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Constrained SPSA Controller for Operations Processes 2) under normal conditions the process variability is driven by
common causesvhose effect is impossible or too expensive
Fahimeh Rezayat to reduce;
3) anincrease in variability or unfavorable changes in the process
mean are due tepecial causewhich are typically related to the

Abstract— Continuous quality improvement calls for employing presence of differences among operators, tools, raw materials,
methodologies that assist in continual reduction of variations in process or days of the week.

performance characteristics around their target values. In a complex
operations process the underlying structure of the process is unknown to Once the special causes are eliminated, the residual variability of
the operations managers. Hence, identification of the source of variations the data is due to common causes (e.g., variations in environmental
and variation reduction are difficult and time consuming. Under the ¢qngitions) and is assumed to be too expensive to control [6]. The
assumption that the process design is capable of producing products . .
that meet customer's requirements, the emphasis is on continually Methods that are commonly used to identify the cause (source) of
improving performance and conformance dimensions of the quality of the variations range from the simple Pareto analysis, cause and
a complex/ nonlinear operations process when there exists almost no effect diagrams, and scatter (correlation) diagrams to the Bayes-
knowledge about the process structure. The study considers a case iNpased methods. In many practical applications the special causes of
which some of the operations process parameters/ inputs are required to L . e L

take values in pre- specified ranges. To improve the process performance variability cannot '_n principle be eliminated qr even reduc_et_:l to such
while accounting for these requirements, the study employs a neural @n extent that their presence could be considered a negligible factor.
network-based model-free controller along with the penalty function. In industrial situations involving assignable causes of variability,
Simultaneous perturbation stochastic gradient approximation method is when a rapid response is essential, the best that can be done is to

used to iteratively estimate the weights of neural network and as a result . o . .
to estimate the control values. Further, the study uses a special causeaChleve a condition in which the process can produce acceptable

control chart to monitor the performance of the controller in reducing  OUtput despite such causes, as long as their impact is not excessively
the process variations and to signal the change in the process dynamics.large.

Simulation findings indicate that when incorporating the prespecified Engineering process control aims to address this issue by reducing

requirements, directly, in estimating the neural network's weight, the oo e matic variations. It compensates for the true cause of variation
neural network model-free provides control values (inputs) that result

in fewer nonconforming outputs than when the requirements are not BY mgnlpulatlng some other parameters of the process and by con-
incorporated in optimization process. structing a dynamic model, feedback control, feed-forward control,

or sometimes a combination of them [7]. In addition to knowledge
of the essential parameters of an operations process, the engineering
process control typically requires knowledge of the correct form of
The objective of any business organization is to produce goods ahd functional relationship between the mean value of the key product
services that meet customers’ needs. Recently a growing emphagsifibutes and the levels of control factors (process parameters),
is given on improving operation processes. This study stressgg., raw materials. For systems in which the relationships are non-
quality improvement for the process industries. In the process indégationary/nonlinear, constructing an explicit functional relationship
tries observations are serially correlated, which results in systematigit adequately represents the true relationship is almost impossible.
variation in the observations. When the systematic variation Trh|s fact and the need for better control of increasingly complex
observations is Iarge, product quallty is influenced. Note that t}a@namic systems (SUCh as modern manufacturing Sys’[ems) under
process parameter values (input values) or the process dynamjgmificant uncertainty and nonlinearity has led to reevaluation of the
throughout the operations process may change from the origigghventional control methods. Neural networks appear to offer new
design values. When these changes are large they cause devialighgising ways toward solving some of the most difficult control
of the product attributes values from the target values (Speci?f'oblems (for example, see [8] and [9]).
causes variations). The goal is removing/reducing the large systematigeyral networks are a type of Al system effective for con-
variations and the special cause variations as much as possible. | of complex processes in which the underlying structure may
In the past, the two general approaches in industry—statistic3#{ange or exhibit an ill-structured nature. Spall and Cristion [10],
process control and engineering process control—were independepthy developed the simultaneous perturbation stochastic approxima-
used in reducing variability of the key product attributes around targgsn, (SPSA) based-neural network controller. This innovative neural
values. Today, there exists an on-going realization that higher qualif¥ryork-based, model-free controller does not need the construction
will be gained by implementing these approaches in a complementggy assumption of a separate model (either NN or other parametric
fashion (for example, see [1]-[5]). type such as linear or nonlinear ARMA) for the underlying process
Control charts of the statistical process control approach (SP&gyations. It takes information about the current state of the system

