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Abstract: Suppose we are interested in finding the optimal dose of two drugs (for
example, Tylenol and Aspirin), that is, we are interested in determining the dose combination
that maximizes the probability of patients’ success. We assume responses are binary, either
failure or success, and that the treatments to be used in the study are selected from a lattice
of combination drugs. We extend the univariate Optimizing Up-and-Down Design of
Kpamegan (2001), using ideas from stochastic approximation, in a way that the number of
subjects at each stage is independent of the number of predictor variables (e.g. drugs).
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1 INTRODUCTION
In univariate up-and-down designs, the next treatment is determined such that it is one

level higher, one level lower, or the same level as the current treatment. Many authors
have studied univariate up-and-down designs for use when the probability of response is
increasing (cf. Flournoy, 2001). But suppose we are interested in determining the dose
combination of two drugs (for example, Tylenol and Aspirin) that maximizes the probability
of success. Assume responses are binary, either failure or success, and the treatments to be
used are selected from a lattice of combination drug levels.
Our technical approach is to extend the univariate Optimizing Up-and-Down Design

Kpamegan (2001) using ideas from stochastic approximation procedures. Recursive
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estimation of the maximum (minimum) of regression functions started with papers of
Robbins and Monro (1951) and Kiefer and Wolfowitz (1952). Stochastic approximation has
become increasingly important due to its wide range of applications, including the targeting
of weapon systems, signal timing for vehicle traffic control, and locating buried objects
using electrical conductivity (Spall, 1998), queueing systems (Hill, 1995 and Fu, 1997),
industrial quality improvement (Rezayat, 1995), pattern recognition (Maeda, et al., 1995),
neural network training (Cauwenberghs, 1994), adaptive control of dynamic systems (Spall
and Cristion, 1994 and Spall and Cristion, 1997), statistical model parameter estimation and
fault detection (Alessandri and Parasini, 1997) and traffic management (Chin and Smith,
1994).
Different algorithms are available for finding the maxima (minima) using stochastic

approximation. Spall (2000) reviews two main techniques: the gradient-free technique
(using a finite differencing approach) originating with Kiefer and Wolfowitz and the
gradient-based method originating with Robbins and Monro. Spall (1987) modified the
Kiefer-Wolfowitz procedure by introducing perturbations so that the number of subjects
at each stage is independent of the number of predictor variables (e.g. drugs). In these
stochastic approximation procedures, predictor variables are continuous
In this paper, we develop a multidimensional extension of Kpamegan’s up-and-down

procedure using Spall’s idea. In Kpamegan’s procedure, treatment continuations are
restricted to a lattice points and a treatment assignment never more than one level distant
from the prior assignment.

2 REVIEW OF UNIVARIATE OPTIMIZING
UP-AND-DOWN DESIGNS
For response functions that are unimodal with respect to one explanatory variable, a

class of up-and-down designs modelled after the Kiefer-Wolfowitz procedure was suggested
by Durham, Flournoy and Li (1998). Let there be a constant interval between doses
∆ = xj − xj−1 for j = 2, ...,K and c = b∆2 , where b is a positive integer. LetX(n) be the
midpoint of the dose interval for the nth pair of subjects, whereX(n) ∈ Ωx = {x1, ..., xK}.
So subjects are treated at XL(n) = X(n) − c and XU (n) = X(n) + c, for some constant
c > 0. Kpamegan (2001) analyzed these designs assuming b = 1. The sequences XL(n)
and XU (n), n ≥ 1, are called the lower and upper sequences, respectively. Let Y L(n)
and Y U (n) be corresponding Bernoulli random variables with Y i(n) = 1 indicating that
a success is obtained for subject of the nth pair on Xi(n), and Y i(n) = 0 otherwise,
i = L,U.
The Optimizing Up-and-Down Design prescribes that the midpoint of the (n+ 1)th pair

be determined recursively by
X(n+ 1) = X(n) +∆V (n), (2.1)

where

V (n) =

 −1 if Y
L(n) = 1 and Y U (n) = 0

0 if Y L(n) = Y U (n)
1 if Y L(n) = 0 and Y U (n) = 1

,

that is, doses are increased if there is a success in the upper sequence and a failure in the
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lower sequence; doses are decreased if there is a success in the lower sequence and a failure
in the upper sequence and are not changed otherewise.
Let pk, qk, and rk, denote, respectively, the probability that the treatment dose for the

lower sequence of subjects will move down from level xk − ∆
2 to xk−1 − ∆

2 , up from
level xk − ∆

2 to xk+1 − ∆
2 , and stay at level xk − ∆

2 , with pk + qk + rk = 1. Define
α(x) = P (success | x) to be the success probability function with _

α(x) = 1 − α(x).
Then for the lower sequence, the treatment transition probabilities that result from using the
Optimizing Up-and-Down Design are

pk = P

½
XL(n+ 1) = xk−1 − ∆

2
|XL(n) = xk − ∆

2

¾
= P (Y L(n) = 1|XL(n) = xk − ∆

2
)× P (Y U (n) = 0|XU (n) = xk +

∆

2
)

= α(xk − ∆
2
)
_
α(xk +

∆

2
), k = 2, . . . ,K;

qk = P

½
XL(n+ 1) = xk+1 − ∆

2
|XL(n) = xk − ∆

2

¾
= P (Y L(n) = 0|XL(n) = xk − ∆

2
)× P (Y U (n) = 1|XU (n) = xk +

∆

2
)

=
_
α(xk − ∆

2
)α(xk +

∆

2
), k = 1, . . . ,K − 1;

rk = 1− pk − qk.
For treatment spaces Ωx with a finite number of points, boundary conditions

are needed. One possibility is to set p1 = qK = 0, and let treatments stay on
the boundary when the general rule would move them outside the range of Ωx.Then
r1 = 1−q1 = 1− _

α(xk− ∆2 )×α(xk+
∆
2 ) and rK = 1−pK = 1−α(xk− ∆2 )×ᾱ(xk+

∆
2 ).

