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Constrained SPSA Controller for Operations Processes

Fahimeh Rezayat

Abstract— Continuous quality improvement calls for employing
methodologies that assist in continual reduction of variations in process
performance characteristics around their target values. In a complex
operations process the underlying structure of the process is unknown to
the operations managers. Hence, identification of the source of variations
and variation reduction are difficult and time consuming. Under the
assumption that the process design is capable of producing products
that meet customer’s requirements, the emphasis is on continually
improving performance and conformance dimensions of the quality of
a complex/ nonlinear operations process when there exists almost no
knowledge about the process structure. The study considers a case in
which some of the operations process parameters/ inputs are required to
take values in pre- specified ranges. To improve the process performance
while accounting for these requirements, the study employs a neural
network-based model-free controller along with the penalty function.
Simultaneous perturbation stochastic gradient approximation method is
used to iteratively estimate the weights of neural network and as a result
to estimate the control values. Further, the study uses a special cause
control chart to monitor the performance of the controller in reducing
the process variations and to signal the change in the process dynamics.
Simulation findings indicate that when incorporating the prespecified
requirements, directly, in estimating the neural network’s weight, the
neural network model-free provides control values (inputs) that result
in fewer nonconforming outputs than when the requirements are not
incorporated in optimization process.

I. INTRODUCTION

The objective of any business organization is to produce goods and
services that meet customers’ needs. Recently a growing emphasis
is given on improving operation processes. This study stresses
quality improvement for the process industries. In the process indus-
tries observations are serially correlated, which results in systematic
variation in the observations. When the systematic variation in
observations is large, product quality is influenced. Note that the
process parameter values (input values) or the process dynamics
throughout the operations process may change from the original
design values. When these changes are large they cause deviations
of the product attributes values from the target values (special
causes variations). The goal is removing/reducing the large systematic
variations and the special cause variations as much as possible.

In the past, the two general approaches in industry—statistical
process control and engineering process control—were independently
used in reducing variability of the key product attributes around target
values. Today, there exists an on-going realization that higher quality
will be gained by implementing these approaches in a complementary
fashion (for example, see [1]–[5]).

Control charts of the statistical process control approach (SPC)
are commonly used to monitor and verify that a process remains
stable and identify the special cause variations. Traditional statistical
process control approaches assume that

1) consecutive observations from a process are independent;
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2) under normal conditions the process variability is driven by
common causes, whose effect is impossible or too expensive
to reduce;

3) an increase in variability or unfavorable changes in the process
mean are due tospecial causeswhich are typically related to the
presence of differences among operators, tools, raw materials,
or days of the week.

Once the special causes are eliminated, the residual variability of
the data is due to common causes (e.g., variations in environmental
conditions) and is assumed to be too expensive to control [6]. The
methods that are commonly used to identify the cause (source) of
the variations range from the simple Pareto analysis, cause and
effect diagrams, and scatter (correlation) diagrams to the Bayes-
based methods. In many practical applications the special causes of
variability cannot in principle be eliminated or even reduced to such
an extent that their presence could be considered a negligible factor.
In industrial situations involving assignable causes of variability,
when a rapid response is essential, the best that can be done is to
achieve a condition in which the process can produce acceptable
output despite such causes, as long as their impact is not excessively
large.

Engineering process control aims to address this issue by reducing
systematic variations. It compensates for the true cause of variation
by manipulating some other parameters of the process and by con-
structing a dynamic model, feedback control, feed-forward control,
or sometimes a combination of them [7]. In addition to knowledge
of the essential parameters of an operations process, the engineering
process control typically requires knowledge of the correct form of
the functional relationship between the mean value of the key product
attributes and the levels of control factors (process parameters),
e.g., raw materials. For systems in which the relationships are non-
stationary/nonlinear, constructing an explicit functional relationship
that adequately represents the true relationship is almost impossible.
This fact and the need for better control of increasingly complex
dynamic systems (such as modern manufacturing systems) under
significant uncertainty and nonlinearity has led to reevaluation of the
conventional control methods. Neural networks appear to offer new
promising ways toward solving some of the most difficult control
problems (for example, see [8] and [9]).