are commonly used to monitor and verify that a process remaiggy hroduces a set of control actions to modify or improve the future
stable and identify the special cause variations. Traditional statistiGghia of the system. Since it is not tied to a prior model, the controller

process control approaches assume that has a potential advantage in handling changes in the underlying
1) consecutive observations from a process are independent; dynamics of the process.
The NN controller is appropriate when the system can tolerate
Manuscript received August 19, 1998; revised July 2, 1999 and July 2spnoptimal control (training process) and the regularity conditions in
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changes in the process dynamic. SPSA uses noisy measuremenf®r estimating the NN weights, existing literature starts wittial

of the objective function and does not require direct gradient guessvalues for the NN weightsf{) and recursively estimates the
higher derivative computation. The main input at each iteration dfN weights ¢,) using a stochastic approximation algorithm of the
SPSA is an approximation to the gradient vector that is based on tfeom
measurements of the objective function, independent of the problem

dimensionp (i.e., the number of the NN weight parameters). Ok = r—1 — ar g (i) (2.3)
The fact that in industrial practice (in continuous as well as discre\;\sahere
production processes) observations that are actually serially correlate . o L
implies that traditional statistical process control charts may be’* :izgstgea;feskegh;Ziétt;z;:;rf?%ogn’certain conditions:
ineffective for monitoring process quality (for example, see [1], [3], or ** . . . i
gp d y( P [1], [3] gx () estimate or observation of the gradient of a loss function

[13]). Control charts such as cumulative sum (CUSUM) control chart

[13], the exponentially weighted moving average (EWMA) control (Li). ) ) )
chart [2], and special cause control (SCC) chart [14] are proposed fgaditional NN controllers are designed using standard gradient-based

monitoring autocorrelated observations. Rezayat [5] showed througfff"ch techniques to estimate NN weights (e.g., [15]), and the value

a simulation study, that for the dynamic process under study the S€CJx(-) requires knowledge of the process dynamics (say, as in

outperformed EWMA and CUSUM control charts in identifying th®ack-propagation). When the process dynamics are unknown, the

change in the process dynamics (mean shift and change to the proéggdard gradient-based search techniques can not be used. Spall and

dynamics). Cristion [10], [11] proposed using the “simultaneous perturbation”
The work reported here is built on prior studies in [4] and [S]Qpproximation of gradient [12] in estimating NN weights, where the

It employs simulation to evaluate the performance of the SpSAradient estimateg.(.), at eachk, is based on two instantaneous

based NN controller in reducing the variations in process performa ierEd values (or noisy observed values) of loss fundiionsay

characteristics around their target values when penalty functionfis - For more on the SPSA approximation, see [11] and [16].

used to incorporate the constraints on input and output values of f@uation (2.4) shows the calculation of tiheéh component of the

operations into the optimization process. For ease of communicatdigdient estimatege.(.), &t = 1,2, ---, p, via SPSA

from here on, we call it “constrained NN controller.” To evaluate the . . N -

performance of the constrained NN controller we compare the finddr (P—1) = (LECH - L ))/QckAkh h=1.2-.p (24

ings of t.he simulation study With that. of SPSA-based NN gontm”%herep represents the number of connection weights of the NN,
without including the constraints, which we call “unconstrained Nli(ki) are estimated values @, = L (6, +.. Av) using the observed,

controller.” (£) () i
The following section provides a brief review of SPSA-basetiF+1° and?i.¢ (note that ally elements of the gradient vector