The resulting transition probability matrix for the lower sequence of treatments is

P =



r1 q1 0 · · · 0 0
p2 r2 q2 0
0 p3 r3 q3
...

...
. . . . . . . . .

...
... · · · · · · pK−1 rK−1 qK−1
0 · · · 0 0 pK rK


.

The corresponding transition probabilities for the upper sequence, denoted ( ṕk, q́k, and ŕk),
are equivalent as the paired of treatment sequences are deterministically linked.
Now, define the nth step transition probability:

pik(n) =
P
j
pij(n− 1)pjk(1) =

k+1X
j=k−1

pij(n− 1)pjk(1).

Then so long as {pk} and {qk} are bounded away from 0 and 1, limn→∞ pik(n) = πk,
k = 1, 2, , . . . ,K, that is the stationary treatment distribution exists and is solution to the
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balance equations πk = πk−1qk−1 + πkrk + πk+1pk+1:

πk = π1

kY
j=2

_
α(xj−1 − ∆2 )
_
α(xj +

∆
2 )

, j = 2, . . . , k,

where

π−11 = 1 +
KX
k=2

kY
j=2

_
α(xj−1 − ∆2 )
_
α(xj +

∆
2 )

.

Kpamegan (2001) reports results from his dissertation (2000), including the finding
that, when α(x) is unimodal, the sequence generated by X(n) converges to a stationary
distribution that is unimodal with its mode in a close neighborhood of the mode of the
success probability function. For this reason, the procedure is called an Optimizing
Up-and-Down Design. In several examples with finite samples, Kpamegan (2001) showed
that the up-and-down designs yield estimates of the optimal dose that converge faster and
have smaller mean square error than does stochastic approximation. This is not surprising in
view of the exponential convergence rate of Markov chains.

3 GRADIENT FREE STOCHASTIC APPROXIMATION
Gradient free stochastic approximation procedures do not require direct gradient

measurements of the response function. A gradient free procedure, when the response
function is unknown, is based on finite difference estimates of the derivatives of the response
function with respect to the explanatory variable(s). The finite difference approach is also
known as the Kiefer and Wolfowitz algorithm because they were the first to formulate it and
prove its convergence (cf. Kushner and Yin, 1997).
Suppose the study involves p drugs where subjects are treated in pairs. LetX(n) be the

treatment midpoint for the nth subject pair. Hence, X(n) is a point in the p-dimensional
space spanned by these drugs. The multivariate finite difference approach is based on a finite
difference approximation to the gradient of the response function.
Consider a small perturbation ofX(n) in each of its coordinates. Let a subject be given

the drug combination prescribed by each of these 2p possible perturbations at each stage,
n ≥ 1, of the experiment. Note this procedure requires 2p subjects to make a single finite
difference approximation of the gradient which will determine where the next 2p subjects
are to be treated.
The components of the finite difference approximation are obtained by differencing the

pair of Y (.) values and then dividing by the difference interval along each coordinate of
X(n). Define bg(X(n)) = (bg1(X(n)), . . . , bgp(X(n))) to be a p-dimensional vector of the
finite difference approximation; the ith component of bg(X(n)), i = 1, ..., p, is given by

bgi(X(n)) = Y (X(n) + c(n)ei)− Y (X(n)− c(n)ei)
2c(n)

, (3.1)

where ei is a vector whose elements are 1 in the i th place and 0 elsewhere. The sequence
{c(n)} consists of positive numbers that get smaller as n gets larger. UpdateX(n) by

X(n+ 1) = X(n) + a(n)bg(X(n)). (3.2)
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Using a finite difference approach, the number of subjects needed at each stage increases
with the dimensionality p. Thus Kiefer-Wolfowitz procedure quickly becomes infeasible
as the number of drugs increase. A solution is simultaneous perturbation stochastic
approximation (SPSA) which was introduced by Spall (1987) and more fully developed in
Spall (1992). SPSA requires only two subjects at each stage, independently of p. Therefore,
this procedure is more efficient than the finite difference approach with high dimensional
response surfaces (e.g. when multiple drugs are to be evaluated in combination).