Neural networks are a type of AI system effective for con-
trol of complex processes in which the underlying structure may
change or exhibit an ill-structured nature. Spall and Cristion [10],
[11] developed the simultaneous perturbation stochastic approxima-
tion (SPSA) based-neural network controller. This innovative neural
network-based, model-free controller does not need the construction
or assumption of a separate model (either NN or other parametric
type such as linear or nonlinear ARMA) for the underlying process
equations. It takes information about the current state of the system
and produces a set of control actions to modify or improve the future
state of the system. Since it is not tied to a prior model, the controller
has a potential advantage in handling changes in the underlying
dynamics of the process.

The NN controller is appropriate when the system can tolerate
nonoptimal control (training process) and the regularity conditions in
[12] are met, or when the NN controller can be trained via simulation
of the process (in such cases the issue of being able to tolerate
nonoptimal controls is less relevant since no physical damage will
be done). Then the NN controller would be used for adjusting the
operations process when the monitoring chart provides signals for
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changes in the process dynamic. SPSA uses noisy measurements
of the objective function and does not require direct gradient or
higher derivative computation. The main input at each iteration of
SPSA is an approximation to the gradient vector that is based on two
measurements of the objective function, independent of the problem
dimensionp (i.e., the number of the NN weight parameters).

The fact that in industrial practice (in continuous as well as discrete
production processes) observations that are actually serially correlated
implies that traditional statistical process control charts may be
ineffective for monitoring process quality (for example, see [1], [3], or
[13]). Control charts such as cumulative sum (CUSUM) control chart
[13], the exponentially weighted moving average (EWMA) control
chart [2], and special cause control (SCC) chart [14] are proposed for
monitoring autocorrelated observations. Rezayat [5] showed through
a simulation study, that for the dynamic process under study the SCC
outperformed EWMA and CUSUM control charts in identifying the
change in the process dynamics (mean shift and change to the process
dynamics).

The work reported here is built on prior studies in [4] and [5].
It employs simulation to evaluate the performance of the SPSA-
based NN controller in reducing the variations in process performance
characteristics around their target values when penalty function is
used to incorporate the constraints on input and output values of the
operations into the optimization process. For ease of communication
from here on, we call it “constrained NN controller.” To evaluate the
performance of the constrained NN controller we compare the find-
ings of the simulation study with that of SPSA-based NN controller
without including the constraints, which we call “unconstrained NN
controller.”

The following section provides a brief review of SPSA-based
neural network controller and its extension for the case of the
constrained optimization. Section III presents the simulation results
and conclusions.

II. M ETHODOLOGY

A. A Brief Review of the SPSA-Based NN Controller

Consider an operations process whose output vector at timek+ 1
is given by

xk+1 = �k(xk; uk; wk) (2.1)

where

�k(:) unknown nonlinear function governing the dynamics of
the process;

wk random noise;
uk control input to the operations process output of an NN

based on all the information available at the instantk.

Hence, there will be a vector of connection weights�k associated to
the NN producinguk that must be estimated. The goal is to estimate
connection weights�k in a manner that results in a sequence of
control valuesfukg that drive the process output (xk+1) close to the
target value (tk+1). In other words, the goal is to find a sequence
of �k that minimizes some loss functionLk(�k). A common loss
function is the one-step-ahead quadratic loss

Lk(�k) = E[(xk+1 � tk+1)
TAk(xk+1 � tk+1) + uTkBkuk]; (2.2)

where theAk, andBk are positive semi-definite matrices reflecting
the relative weight to put on deviations from the target and on the
cost associated with larger values ofuk. A special case of the loss
function is whenBk = 0, andAk = I, where the optimal controller
value minimizes the square of deviation from the target value.

For estimating the NN weights, existing literature starts withinitial
guessvalues for the NN weights (�0) and recursively estimates the
NN weights (�k) using a stochastic approximation algorithm of the
form

�̂k = �̂k�1 � akĝk(�̂k�1) (2.3)

where

�̂k estimate of�k at thekth iteration;
ak scalar gain sequence satisfying certain conditions;
ĝk(:) estimate or observation of the gradient of a loss function

(Lk).