. . )
neural network controller and its extension for the case of i€ the same two loss values), anff”’ are control values and

constrained optimization. Section Il presents the simulation resufff€y are the NN output. Their values are based on the NN
and conclusions. element weight vectof, = 6,_1 £ ¢, Ak, where A, = {Ag,}

is a vector ofp symmetrically distributed (about 0) i.i.d. random
variables withE(A7};?) uniformly bounded. Note thah s, may not

Il METHODOLOGY be either uniformly or normally distributed (it can be symmetrically
Bernoulli £1 distributed which we will use in this study;);gfj)1 are
A. A Brief Review of the SPSA-Based NN Controller process outputs based a)™;#,., are desired target values for
Consider an operations process whose output vector athtithé ;rﬁiﬂ;{a@ and {c;.} are a sequence of positive numbers. If the
is given by operations dynamics and loss function are constant, typically,
and a; should satisfy standard conditions, e.@;, — 0, ¢x — 0,
Tet1 = Ok (Ths ks W) (2.1) Y72 o(ax/cr) < oo; if the operations dynamics are changing, picking

constant coefficients, = ¢ or ax = a V% is recommended.
’ ) ) ) ) The essential feature of SPSA is that it requires only two noisy
¢x(-)  unknown nonlinear function governing the dynamics ofyeasurements of the objective function in approximating the gradient

where

the process; regardless of the dimension of the optimization problem. SPSA
Wk random. noise; ) provides the same level of accuracy in estimating the NN weights with
U control input to the operations process output of an Njygers of magnitude fewer system measurements than the standard

based on all the information available at the instant  finjte difference based approach (see [12] and [17]).
Hence, there will be a vector of connection weightsassociated to
the NN producing:, that must be estimated. The goal is to estimatg constrained SPSA-Based NN Controller
connection weightd; in a manner that results in a sequence of
control values{uy } that drive the process output(;) close to the
target value #;1). In other words, the goal is to find a sequenc
of 65 that minimizes some loss functioh;(6x). A common loss
function is the one-step-ahead quadratic loss

In practice when solving a control or optimization problem, a
golution that simultaneously satisfies a set of physical, environ-
mental, and/or economical constraints has to be considered. For
example, control variables should not assume values out of a specific
range due to reasons such as safety. Also output’s characteristics
Ly(8;) = E[(x441 — f,CH)TAk(m,Hl — teq1) —i—'uZBkuk], (2.2) of an operations process must meet the customers requirements.
Most often these constraints/requirements are directly incorporated
where theAy, and By are positive semi-definite matrices reflectingn control/optimization procedure.
the relative weight to put on deviations from the target and on theThere are several methods for incorporating constraints into a
cost associated with larger valuesof. A special case of the loss deterministic optimization problem, e.g., the penalty function method,
function is whenB;, = 0, and Ax = I, where the optimal controller the barrier method, and the Lagrange Multipliers method. All these
value minimizes the square of deviation from the target value. = methods have stochastic analogues. When the objective function and
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constraints are only observable with some random noise, Pflug [E8]d the constraints are

using the penalty function method showed that the approximating CL: E(|ersr — toa|) < ro

sequences converge (point-wise) to the minimal solution set. The -

penalty function method is an iterative optimization method, which 2 U €Sy

degrades the objective function for any violation of the constraintgy,qre Tt = Pr(@h, ooty Chmsy wps W) s > 0:B4(.) iS

The penalty function method is less restrictive than any other mehrhknowm r is a constantyu, is the noise of the dynamic process,

ods, for example, the Fiacco-McCromick (barrier) method (e.gyhq , s the standard deviation of the process noise. The goal is

the measurements may fall outside the constraints but they @ft€-hoose a sequence of control vectorsSin = f{ug: || <

unacceptable). ) S i, i=1,2,---,n}, (Wheren is the dimension of control vectors)
In brief, consider a constrained optimization problem of the genergljch that the system outp{it;1 } is close to the sequence of target
form vectors{t; 1 }, where close is relative to the magnitude of the noise
Minimize F(o), {wy} and the cos_,t assoc_:iated with_ the contro_l. Fgr incorporating
’ ' the output constraintC'1), in the gradient approximation procedure,
subject to hi(x) <0, fori=1,---, m. when calculatingiii) at eachk, a penalty term resulting from the
multiplication of a penalty parametgr, andmax{0, [ap&ﬁ,j_?1 —tr+1]*}
The penalty functiom(.) of the form is added to the loss function, is an increasing function of the
deviation of the output attribute from the target value at titng3,
ai(z) = [maximum{0, hi(z)}] fori=1,---,m assumes a large penalty value when deviation is large and a smaller