4 SIMULTANEOUS PERTURBATION STOCHASTIC
APPROXIMATION (SPSA)
SPSA is a method of allocating treatments so that the treatment’s distribution converges

to the maximum of a differentiable response function. Take the response function to be the
probability of success, which varies with the doses of p drugs, p ≥ 2. Assuming too little
treatment is ineffective and too much is harmful, the probability of success is assumed to be
a unimodal function on the treatment space. The maximum of the response function occurs
at a drug combination we call the optimal dose.
Let two subjects be treated with a pair of p dimensional treatments in the nth stage

of the experiment. Let X(n) be the p-dimensional average of the nth treatments for
these two subjects. We define bg(X(n)) to be a random approximation of the unknown
gradient g(X(n)). One of the nth pair is treated at X(n) − c(n)U(n) and one at
X(n) + c(n)U(n), where U(n) = (u−11 (n), ..., u−1p (n)) is a vector of random variables
called the simultaneous perturbation vector and defined such that E

¯̄
u−1(n)

¯̄
exists and

c(n) is a non-random sequence of values that decreases with n. Denote the responses to
the treatment pair byY(n) = (Y 1(n), Y 2(n)), where Y 1(n) = Y (X(n) + c(n)U(n)) and
Y 2(n) = Y (X(n)− c(n)U(n)).
Now we can define the randomized gradient approximation of the response function:

bg(X(n)) = Y (X(n) + c(n)U(n))− Y (X(n)− c(n)U(n))
2c(n)

 u−11 (n)
...

u−1p (n)

 . (4.1)

The recursive formula for updatingX(n) is given by (3.2), where a(n) is the decreasing step
size that goes to zero as n goes to infinity. We use a(n) = a/ (A+ n)α and c(n) = c/nγ
and call them gain sequences, where a, c, A,α and γ are non-negative coefficients that are
initialized at n = 1. See Spall (1998) regarding the choice of initial values for the gain
coefficients. Asymptotically optimal values of α and γ are 1.0 and 1/6, respectively (Fabian,
1971, and Chin, 1997). The value of A, the stability constant, is chosen such that it is much
less than the number of stages in the experiment.

4.1 SPSA with a Bivariate Normal Success Probability Function

We illustrate the functionality of the SPSA using a dose-response situation in which there
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are two drugs, that is, p = 2. In this example, the randomized gradient approximation is

bg(X(n)) = 1

2c(n)

µ
Y

·
X1(n) + c(n)u1(n)
X2(n) + c(n)u2(n)

¸
− Y

·
X1(n)− c(n)u1(n)
X2(n)− c(n)u2(n)

¸¶·
u−11 (n)
u−12 (n)

¸
,

where we take the outcomes of u(n) to be equally likely with·
u1(n)
u2(n)

¸
∈
½·

1
1

¸
,

·
1
−1

¸
,

· −1
1

¸
,

· −1
−1

¸¾
. (4.2)

Use the recursion formula (3.2) to update treatment midpoints separately for each possible
realization of the simultaneous perturbation vector.
For a(n)/2c(n) = 1, Figure 1 shows the possible directions in which the treatment

midpoints change and they are labeled: (1) both treatment midpoints increase, (2) Treatment
1 midpoint increases while Treatment 2 midpoint decreases, (3) Treatment 1 midpoint
decreases while Treatment 2 midpoint increases and (4) both treatment midpoints decrease.
For continuous response functions, Y 1(n) − Y 2(n) = 0 with probability zero andbg(X(n)) equals zero with probability zero. If Y (n) is discrete, however, and in particular

if it binary, the positive probability that the treatment process does not change causes
significant deterioration in the performance of the procedure. This problem is addressed
later. First we demonstrate how the procedure identifies a maxima with a deterministic
response function.
As an example, consider a deterministic response function Y (z1, z2) =

φ(µ1, µ2,σ1,σ2, ρ) with doses measured on a logarithmic scale, where

φ(µ1, µ2,σ1,σ2, ρ) =
1

2πσ1σ2
p
1− ρ2

exp

½
− 1

2(1− ρ2)

£
z21 − 2ρz1z2 + z22

¤ ¾
, (4.3)

z1 =
(x1 − µ1)

σ1
and z2 =

(x2 − µ2)
σ2

,

σ1and σ2 are scale parameters, and µ1and µ2 are location parameters controlling the
probability of success as functions of Treatments 1 and 2, respectively. In this example
a standard bivariate normal function is used, that is, Y (z1, z2) = φ(0, 0, 1, 1, 0) is a
deterministic function.
One SPSA sample path of X(n) is shown in Figure 2. To obtain it, we set a = 1, A =

1, α = .1, γ = 1
6 , and c = 1. The simultaneous perturbation vector, U(n), is generated

using Bernoulli random variables taking values ±1 with probability 1
2 . The SPSA algorithm

terminates if there is little change several subsequent iterations or the maximum number of
trials has been reached. We choose to start with a low dosage, X(1) = (−2,−3)0are the
treatment midpoints for the first pair of subjects. For our illustration, the first perturbation
vector we generated was u(1) = (1,−1). So

Y

µ −2 + 1
−3− 1

¶
=
1

2π
exp

½
−1
2

£
(−1)2 + (−4)2¤ ¾ ,

and
Y

µ −2− 1
−3 + 1

¶
=
1

2π
exp

½
−1
2

£
(−3)2 + (−2)2¤ ¾

and

bg(X(1)) = 1

2c(1)

µ
1

2π
exp

½
−1
2
[17]

¾
− 1

2π
exp

½
−1
2
[13]

¾¶·
1
−1

¸
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=

· −0.00012
0.00012

¸
.

Updating the treatments according to (3.2), yields X(2) = (−2.000,−2.999). Using (3.2)
we continued until n = 100. As can be seen in Figure 2, after getting out of the tail of
the response function, convergence is fast and the number of trials required to converge to
the optimal dose is much less than the maximum number of trials we specified. Complete
convergence on both treatment midpoints took approximately 30 pairs of subjects.
From this point, we study (3.2) and (4.1) with a binary response. In sections 6.2 and 6.3

we model P (sucess| treatment combination)= φ(0, 0, 1, 1, 0). In section 6.4, we use skewed
sucess probability models.