Traditional NN controllers are designed using standard gradient-based
search techniques to estimate NN weights (e.g., [15]), and the value
of ĝk(:) requires knowledge of the process dynamics (say, as in
back-propagation). When the process dynamics are unknown, the
standard gradient-based search techniques can not be used. Spall and
Cristion [10], [11] proposed using the “simultaneous perturbation”
approximation of gradient [12] in estimating NN weights, where the
gradient estimate,̂gk(:), at eachk, is based on two instantaneous
observed values (or noisy observed values) of loss functionLk, say
L̂
(�)
k

. For more on the SPSA approximation, see [11] and [16].
Equation (2.4) shows the calculation of thehth component of the
gradient estimate,̂gkh(:); h = 1; 2; � � � ; p, via SPSA

ĝkh(�̂k�1) = L̂
(+)
k

� L̂
(�)
k

=2ck�kh h = 1; 2; � � � ; p (2.4)

where p represents the number of connection weights of the NN,
L̂
(�)
k

are estimated values ofLk = L(�̂k�ck�k) using the observed,
x
(�)
k+1; u

(�)
k

andtk+1 (note that allp elements of the gradient vector

use the same two loss values), andu(�)
k

are control values and
they are the NN output. Their values are based on the NNp-
element weight vector�k = �̂k�1 � ck�k, where�k = f�khg
is a vector ofp symmetrically distributed (about 0) i.i.d. random
variables withE(��2

kh
) uniformly bounded. Note that�kh may not

be either uniformly or normally distributed (it can be symmetrically
Bernoulli�1 distributed which we will use in this study);x(�)

k+1 are

process outputs based onu(�)
k

; tk+1 are desired target values for
x
(�)
k+1; fakg and fckg are a sequence of positive numbers. If the

operations dynamics and loss function are constant, typically,ck,
and ak should satisfy standard conditions, e.g.,ak ! 0; ck ! 0,
�1k=0(ak=ck) <1; if the operations dynamics are changing, picking
constant coefficientsck = c or ak = a 8k is recommended.

The essential feature of SPSA is that it requires only two noisy
measurements of the objective function in approximating the gradient
regardless of the dimension of the optimization problem. SPSA
provides the same level of accuracy in estimating the NN weights with
orders of magnitude fewer system measurements than the standard
finite difference based approach (see [12] and [17]).

B. Constrained SPSA-Based NN Controller

In practice when solving a control or optimization problem, a
solution that simultaneously satisfies a set of physical, environ-
mental, and/or economical constraints has to be considered. For
example, control variables should not assume values out of a specific
range due to reasons such as safety. Also output’s characteristics
of an operations process must meet the customers requirements.
Most often these constraints/requirements are directly incorporated
in control/optimization procedure.

There are several methods for incorporating constraints into a
deterministic optimization problem, e.g., the penalty function method,
the barrier method, and the Lagrange Multipliers method. All these
methods have stochastic analogues. When the objective function and
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constraints are only observable with some random noise, Pflug [18]
using the penalty function method showed that the approximating
sequences converge (point-wise) to the minimal solution set. The
penalty function method is an iterative optimization method, which
degrades the objective function for any violation of the constraints.
The penalty function method is less restrictive than any other meth-
ods, for example, the Fiacco–McCromick (barrier) method (e.g.,
the measurements may fall outside the constraints but they are
unacceptable).

In brief, consider a constrained optimization problem of the general
form

Minimize

subject to

f(x);

hi(x) � 0; for i = 1; � � � ; m:

The penalty function�(:) of the form

�i(x) = [maximumf0; hi(x)g]
q for i = 1; � � � ;m

is commonly used to transform the problem to an unconstrained
problem of the form

Minimize ff(x) + �m�i[maximumf0; hi(x)g]
qg

where �i is a penalty parameter. Ifhi(x) � 0, then maximum
[0; hi(x)] = 0; on the other hand, ifhi(x) > 0, then maximum
[0; hi(x)] > 0, and the penalty term�ihi(x)q is added for eachi
in the objective function. Most algorithms using the penalty function
employ a sequence of increasing penalty parameters. With each new
value of the penalty parameter, iteration starting with the optimal
solution corresponding to the previously chosen parameter value is
performed. The process stops when�i�i(x) < �i for all i, where
�i is a predetermined termination scalar. For more on the penalty
method, see [19] or others.

In [20], the nearest point on a parameter allowable set approach
is employed to incorporate the constraints on the service time in a
queuing problem when using SPSA to approximate gradients and
when �̂k = �̂k�1 � ck�k lies outside the constraint set. When the
measurement outside a constraint set is not allowed in [21], it is
suggested further projectinĝ�k onto a closed subset of the constraint
set to obtain a new estimated value,Pk(�̂k), and then applying the
SPSA technique to the gradient.