value when the deviation is small). To account for the input constraint
is commonly used to transform the problem to an unconstrain@gvg), whenever the NN provides an, ¢ S, the u value will be
problem of the form adjusted to the nearest value in the 8t); otherwise the output of
o ] the NN will be used as input to the system.
Minimize {f(x) + =™ g;[maximum{0, ;(x)}]?}
where 3; is a penalty parameter. If;(z) < 0, then maximum lll. SIMULATION  EXPERIMENT
[0, ki(x)] = 0; on the other hand, if.;(x) > 0, then maximum  In this study, the batch polymerization example in [1] is employed,
[0, hi(x)] > 0, and the penalty termy;h;(x)? is added for each and it is assumed that the stochastic model constructed in [1]
in the objective function. Most algorithms using the penalty functiofePresents the true dynamics of the polymerization process, but that
employ a sequence of increasing penalty parameters. With each rié@ knowledgeabout the process dynamics does not exist. Then
value of the pena|ty parameter’ iteration Starting with the Optimﬁ]e SPSA-based NN controller is used to simulate control values
solution corresponding to the previously chosen parameter valuehgt reduce the polymer viscosity variations about the target value.
performed_ The process Stops Whé{h,(r) < ¢; for all i, where The SCC chart is employed for monitoring the ViSCOSity variations.
¢; is a predetermined termination scalar. For more on the penakye study reports the relative performance of the NN controller
method, see [19] or others. in maintaining the viscosity variations in the tolerance range for
In [20], the nearest point on a parameter allowable set approgk@nstrained optimization and unconstrained optimization cases, under
is employed to incorporate the constraints on the service time iffo different experiment assumptions. In the first experiment the
queuing problem when using SPSA to approximate gradients af@an value of the process is shifted, while in the second experiment
whené, = 8._, + ez lies outside the constraint set. When théhe dynamics of the process is changed to nonlinear. Assumption
measurement outside a constraint set is not allowed in [21], it " both experiments is that the NN controller has no knowledge
suggested further projectir{g onto a closed subset of the Constrainﬁ.bout the changes. Therefore, the time the controller learns about the
set to obtain a new estimated Vahjéﬂ(ék)’ and then applying the change (and SCC signals it) and the number of the times the viscosity
SPSA technique to the gradient. variations fall outside of SCC chart (number of nonconforming
Note that outputs) are used as criteria for evaluating controller's performance.
1) stochastic approximation procedure which Pflug [18] employércf‘e,ﬂndi”gs of 'the simulation study _in S_ection III-A_ indicates t_hat i_n-
is a modified Kiefer_Wolfowitz procedure: cluding constraynts via penalty fun.ctlon in the gradient approximation
2) SPSA is also a modified version of Kiefer-Wolfowitz proceprocedure has improved the learning rate of the NN controller and has
resulted in fewer nonconforming outputs than for the unconstrained

dure;
method.

3) all required conditions in [12] along with the condition
“YarerBr < oo” are conditions that Pflug required for the
convergence of the parameter values into the minimal set. A. Simulation Study

Hence one may use the penalty function along with SPSA to includeFor the batch polymerization example in [1], it is assumed that
the constraints in the optimization process. each batch cycle consists of the following steps: charge the reactor,