5 BIVARIATE OPTIMIZING UP-AND-DOWN DESIGNS:
GENERAL FORMATION
As SPSA is a multivariate extension of the Kiefer-Wolfowitz method, we draw on

it to extend the Optimizing Up-and-Down Design to two dimensions. The extension to
higher dimensions in conceptually straightforward, but notationally cumbersome. In the
Kiefer-Wolfowitz procedure subjects are treated in groups of 2p, where p is the dimension
of the treatment space whereas in the SPSA procedure subjects are treated in pairs
independently of p. The Optimizing Up-and-Down Design differs from these methods in
that the treatment space is a lattice and the dose increments are constant.
We now construct an Optimizing Up-and-Down Design in the bivariate setting i.e. p = 2.

Consider a lattice {x11 < x12 < · · · < x1K1} × {x21 < x22 < · · · < x2K2} in which
the sets {x11, x12, · · · , x1K1} and {x21, x22, · · · , x2K2} are midpoints between the pairs
of possible doses on Treatments 1 and 2, respectively. Let the interval between possible
midpoints be a positive constant for each treatment, i.e., xij − xij−1 = ∆i for i = 1, 2
and j = 2, . . . ,Ki. For the two subjects, let δi be the interval between doses on Treatment
i, i = 1, 2, where δi = ∆i

2 . Define t
1
1k = x1k − δ1, t

2
1k = x1k + δ1, t

1
2l = x2l − δ2 and

t22l = x2l + δ2, for dose levels k = 1, . . . ,K1 and l = 1, . . . ,K2. Then the marginal dose
space for Treatment 1 is Ωx1 =

©
t111, t

2
11, t

2
12, · · · , t21K1

ª
, and the marginal dose space for

Treatment 2 is Ωx2 =
©
t121, t

2
21, t

2
22, · · · , t21K2

ª
: Ωx1 ×Ωx2 is the joint treatment space.

Define the vectors∆ = (∆1,∆2) and δ = (δ1, δ2), and letX(n) = (X1(n),X2(n)) be
the treatment midpoint for the nth subject pair and let T(n) be the actual doses for subjects
in the nth pair:

T(n) =

·
T1(n)
T2(n)

¸
=

·
(T 11 (n), T

1
2 (n))

(T 21 (n), T
2
2 (n))

¸
,

where T1(n) and T2(n) are the dose combinations for subjects 1 and 2 of the nth pair,
respectively; T 11 (n) and T 21 (n) take on values in Ωx1 , whereas T 12 and T 22 (n) take on values
in Ωx2 . If X1(n) = (x11k, x

1
2l), then T1(n) takes on a value from {x1k ± δ1, x2l ± δ2}

depending on the outcome of U(n), which is the simultaneous perturbation vector given
by (5.1). Likewise, T2(n) takes on a value from {x1k ± δ1, x2l ± δ2} depending on the
outcome ofU(n).
Denote the responses to treatments T 1(n) and T 2(n) by Y 1(n) and Y 2(n), respectively,
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where
Y j(n) =

½
1 if success
0 if failure j = 1, 2.

Define
V(n) =

£
Y 1(n)− Y 2(n)¤ ∗U−1(n), (5.1)

where U(n) the simultaneous perturbation vector. Now, extending (2.1) to the bivariate
treatment space, we give the general form of the Bivariate Optimizing Up-and-Down Design.

If the nth pair were treated at X(n)=(X1(n),X2(n)), then treat the (n+1)th pair at
X(n+ 1) = X(n) +∆V(n). (5.2)

Equation (5.2) must be modified at the boundaries of the treatment space. Except on the
boundaries of the treatment space, the treatment midpoints X1(n) and X2(n) both stay
constant for the (n+1)th pair of subjects if V (n) = [0, 0]; both treatment midpoints increase
if V (n) = [1, 1]; the midpoint of Treatment 1 increases and the midpoint of Treatment 2
decreases if V (n) = [1,−1]; the midpoint of Treatment 1 decreases and the midpoint of
Treatment 2 increases if V (n) = [−1, 1] and both midpoints decrease if V (n) = [−1,−1].
Alternative designs are obtained by changing the distribution ofU(n) and by changing (5.2)
at the boundaries.

5.1 Transition Probabilities for Treatment Midpoints and Their
Associated Perturbations

Let subscripts of the form (1i, 2j) denote the ith level of Treatment 1 and the jth level
of Treatment 2. Define p(1i2j ,1k2l,u uw)(n + 1) to be the probability that the (n + 1)th
treatment midpoint is at (x1k , x2l) and perturbation uw around the midpoint given that
the nth treatment midpoint is at

¡
x1i , x2j

¢
and treatments have perturbation u around the

midpoint. Define p(1i2j ,1k2l,u ) = p(1i2j ,1k2l,u)(1). The transitions of the paired treatment
midpoints coupled with their associated perturbation determines the next pair of treatments.
Transitions from the treatment pair with perturbation u around midpoints (X1i,X2j) to
a perturbation uwaround midpoints (X1k,X2l) are Markovian, depending only on the
probability of sucess at (X1i,X2j).
To restrict treatment midpoints to only change one level at a time in Up-and-Down

Designs, we require

p(1i2j ,1k2l,u) = 0 if

 |i− k| > 1
or

|j − l| > 1

 , (5.3)

for all u and (i, k) = 1, . . . ,K1, (j, l) = 1, . . . ,K2. Also, designs are constructed with
boundary conditions so that the probability of treating outside the specified treatment space
is zero.