Note that

1) stochastic approximation procedure which Pflug [18] employed
is a modified Kiefer–Wolfowitz procedure;

2) SPSA is also a modified version of Kiefer–Wolfowitz proce-
dure;

3) all required conditions in [12] along with the condition
“�akck�k < 1” are conditions that Pflug required for the
convergence of the parameter values into the minimal set.

Hence one may use the penalty function along with SPSA to include
the constraints in the optimization process.

We consider a case in which noisy information on the objective
function is available and the constraints/requirements are expressed
in inequality form. To account for the output constraints, we use
the penalty function method at the gradient approximation step. In
order to incorporate the system’s input constraint, we follow [20]. We
assume that our goal is to find a controller that minimizes the one-
step-ahead loss function(Lk), where the loss function is a function of
output value(xk+1), target value(tk+1), and controller value(uk),
and it is given by

Min E(kxk+1 � tk+1k
2juk)

and the constraints are

C1: E(kxk+1 � tk+1k) � r�

C2: uk�Sk

wherexk+1 = �k(xk, xk�1; � � � ; xk�s, uk; wk); s � 0; �k(:) is
unknown, r is a constant,wk is the noise of the dynamic process,
and � is the standard deviation of the process noise. The goal is
to choose a sequence of control vectors inSk = fuk: juikj �
u�ik; i = 1; 2; � � � ; ng, (wheren is the dimension of control vectors)
such that the system outputfxk+1g is close to the sequence of target
vectorsftk+1g, where close is relative to the magnitude of the noise
fwkg and the cost associated with the control. For incorporating
the output constraint(C1), in the gradient approximation procedure,
when calculatingL̂(�)

k at eachk, a penalty term resulting from the
multiplication of a penalty parameter�k andmaxf0; [x

(�)
k+1�tk+1]

2g
is added to the loss function.�k is an increasing function of the
deviation of the output attribute from the target value at timek (�k
assumes a large penalty value when deviation is large and a smaller
value when the deviation is small). To account for the input constraint
(C2), whenever the NN provides anuk =2 Sk, theuk value will be
adjusted to the nearest value in the set(Sk); otherwise the output of
the NN will be used as input to the system.

III. SIMULATION EXPERIMENT

In this study, the batch polymerization example in [1] is employed,
and it is assumed that the stochastic model constructed in [1]
represents the true dynamics of the polymerization process, but that
the knowledgeabout the process dynamics does not exist. Then
the SPSA-based NN controller is used to simulate control values
that reduce the polymer viscosity variations about the target value.
The SCC chart is employed for monitoring the viscosity variations.
The study reports the relative performance of the NN controller
in maintaining the viscosity variations in the tolerance range for
constrained optimization and unconstrained optimization cases, under
two different experiment assumptions. In the first experiment the
mean value of the process is shifted, while in the second experiment
the dynamics of the process is changed to nonlinear. Assumption
for both experiments is that the NN controller has no knowledge
about the changes. Therefore, the time the controller learns about the
change (and SCC signals it) and the number of the times the viscosity
variations fall outside of SCC chart (number of nonconforming
outputs) are used as criteria for evaluating controller’s performance.
The findings of the simulation study in Section III-A indicates that in-
cluding constraints via penalty function in the gradient approximation
procedure has improved the learning rate of the NN controller and has
resulted in fewer nonconforming outputs than for the unconstrained
method.

A. Simulation Study

For the batch polymerization example in [1], it is assumed that
each batch cycle consists of the following steps: charge the reactor,
run the reaction, empty the reactor contents into a holding tank for
subsequent processing, engage cleaning procedures, and recharge to
begin the next batch. Intrinsic viscosity, a key quality characteristic of
the polymer, is measured at the completion of each batch. Turnaround
time is such that the viscosity measurement from the most recent
batch produced in a given reactor is available when the reactor
is prepared for a new batch. The statistically significant viscosity
variations about a target level of 100 viscosity units are observed.
In analyzing the cause of viscosity variations, Vander Wielet al. [1]
reported that autocorrelation among viscosity measurements exist.
Autocorrelations stem from several factors. For example, mechanical
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considerations prevent a reactor from being fully emptied between
batches. They also reported that the level of catalyst has the highest
effect on the level of viscosity and must be adjusted in order to reduce
the viscosity deviations from the target value. Based on the observed
intrinsic viscosity deviations from its target value and the catalyst
deviations from its nominal value, Vander Wielet al. [1] provided
the following empirical model for the batchk:

xk = 0:8xk�1 + 1:5uk�1 � 1:2uk�2 + wk � 0:22wk�1 (3.1)

where xk is observed viscosity deviation from a 100 unit target
viscosity, uk�1 is catalyst deviation from nominal (50 units), and
wk is independent and normally distributed(N(0; �2w), where�w =
2:798). Equation (3.1) employs the compromise parameter estimate
values of the Vander Wielet al. [1] empirical study. Under the
assumption that the most recent viscosity measurement is available,
and based on the minimum mean square errors, Vander Wielet al.
[1] reported the following so-called pure-one-step adjustment rule

uk = 0:8uk�2 � 0:4xk�1: (3.2)

This simulation study employs the SPSA-based NN controller
discussed in Section II instead of algorithm (3.2). The data are
generated according to the empirical model (3.1) and the controller
here assumes no knowledge of (3.1). The SPSA-based NN controller
adjusts the level of catalyst forith batch of a reactor based on the
viscosity deviation of(i� 1)th batch from the target value, and the
catalyst deviation of(i� 2)th batch from the nominal value.

The SCC chart with control limits of�3�w is used for monitoring
the viscosity variations. When the constrained optimization method
is used

1) maximum allowable deviation of the catalyst from its nominal
value is subjectively set to 7 and when the deviation in catalyst
from its nominal value falls out of the allowable range of [�7,
7], its value is adjusted to�7 or 7 whichever is the nearest;

2) penalty factor,�k, assumes the following arbitrarily selected
values: 0.001 when1:3 � jxk � tkj < 2:8; 0:01 when
2:8 � jxk � tkj < 5:8; 0:1 when 5:8 � jxk � tkj < 8:34;
and a value between 1 and 2.8 whenjxk � tkj � 8:34.

Since the goal is to have zero deviation from the target value,
following Taguchi [22], we have considered penalty for deviations
less thanj3�wj.

The NN controller has no knowledge about the dynamics of the
process and it learns about the process dynamics through the first
iterations. For each case, this study conducts ten independent simula-
tion runs, each of 1000 iterations. Each simulation run represents the
performance of one reactor. The result of one iteration of a simulation
run represents the polymer viscosity deviation of one production batch
from the target value. The first 500 iterations of each run are used
for training the NN, the second 500 iterations are used for studying
the performance of the NN. For every simulated reactor and every
sequence of 100 simulated batches, the study calculates the number
of simulated production batches whose viscosity deviations from the
target value fall outside the SCC control chart limits.

Since the learning rate of NN has been reported in [4], the summary
of the performance of the NN when either the mean of the process
is shifted or the structure of the process has changed is reported.

First, following [1] beginning with the 584th iteration, the process
mean shifted by an amount of 10.9. and the controller has to learn the
change and readjust the nominal catalyst. The controller performance
is reported based on thelast 500iterations of the ten simulation runs
for two different experiments (constrained and unconstrained). The
SCC chart, on the average, provided signals for change (shift) on
the 84.6th batch when the SPSA-based NN controller is used and
on the 86.1th batch when the constrained NN controller is used.

On the average, the unconstrained optimization method resulted in
10.2% out-of-control simulated batches between the 100th and 200th
iterations, 7.1% out-of-control batches between the 200th and 300th,
and 6.4% out-of-control between the 400th and 500th iterations;
whereas the constrained optimization resulted in 10.4% out-of-control
simulated batches between the 100th and 200th iterations, 3.6% out-
of-control batches between the 200th and 300th iterations, and 1.86%
between 400th and 500th iterations.