We consider a case in which noisy information on the objectivéin the reaction, empty the reactor contents into a holding tank for

function is available and the constraints/requirements are expressglsequent processing, engage cleaning procedures, and recharge to
in inequality form. To account for the output constraints, we udgegin the next batch. Intrinsic viscosity, a key quality characteristic of
the penalty function method at the gradient approximation step. tie polymer, is measured at the completion of each batch. Turnaround
order to incorporate the system'’s input constraint, we follow [20]. Wéme is such that the viscosity measurement from the most recent
assume that our goal is to find a controller that minimizes the onlatch produced in a given reactor is available when the reactor
step-ahead loss functidiL;, ), where the loss function is a function ofis prepared for a new batch. The statistically significant viscosity
output value(x,41), target valuét, i), and controller valudu,), Vvariations about a target level of 100 viscosity units are observed.
and it is given by In analyzing the cause of viscosity variations, Vander Viel. [1]
reported that autocorrelation among viscosity measurements exist.
Min E(||lzrsr — tra |7 ur) Autocorrelations stem from several factors. For example, mechanical
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considerations prevent a reactor from being fully emptied betwe@n the average, the unconstrained optimization method resulted in
batches. They also reported that the level of catalyst has the highE&2% out-of-control simulated batches between the 100th and 200th
effect on the level of viscosity and must be adjusted in order to reduiterations, 7.1% out-of-control batches between the 200th and 300th,
the viscosity deviations from the target value. Based on the obsenal 6.4% out-of-control between the 400th and 500th iterations;
intrinsic viscosity deviations from its target value and the catalysthereas the constrained optimization resulted in 10.4% out-of-control
deviations from its nominal value, Vander Wiet al. [1] provided simulated batches between the 100th and 200th iterations, 3.6% out-
the following empirical model for the batch:: of-control batches between the 200th and 300th iterations, and 1.86%
. . between 400th and 500th iterations.

o = 08wk + Lougr = L20k > + we = 0.22w-1 - (3.1) Next, at the 84th period of thiast 500iterations, the system was
where z; is observed viscosity deviation from a 100 unit targethanged to a nonlinear system (instead of just shifting the mean). In
viscosity, ux—1 is catalyst deviation from nominal (50 units), andparticular, the structure is changed to
wy 1S indepen.dent and normally distributeN(O,. o2), wheres,, = 2r = 08751 + 0.25Up— 1251 + 1.5Up—1 — 1.2 o
2.798). Equation (3.1) employs the compromise parameter estimate -
values of the Vander Wiekt al. [1] empirical study. Under the +wk = 0.22wk . (3:3)
assumption that the most recent viscosity measurement is availableThis assumption represents the fact that there is a possibility of a
and based on the minimum mean square errors, Vander &/@l. change in the underlying nature of the polymerization process, for
[1] reported the following so-called pure-one-step adjustment ruleexample, due to change in raw materials. Again, the controller has

we = 0.8Up—s — 0471, (3.2) to learn the change and readjust the nominal catalyst. The findings
indicate that, for both cases, the SCC chart provided signals almost

This simulation study employs the SPSA-based NN controllat the same time (at the 95th simulated batch for unconstrained and
discussed in Section Il instead of algorithm (3.2). The data astthe 96th simulated batch for the constrained). On the average, the
generated according to the empirical model (3.1) and the controllarconstrained optimization method resulted in 6.86% out-of-control
here assumes no knowledge of (3.1). The SPSA-based NN controflienulated batches between the 100th and 200th iterations, 2% out-of-
adjusts the level of catalyst fath batch of a reactor based on thecontrol batches between the 200th and 300th iterations, and 1.86%
viscosity deviation of(i — 1)th batch from the target value, and theout-of-control between the 400th and 500th iterations; whereas the
catalyst deviation of: — 2)th batch from the nominal value. constrained optimization resulted in 3.3% out-of-control simulated

The SCC chart with control limits a3, is used for monitoring batches between the 100th and 200th iterations, 1.7% out-of-control
the viscosity variations. When the constrained optimization methddtches between the 200th and 300th iterations, and 1.57% between
is used 400th and 500th iterations.