5.2 Stationary Distribution of Treatments

Let π(1r2s) ∈ [0, 1] , r = 1, . . . ,K1 and s = 1, . . . ,K2, denote the stationary probability of
the (1r2s) midpoint and with at least one π positive and

PK1

r=1

PK2

s=1

P
u π(1r2s,u) = 1.

Assuming the stationary distribution for treatment midpoints and their associated
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perturbations exists,

π(1k2l,uw) =

K1X
r=1

K2X
s=1

X
u

π(1r2s,u)p(1r2su,1k2lu,uw) =
k+1X
r=k−1

l+1X
s=l−1

X
u

π(1r2s,u)p(1r2su,1k2lu,uw).

(5.4)
Let P=(1i2j , 1k2l, u, uw) denote the 3x3 matrix of transition probabilities for treatment

midpoints and their associated perturbations. The associated stationary distribution can
be approximated to any desired degree of accuracy by exponentiating P. We consider
stationarity to be attained form trials when all rows of Pmagree to 4 decimal places.
Since a particular orientation of treatments around the midpoint may coincide with

another particular orientation around another midpoint, we must aggregate their probabilities
to obtain the total stationary probability for that treatment. For example, suppose that
treatment midpoints take on values from {−1, 0, 1}, and hence, the actual treatments take on
values from {−32 , −12 , 12 , 32}. Furthermore, suppose that u is given by (4.2). Figure 3 shows
that the treatment can be at (−12 ,

−1
2 ) when treatment midpoints are at 4 different locations.

A treatment midpoint at (0,−1) with perturbation (−1, 1); a treatment midpoint at (0, 0)
with perturbation (−1,−1); a treatment midpoint (−1,−1) with perturbation (1, 1); and
a treatment midpoint at (−1, 0) with perturbation (1,−1). The stationary probabilities of
these four outcomes must be summed to obtain the asymptotic proportion of subjects treated
at (−12 ,

−1
2 ). This type of aggregation must be done for all orientations and treatment levels.

6 EXAMPLE OF A BIVARIATE OPTIMIZING
UP-AND-DOWN DESIGN
First, in Section 6.1 we describe the transitions of treatment midpoints on the interior

of the design space. In Section 6.2, when a transition according to (5.2) would move the
next treatment outside of Ωx1 × Ωx2 , the next treatment is held constant instead. In Section
6.3, when a transition according to (5.2) would move the treatment outside the prescribed
treatment space, the treatment randomly stays the same or one treatment stays fixed and the
other changes one level within Ωx1 × Ωx2 , with each of the possible events having equal
probability.
In sections 6.2 and 6.3, we illustrate the Bivariate Optimizing Up-and-Down Design in

which the ith subject of the nth pair has responses

Y j(n) =

½
1 if success
0 if failure j = 1, 2,

where P (Y j(n) = 1 | Z1, Z2) = E(Y j(n) | Z1, Z2) = φ(0, 0, 1, 1, 0) as given by (4.3).
We let∆1 = ∆2 = ∆ = 1, and δ1 = δ2 = δ = ∆

2 =
1
2 . In Section 6.4, we consider skewed

response functions.

6.1 Midpoint Transitions on the Interior of the Design Space

The stochastic algorithm used is given by (5.2) with perturbations given by (4.2), except on
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the boundaries. As used by Spall (1998) for SPSA, we used the perturbation vector
U−1(n) =

£
u−11 (n), u

−1
2 (n)

¤ ∈ {[−1,−1] , [1, 1] , [1,−1] , [−1, 1]} ,
with probability of 14 for each outcome pair. From (5.1), we have V(n) ∈
{[0, 0] , [1, 1] , [1,−1] , [−1, 1] , [−1,−1]}. Figure 4 shows a schematic of the possi-
ble transitions of a treatment midpoint fromX(n) = (X1k,X2l). It is shown that treatment
midpoints under Design 1 can only move diagonally or stay put. Let∆ be the step size
between treatment midpoints. Depending on the outocme of the process, the transitions
at the midpoint (X(n) = (X1(n),X2(n)) can take are in one of four possible directions;
(X1(n)−∆,X2(n) +∆), (X1(n)−∆,X2(n)−∆), (X1(n) +∆,X2(n)−∆),or
(X1(n) +∆,X2(n) +∆).
Let Eij indicate a possible event from one trial in the Bivariate Optimizing Up-and-

Down procedure, where i = 0 ifX(n) does not change, i = 1 if both components ofX(n)
decrease, i = 2 if both components ofX(n) increase, i = 3 ifX1(n) decreases whileX2(n)
increases and i = 4 if X1(n) increases while X2(n) decreases. The subscript j indicates
different ways in which these treatment changes can occur. The different perturbations of
the treatments around their midpoint as shown in Table 1.
Define α(T 1(n), T 2(n)) = P (success|T 1(n), T 2(n)) to be the success probability

function with α(T 1(n), T 2(n)) = 1−α(T 1(n), T 2(n)). Given treatment at (T 1(n), T 2(n)),
Table 2 shows the possible events for this Bivariate Optimizing Up-and-Down Design on the
interior of the treatment space, with their associated probabilities, where up, down and stay
put are denoted by ↑, ↓ and ª, respectively. For example,

P (E01 | T 1(n), T 2(n))
= P (Y 1(n) = 0, Y 2(n) = 0,U(n) = [1, 1] | T 1(n), T 2(n))
= P (U(n) = [1, 1])P (Y 1(n) = 0, Y 2(n) = 0 | T 1(n), T 2(n))
=
1

4
α(T 1(n))α(T 2(n));

P (E05 | T 1(n), T 2(n))
= P (Y 1(n) = 1, Y 2(n) = 1,U(n) = [1, 1] | T 1(n), T 2(n))
= P (U(n) = [1, 1])P (Y 1(n) = 1, Y 2(n) = 1 | T 1(n), T 2(n))
=
1

4
α(T 1(n))α(T 2(n)).