Next, at the 84th period of thelast 500iterations, the system was
changed to a nonlinear system (instead of just shifting the mean). In
particular, the structure is changed to

xk =0:8xk�1 + 0:25uk�1xk�1 + 1:5uk�1 � 1:2uk�2

+ wk � 0:22wk�1: (3.3)

This assumption represents the fact that there is a possibility of a
change in the underlying nature of the polymerization process, for
example, due to change in raw materials. Again, the controller has
to learn the change and readjust the nominal catalyst. The findings
indicate that, for both cases, the SCC chart provided signals almost
at the same time (at the 95th simulated batch for unconstrained and
at the 96th simulated batch for the constrained). On the average, the
unconstrained optimization method resulted in 6.86% out-of-control
simulated batches between the 100th and 200th iterations, 2% out-of-
control batches between the 200th and 300th iterations, and 1.86%
out-of-control between the 400th and 500th iterations; whereas the
constrained optimization resulted in 3.3% out-of-control simulated
batches between the 100th and 200th iterations, 1.7% out-of-control
batches between the 200th and 300th iterations, and 1.57% between
400th and 500th iterations.

On the whole, the findings of the study indicate that the NN
controller is able to recognize the shift in the mean of the process
more readily than the shift in the complexity of the process, and
that the constrained optimization when coupled with the SPSA-
based NN controller performs slightly better than the unconstrained
optimization, since on average, it produces a smaller number of
out-of-control simulated batches for both cases (shift in mean and
structure change).
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Hybrid Control for a Class of
Underactuated Mechanical Systems

Rafael Fierro, Frank L. Lewis, and Andy Lowe

Abstract—This paper considers a stabilizing hybrid scheme to control
a class of underactuated mechanical systems. The hybrid controller
consists of a collection of state feedback controllers plus a discrete-event
supervisor. When the continuous-state hits a switching boundary, a new
controller is applied to the plant. Lyapunov theory is used to determine
the switching boundaries and to guarantee the stability of the closed-loop
hybrid system. This approach is applied to the well-known swing up and
balancing control problem of the inverted pendulum.

I. INTRODUCTION

In many practical applications, it is required that the controlled
plant exhibit a variety of closed-loop behaviors. Let us consider a
head positioning control on magnetic disk drives. In this case, it
is common to split the control problem into two behaviors: track
seeking and track regulation [18]. A servo controller is designed for
each behavior, and a logic device switches between these controllers
according to the relative position of the head with respect to the target
track. Although, there are well-established techniques to design the
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Fig. 1. Hybrid system model.

low-level controllers, the design of the logic device (i.e., supervisor)
is still ad-hoc.

The design of this kind of multibehavior controller becomes
considerably more involved for the case of underactuated systems.
A very important underactuated system from both the academic and
practical point of view is the inverted pendulum. This system and its
variants [15] (e.g., Acrobot, Pendubot, cart–pole system, etc.) have
served as a testbed of conventional (e.g., PID, LQR) and intelligent
control methods (e.g., fuzzy logic, neural networks).

The problem of swinging up and balancing an inverted pendulum
has received considerable attention by the control community, and
many approaches of hybrid nature have been proposed. Most of these
techniques use an energy-based controller to swing up the pendulum,
and then switch to a linear controller to balance the pole at its upward
position. In this paper, we consider the swing up and balancing control
task for a class of underactuated systems. The control task is divided
into subtasks. Then, a discrete-event supervisor switches between
subtasks when a switching event is generated. Lyapunov functions
are used to determine the switching boundaries and to guarantee the
stability of the closed-loop hybrid system. The swing up subtask
follows the lines of [2]; however, we use a sigmoid-like function
instead of a saturation function. Some advantages of this choice are
discussed in Section IV. Finally, we implement the hybrid controller
on an actual underactuated mechanical system.

A. A Hybrid System Model

In this section, we consider a simple hybrid dynamical system
which is general enough to represent the class of underactuated
systems considered herein. The hybrid system will evolve in con-
tinuous time on the intervalT = [t0; tN ] � <+: The continuous
state evolution function may have discontinuities as a result of the
switching between controllers. Let the switching times be given
by a strictly increasing sequenceTS = t0; t1; t2; � � � ; tk; � � � with
tk < tN ; assume there exists a positive constanttmin such that
tmin � tk+1 � tk for all k 2 IN:

A hybrid dynamical system is shown in Fig. 1. The hybrid state is
given by the cross product of the continuous-state and the discrete-
stateXH = X � Q:

The dynamics of the hybrid-state are given by

_x(t) = f(q(t); x(t); u(t))

x(t0) =x0; 8 t 2 [tk; tk+1]

Continuous evolution y(t) =h(q(t); x(t); u(t));

q(t) = q(tk) (1)
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