1) maximum allowable deviation of the catalyst from its nominal On the whole, the findings of the study indicate that the NN
value is subjectively set to 7 and when the deviation in catalyg@ntroller is able to recognize the shift in the mean of the process
from its nominal value falls out of the allowable range of7, More readily than the shift in the complexity of the process, and
7]’ its value is adjus’[ed te-7 or 7 whichever is the nearest; that the constrained Optimization when COUp'ed with the SPSA-

2) penalty factor,3,, assumes the following arbitrarily selectedoased NN controller performs slightly better than the unconstrained
values: 0.001 whenl.3 < |z; — tx] < 2.8;0.01 when oOptimization, since on average, it produces a smaller number of
2.8 < |op — tr| < 5.8;0.1 when5.8 < |z — ti] < 8.34; out-of-control simulated batches for both cases (shift in mean and
and a value between 1 and 2.8 wHen — ;| > 8.34. structure change).

Since the goal is to have zero deviation from the target value,

following Taguchi [22], we have considered penalty for deviations

less than|3c .. [1] S. A. Vander Wiel, W. T. Tucker, F. W. Faltin, and N. Doganaksoy,
The NN controller has no knowledge about the dynamics of the “Algorithmic statistical process control: Concepts and an application,”

process and i leans ab he process dynamis hiough he ffg) ISONITENCOL S8 10 200 DI

|Ferat|0ns. For each case, thl§ study condl_Jcts te_n independent simuta* generalizatiéns,’lnt. Stat. Rev.yol. 61, pp. 41-66, 1993,

tion runs, each of 1000 iterations. Each simulation run represents thg] p. G. wardell, H. Moskowitz, and R. D. Plante, “Run-length distri-

performance of one reactor. The result of one iteration of a simulation butions of special cause charts for correlated processes,” (along with

run represents the polymer viscosity deviation of one production batch  discussions and rejoindefjechnometricsyol. 36, pp. 1-27, 1994.

from the target value. The first 500 iterations of each run are useld! F: Rezayat, “Onintegration of statistical process control and engineering

. . . . process control—A neural network application,” Menufacturing De-

for training the NN, the second 500 iterations are used for studying  cision Support SystemBarsaeiet al., Eds. London, U.K.: Chapman

the performance of the NN. For every simulated reactor and every & Hall, 1997, pp. 238-252.

sequence of 100 simulated batches, the study calculates the numifdr ——, “On the use of SPSA-based model-free controller in quality

of simulated production batches whose viscosity deviations from thFG | :Emp;g‘s’ﬁgﬁrr]“vZﬁl‘;g&?ﬁ]ca’xg'ﬁai%epgéili‘ngelni Tézﬁgbmetricsvol
target value fall outside the SCC control chart limits. 3é’ op. 379’_393’ 19949 P T
Since the learning rate of NN has been reported in [4], the summaly] G. Box and A. Luceno, “Selection of sampling internal and action limit
of the performance of the NN when either the mean of the process for discrete feedback adjustmenfgchnometricsyol. 36, pp. 369-378,
is shifted or the structure of the process has changed is reported.  1994. _ o
First, following [1] beginning with the 584th iteration, the process [8] M. 6garwal, “A systematic classification of neural network-based con-
. trol,” IEEE Contr. Syst. Magpp. 75-93, Apr. 1997.
mean shifted by an amount of 10.9. and the controller has to learn the, \. u. polycarpou, “Stable adaptive neural control scheme for nonlinear
change and readjust the nominal catalyst. The controller performance systems, IEEE Trans. Automat. Contivol. 41, pp. 447-451, Mar. 1996.
is reported based on thast 500iterations of the ten simulation runs [10] J. C. Spall and J. A. Cristion, “A neural network controller for systems
for two different experiments (constrained and unconstrained). The }’gg‘;{_‘gggeg‘jstdy&zwcg Vl‘)’g:‘naggl“cg'ogs tge"g‘)’aggea‘,"’%‘uer:e”igg;‘entv"
SCC chart, on the average, provided signals for Change (shift) ﬂri] -, “Modelyfrée cohtrc};l of .non.line'ar -stochastic' systems With
the 846th batCh When the SPSA'baSed NN COI’]II’O”eI’ IS Used and discrete-time measurementdEEE Trans. Automat. Contr.voL 43’

on the 86.1th batch when the constrained NN controller is used. pp. 1198-1210, 1998.
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