The probabilities of the other transitions in Table 2 are obtained analogously. Note that the
conditional probability thatX(n+ 1) = X(n) is equal to

P (V (n) = [0, 0]|T 1(n), T 2(n))

=
8X
j=1

P (E0j | T 1(n), T 2(n))

= α(T 1(n))α(T 2(n)) + α(T 1(n))α(T 2(n)).

The transition probabilities on the interior of the design space can be written in terms of the
response function probabilities. For example, the probability of treatment midpoints staying
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put with perturbationU(n) = u = [−1,−1] is
p(©ª ,u) = p(1i2j ,1i2j , u) (6.1)

= P (Y 1(n) = 0, Y 2(n) = 0,U(n) = u|T 1(n), T 2(n))
+P (Y 1(n) = 1, Y 2(n) = 1, U(n) = u|T 1(n), T 2(n))
= P (U(n) = u)P (V (n) = [0, 0] | T 1(n), T 2(n))
+P (U(n) = u)P (V (n) = [0, 0] | T 1(n), T 2(n))
=
1

4
α(T 1(n))α(T 2(n)) +

1

4
α(T 1(n))α(T 2(n)).

The transition probability that both treatment midpoints move up with perturbation
U(n) = u = [−1,−1] is

p(↑↑,u) = p(1i2j ,1i+12j+1 , u) (6.2)
= P (Y 1(n) = 0, Y 2(n) = 1,U(n) = u|T 1(n), T 2(n))
= P (U(n) = u)P (V (n) = [1, 1] | T 1(n), T 2(n))
=
1

4
α(T 1(n))α(T 2(n)),

and the transition probability that both treatment midpoints move up andU(n) = u = [1, 1]
is

p(↑↑,u) = p(1i2j ,1i+12j+1 , u) (6.3)
= P (Y 1(n) = 1, Y 2(n) = 0,U(n) = u|T 1(n), T 2(n))
= P (U(n) = u)P (V (n) = [1, 1] | T 1(n), T 2(n))
=
1

4
α(T 1(n))α(T 2(n));

Other transition probabilities are calculated similarily yielding

p(↓↓,u) =
1

4
α(T 1(n))α(T 2(n)), u = [−1,−1],

p(↓↓,u) =
1

4
α(T 1(n))α(T 2(n)), u = [1, 1],

p(↓↑,u) =
1

4
α(T 1(n))α(T 2(n)), u[1,−1],

p(↓↑,u) =
1

4
α(T 1(n))α(T 2(n)), u[−1, 1],

p(↑↓,u) =
1

4
α(T 1(n))α(T 2(n)), u[1,−1],

and finally,
p(↑↓,u) =

1

4
α(T 1(n))α(T 2(n)), u[−1, 1].

6.2 A Bivariate Normal Response Function with Curtailment at the
Boundary

In this section, we evaluate the bivariate up-and-down design with curtailment at the
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boundary. That is, when a transition would move the next treatment outside the prescribed
treatment space, the next treatment is held constant instead.
Suppose that treatment midpoints belong to the space {−1, 0, 1} × {−1, 0, 1}, and

hence, the treatments belong to the space {−32 ,−12 , 12 , 32} × {−32 ,−12 , 12 , 32}. The interval
between midpoints ∆ is set equal to 1 and the interval between treatments is δ = ∆

2 =
1
2 .

We calculated the transition probabilities of the treatments considering their orientation
around their midpoints to obtain a numerical evaluation of the transition probability matrix
P given P(Yj = 1|T 1, T 2)=φ(0, 0, 1, 1, 0), j = 1, 2. The asymptotic proportion of subjects
treated at each dose combination was then computed by summing the midpoint perturbation
combinations that were actually the same treatment combination as described in Section
6.2. These treatment allocation proportions are shown in Table 3. The relative frequency at
the mode of the treatment distribution is described in terms of the probability of the modal
set which consists of the doses that have the highest stationary probabilities. Note that the
optimal dose is at the point (0, 0), which is surrounded by the modal set in the treatment
distribution. The modal set in this example consist of the 4 points that surround the point
(0, 0), which are (−12 ,−12), ( 12 , 12), (12 ,−12 ) and (−12 , 12). The stationary probability at the
modal set is the sum of the probabilities of the 4 modal points surrounding (0, 0) which is
0.28.
This design follows SPSA closely. However, there are undesirable results. First, the

probability that treatment midpoints stay put is high (this would not be so with continuous
response variables). Furthermore, all treatment midpoints do not communicate with each
other. There are two seperate paths for the treatment midpoints depending on the starting
treatment as can be seen in Figure 4. However, all treatments can be reached through the
perturbations. These facts cause most of the transition probability mass to lie on a narrow
diagonal band of P, which causes slow convergence. Indeed, it took m = 100 (pairs of
subjects) for the rows of the P matrix to become equal to four decimal places. Hence, we
change the boundary conditions in Section 6.3 to address these problems.

