robust SPSA-based neural controller.

bances and simply treat them as bounded signals). Thus,
the simultaneous perturbation in our deterministic SPSA
approach makes sense in terms of preventing the weight
drifting behavior rather than convergence in the stochastic
sense. Our deterministic convergence proof in Theorems 2
and 3 shows that the perturbation level is indeed related to
the gain parameter , and in turn, the range of dead zone.
The advantage of our SPSA approach over the pure dead
zone study is that we can choose a suitably small (any
value between 0.05 and 0.1 as suggested by [17]) to con-
trol the range of dead zone to make the adaptive learning
rate nonzero for most times and keeping the system adap-
tive for slow time varying systems.

5) We derived the weight convergence analysis based on the
Lyapunov function as in Theorems 2 and 3. Therefore, we
need to use the dead zone to switch off training if the error

is too small to prevent the weight drifting behavior.
In fact, for SPSA, this is not necessary because simulta-
neous perturbations prevent the error signal from being
“too small” if a suitable gain parameter is chosen. There-
fore, the perturbation and the dead zone have a somewhat
overlapped role. However, the theoretical addition of the
weight convergence analysis brings out an extra benefit for
us to understand the role of as discussed in Remark 2.
Because there is a cancellation in (31), it means that
does not contribute to the stability and convergence condi-
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Fig. 7. (a) Tracking error s of the robust SPSA-based algorithm. (b) MSE of the tracking error s of the robust SPSA-based algorithm.

tion (38) (as well as the upper bound of the learning rate as
they are from the same source) directly. However, through
further analysis of the relationship between the measure-
ment noise and the system disturbance as well as the
error signal , we find that a smaller implies a smaller
measurement noise , which, in turn, will result in a better
convergence performance because we can choose a suit-
able dead zone range according to the external system dis-
turbance . Therefore, the choice of does not affect
the convergence and stability condition (36) [similarly for
(38)] directly. However, it does affect the weight conver-
gence property in the sense that we can choose a smaller

dead zone range to obtain more accurate tracking perfor-
mance and adaptive capability without stop learning, i.e.,
set the adaptive learning rate to zero. There is also a similar
analysis of in the original stochastic approach in terms
of an additive bias in the learning law [7], [8].

In summary, our proposed robust neural controller algorithm
can be implemented as follows (refer to Fig. 1).
Step 1) Form the new input vector of the neural net-

work defined in (11).
Step 2) Calculate the neural network output using the

input state and the existing or initial weights
of the network in the first iteration.
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Fig. 8. Estimated parameter ^� of the hidden layer using the robust SPSA-based algorithm.

Fig. 9. Output y and reference signal y using a fixed PID controller with changes in the input signal.

Step 3) The control input is calculated based on (3).
Step 4) The new measurement of the system dynamics is

taken and the measurable tracking error signal
is fed through a fixed filter to produce the implicit
training error signal of the network according to
(5).

Step 5) The implicit estimation error signal is then used
to train the neural network and calculates the new
weights and using learning laws in (22) and

(54) for the output and hidden layers, respectively
(one step at each iteration).

Step 6) Go back to Step 1) to continue the iteration.

VII. SIMULATION RESULTS

Consider a two-link direct drive robot model with its I/O dis-
crete time version obtained from Euler’s rule as follows [15],
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Fig. 10. (a) Tracking error signal of the fixed PID controller with changes in the reference signal. (b) MSE of the tracking error signal of the fixed PID controller
with change of the reference signal.

[19]:

where and are the joint angle and velocity vectors,
respectively, is the sampling period, is the torque control
signal, is a normally distributed disturbance with a bounded
magnitude , and is a nonlinear
function defined by

and where the configuration dependent inertia matrix, the cen-
trifugal and coriolis effect, and the coulomb friction are, respec-
tively, given as shown in the equation at the top of the next page.

A three-layered neural network as defined in Section II is used
for this simulation study, which has 30 hidden layer neurons and
two output neurons (to ensure a fair comparison, we choose only
a reasonable number of neurons). It was trained by the standard
BP and SPSA training algorithm with the same control structure
shown in Fig. 1. The desired joint trajectory is selected as

The sampling period is 0.002 s. The proportional gain pa-
rameter of the fixed controller is given as and all the
initial conditions are set to zero.

We use a variable input tracking signal, where the magnitude
of the reference signal changes from to and then
back to at the 1000 and 1600 time instances. Note that for
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TABLE I
TRACKING ERROR COMPARISON

nonlinear control systems, a change in the reference input signal
magnitude is equivalent to a change in the system model set-
ting because the superposition theory is no longer valid. From
the simulation results, the neural controller using the standard
BP algorithm performs the worst, with relatively larger tracking
errors. This is because of the drifting of weight , which is
the first element of the weight vector . The relevant simula-
tion results with the standard BP neural controller are shown in
Figs. 3–5 [where the reference signal is given in Fig. 4(b)] to
illustrate clearly the slow time-varying nature of the reference
input). In comparison, Figs. 6 and 7 show the improved outputs
of the plant and the error signal when the robust SPSA-based
neural controller is used.

As discussed in Section IV, a suitable number of neurons
(we choose 30 neurons for both the BP and SPSA controllers)
with maximum learning rates calculated by (26) and (57), re-
spectively, enable the robust SPSA controller to achieve a good
generalization performance in terms of reduced control signal
error and faster tracking performance. Fig. 8 shows that the ro-
bust SPSA-based neural controller has a drift-free parameter es-
timate. It also outperforms the proportional–integral–derivative
(PID) controller as it possesses good generalization properties
and has fast learning capabilities. The fixed PID controller per-
forms quite well with optimal parameters before the change of
set point, but there is a larger transient when set point change
occurs, as shown in Figs. 9 and 10.

The overall performance comparison among the three sys-
tems is summarized in Table I, in terms of the mean value of
mean square errors (MSE) of the tracking error .

VIII. CONCLUSION

The robust neural controller based on the SPSA has been
developed, and conditions for guaranteed stability with a nor-
malized learning algorithm have been derived. Complete sta-
bility analysis is performed for the closed-loop control system
by using the conic sector theory. Furthermore, an interesting
contribution of this paper is the revelation of the relationship
between the conventional adaptive control system and gener-
alization theory. That is, a relatively larger learning rate will

contribute to a faster convergence speed of the SPSA training
algorithm and our results showed that this can be achieved with
a relatively small number of neurons. Simulation results show
that the proposed robust neural controller performs better than a
neural controller based on the standard BP algorithm or the PID
controller.
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