6.3 A Bivariate Normal Response Function with Transitions Along the
Boundary

In order to speed convergence, modifications are made on the boundaries that reduce the
probabilities of no transition and make all treatment midpoints communicate with each other
(See Figure 5). When a transition according to (5.2) would move the treatment outside the
prescribed treatment space, the treatment randomly stays the same, or one treatment stays
fixed and the other changes one level within Ωx1 × Ωx2 , with each possible change having
equal probability. This design allows all treatment midpoints to communicate and also
allows a transition in the midpoint of one treatment while the other treatment midpoint is
held constant.
This modification puts less mass near the diagonal ofP than in Section 6.2. Hence, fewer

trials are required to reach stationarity. Considering the same sample space and success
response function described in Section 6.2, the stationary distribution is approximated well
by P10, that is, only 10 pairs of subjects were required for the rows of P to be equal to 4
decimal places. Hence, the stationary distribution resulting from this design is applicable to
combination therapy dose-finding trials with small sample sizes. The asymptotic proportion
of subjects treated at each dose combination is given in Table 4.
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Note that the optimal dose is at (0, 0), which is represented by 4 points in the modal set
of the treatment distribution and these points are (−12 ,−12), ( 12 , 12 ), (12 ,−12 ) and (−12 , 12).
Hence, the stationary probability at the modal set is equal to 0.51,up from 0.28 with
curtailment at the boundary.
Now, we consider the bivariate normal response function, operating on a larger treatment

space. Let treatment midpoints take on values from {−2,−1, 0, 1, 2} × {−2,−1, 0, 1, 2}.
The dose space for Treatment 1 is given by Ωx1 =

©−5
2 ,
−3
2 ,
−1
2 ,

1
2 ,

3
2 ,

5
2

ª
and the dose space

for Treatment 2 is given by Ωx2 =
©−5
2 ,
−3
2 ,
−1
2 ,

1
2 ,

3
2 ,

5
2

ª
. Treatments for the sequence of

subjects are selected from
©−5
2 ,
−3
2 ,
−1
2 ,

1
2 ,

3
2 ,

5
2

ª× ©−52 , −32 , −12 , 12 , 32 , 52ª . The resulting
asymptotic proportion of subjects treated at each dose combination is shown in Table 5.
Note again that the modal set of the treatment distribution surrounds the optimal dose

which is zero. Twenty one percent of subjects are treated at the modal set. The number of
subject pairs required for stationarity is 30.

6.4 Alternative Success Probability Functions

In this section, we will compare asymptotic treatment distributions resulting from three
different response functions which we call SPF-1, SPF–2, and SPF-3. First, let (m1,m2)
indicate the optimal dose combination of Treatments 1 and 2. Also let (bm1, bm2) indicate
the empirical mode of the asymptotic treatment distribution of Treatments 1 and 2.
In the symmetric case (SPF-1), we will refer to the mode by the modal set, since the
mode consist of 4 points surrounding the optimal dose. We let the step size between
treatment midpoints be ∆1 = ∆2 = ∆ = 1 and we let the space of both treatment
midpoints be equal to {2,−1, 0, 1, 2}. Hence, the dose space for Treatment 1 is given
by Ωx1 =

©−5
2 ,
−3
2 ,
−1
2 ,

1
2 ,

3
2 ,

5
2

ª
and the dose space for Treatment 2 is given by

Ωx2 =
©−5
2 ,
−3
2 ,
−1
2 ,

1
2 ,

3
2 ,

5
2

ª
. Table 6 summarizes design characteristics of each success

probability function.
Figure 2 shows SPF-1 and Figure 6 shows a 3 dimensional bar graph of the asymptotic

treatment distribution using SPF-1. The modal set consist of treatments (−12 ,−12), ( 12 ,− 12),
(− 12 , 12) and (12 , 12). These points are within ±∆2 from the optimal dose is (0, 0).
A left skewed response function (SPF-2) is shown in Figure 7. The optimal dose for this

function is (1, 1). The treatments converge to a distribution shown in Figure 8. The mode of
the stationary distribution is at the point (12 ,

1
2) and the mode is within ±∆2 from the optimal

dose.
Figure 9 shows a right skewed success response function SPF-3, with optimal dose at

(-1,-1). Figure 10 shows the asymptotic treatment distribution with its mode at the point
(− 12 ,−12 ) which is also within ±∆2 from the optimal dose.
The three different examples of the success probability functions show treatments

converging to a distribution whose mode is in a close neighborhood of the optimal dose.

7 Conclusion
In this paper we have shown how to extend Kpamegan’s (2000, 2001) Optimizing

Up-and-Down Design to accomodate combination therapies using an idea of Spall (1998);
and we show how this can be done with two subjects at each step regardless of the dimension
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of the treatment space. We emphasize that analytically, rather than by simulation, one can
compute treatment allocation probabilities.
We have analytically evaluated the performance of the Optimizing Up-and-Down Design

for combination therapy with two different boundary conditions. Allowing transitions
along the boundaries is clearly superior to curtailment at the boundary. More subjects were
assigned near the optimal dose and stationarity was reached faster. Optimal boundary rules
present an open problem which is important for small treatment spaces. Larger treatment
spaces require more subject pairs for stationarity to be attained. We have been rather explicit
in describing the calculations needed to evaluate the Optimizing Up-and-Down designs in
our illustrations so that these calculations can be readily adopted to the treatment lattice and
types of response functions that one expects to encounter in other situations.
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Table 1: Midpoint Transitions according to Perturbation Outcomes
Midpoint Perturbation Sequence 1 Sequence 2

X(n) = (x1k, x2l) U(n) = T1(n) = T2(n) =

[−1,−1] {x1k + δa[1], x2l + δa[2]} {x1k − δa[1], x2l − δa[2]}
= {x1k − δ, x2l − δ} = {x1k + δ, x2l + δ}

[1, 1] {x1k + δb[1], x2l + δb[2]} {x1k − δb[1], x2l − δb[2]}
= {x1k + δ, x2l + δ} = {x1k − δ, x2l − δ}

[1,−1] {x1k + δc[1], x2l + δc[2]} {x1k − δc[1], x2l − δc[2]}
= {x1k + δ, x2l − δ} = {x1k − δ, x2l + δ}

[−1, 1] {x1k + δd[1], x2l + δd[2]} {x1k − δd[1], x2l − δd[2]}
= {x1k − δ, x2l + δ} = {x1k + δ, x2l − δ}

Table 2:Possible Transition for the Bivariate Optimizing Up-and-Down Design on the Interior
Event Y1(n) Y2(n) U(n) V(n) X(n+ 1) P(Eij | T1(n),T2(n))
E01 0 0 [1, 1] [0, 0] [©,ª] 1

4α(T
1(n))α(T 2(n))

E02 0 0 [−1,−1] [0, 0] [©,ª] 1
4α(T

1(n))α(T 2(n))
E03 0 0 [1,−1] [0, 0] [©,ª] 1

4α(T
1(n))α(T 2(n))

E04 0 0 [−1, 1] [0, 0] [©,ª] 1
4α(T

1(n))α(T 2(n))
E05 1 1 [1, 1] [0, 0] [©,ª] 1

4α(T
1(n))α(T 2(n))

E06 1 1 [1,−1] [0, 0] [©,ª] 1
4α(T

1(n))α(T 2(n))
E07 1 1 [−1,−1] [0, 0] [©,ª] 1

4α(T
1(n))α(T 2(n))

E08 1 1 [−1, 1] [0, 0] [©,ª] 1
4α(T

1(n))α(T 2(n))
E11 0 1 [1, 1] [−1,−1] [↓, ↓] 1

4α(T
1(n))α(T 2(n))

E12 1 0 [−1,−1] [−1,−1] [↓, ↓] 1
4α(T

1(n))α(T 2(n))
E21 1 0 [1, 1] [1, 1] [↑, ↑] 1

4α(T
1(n))α(T 2(n))

E22 0 1 [−1,−1] [1, 1] [↑, ↑] 1
4α(T

1(n))α(T 2(n))
E31 1 0 [−1, 1] [−1, 1] [↓, ↑] 1

4α(T
1(n))α(T 2(n))

E32 0 1 [1,−1] [−1, 1] [↓, ↑] 1
4α(T

1(n))α(T 2(n))
E41 1 0 [1,−1] [1,−1] [↑, ↓] 1

4α(T
1(n))α(T 2(n))

E42 0 1 [−1, 1] [1,−1] [↑, ↓] 1
4α(T

1(n))α(T 2(n))

Table 3: Asymptotic Proportion of Subjects
with Curtailment at the Boundary

Treatment 2
Treatment 1 1.5 0.5 −0.5 −1.5
1.5 0.06 0.07 0.06 0.05
0.5 0.08 0.07 0.07 0.05
−0.5 0.08 0.07 0.07 0.05
−1.5 0.08 0.05 0.06 0.06
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Table 4: Asymptotic Proportion of Subjects
with Transitions Along the Boundary

Treatment 2
Treatment 1 1.5 0.5 −0.5 −1.5
1.5 0.02 0.05 0.05 0.02
0.5 0.05 0.13 0.13 0.05
−0.5 0.05 0.13 0.13 0.05
−1.5 0.02 0.05 0.05 0.02

Table 5: Asymptotic Proportion of Subjects
with Transitions Along the Boundary

Treatment 2
Treatment 1 2.5 1.5 0.5 −0.5 −1.5 −2.5
2.5 0.01 0.015 0.02 0.02 0.02 0.01
1.5 0.02 0.04 0.04 0.04 0.04 0.02
0.5 0.02 0.04 0.05 0.05 0.04 0.02
−0.5 0.02 0.04 0.05 0.05 0.04 0.02
−1.5 0.02 0.04 0.04 0.04 0.04 0.02
−2.5 0.01 0.02 0.02 0.02 0.02 0.01

Table 6: Characteristics of Different Success Probability Functions
SPF- Optimal Dose Stationary Mode

(m1,m2) Distribution (bm1, bm2)
1: Figure 2 (0, 0) Figure 6 (−12 ,−12 ), (12 ,−12), (−12 , 12), (12 , 12)
2: Figure 7 (1, 1) Figure 8 (12 ,

1
2)

3: Figure 9 (−1,−1) Figure 10 (−12 ,−12 )
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Figure 1. Possible Directions of the Treatment Midpoint X(n).
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Figure 6. Stationary Distribution under SPF-1.
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Figure 7. Left Skewed Response Function SPF-2.

Figure 8. Stationary Distribution under SPF-2.
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Figure 9. Right Skewed Response Function SPF-3.

Figure 10. Stationary Distribution under SPF-3.
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