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T

he present work describes the use of two stochastic optimization formalisms, namely,
genetic algorithms (GAs) and simultaneous perturbation stochastic approximation
(5PSA), for the optimization of continuous distillation columns. Both the simple and

azeotropic systems are considered in the analysis. In particular, for a specified degree of
separation the problem of finding the optimal values of: (i) the number of stages, (ii) reflux ratio
(entrainer gquantity in the case of azeotropic distillation), (iii) feed location(s), have been
addressed. The GA-based optimization has several attractive features such as: (i) convergence
to the global rather than to a local minimum, (ii) the objective function need not satisfy
smoothness, differentiability, and continuity criteria, (i1} robustness of the algorithm. The
other optimization technique used in the study i.c., SPSA, is a rapid gradient-descent related
method for multivariate optimization and is especially well-suited in situations where direct
computation of the objective function gradient is not feasible, or the objective function
measurements could be noisy. The feasibility of utilizing the GA and SPSA technigues has
been demonstrated by considering the separation of three binary and two azeotropic systems of
industrial relevance.

Keywords: distillation aptimization; continuous distillation; azeotropic distillation; genetic
algorithms; simultaneous perturbation stochastic approximation; Napthali-Sandholm model,

INTRODUCTION

Continucus distillation is one of the most widely used
scparation technigues in the chemical process industry and
exhaustive scientific and practical knowledge of this process
has been gained over the last few decades. Being an enargy
intensive process, the optimum operation of continuous
distillation columns assumes considerable economic impor-
tance. In a typical continuous distillation column operation
(see Figure 1), the feed enters at any in-between stage and
vapours are produced in the reboiler located at the bottom of
the column. The vapours, while moving upwards inside the
column, are progressively enriched in the more volatile
component (MVC) and are condensed in the condenser, A
portion of the condensate is then collected as the product
while the rest is fed back to the column as a reflux; the reflux
as it travels down the column gets enriched in the less
volatile component (LVC).

Often, chemical mixtures comprise components forming
azeotropes that are difficult to separate using simple
distillation, In azeotropic distillation, a third component
called the *entrainer’, is added to facilitate the separation of
camponents to the desired punty. For instance, an
azeotropic distillation utilizing benzene as the entrainer is
widely used for separating an alcohol-water mixture. In this
case, a lemary azeotrope is formed at the top of the column,

in

which upon condensation separates into the benzene-rich
(organic) and water-rich (aqueous) phases. A lypical
schematic of the heterogeneous azeotropic distillation is
depicted in Figure 2. The Figure shows that the principal
stream (F) is composed of the feed approaching the alcohol-
water azeotrope and the other stream (L%, |} comprises the
entrainer-rich reflux. The temary heterogeneous mixture
that leaves from the top of the column, is fed to the decanter,
where it separstes into the organic and agueous phases.
While the entrainer-rich organic layer is returned to the
column, the aqueous layer is fed to the stripper for the
recovery of the dissolved entrainer and alcohel. The other
distillation product i.e., anhydrous alcohol, is drawn out at
the bottom of the column. Since the composition of the two
phases in the decanter is different, in heterogencous
separation, the reflux ratio cannot be defined (as in
homogenous distillation) as the rate ratio of the reflux
stream (LL,,) and the distillate (LY, ;). In heterogeneous
areotropic distillation, a make-up stream of the entrainer is
needed to account for the losses caused by its presence in the
product as well as vent streams; the make-up stream is taken
along with the principal feed consisting of alcohol-water
mixiure(see Figure 2),

In a typical distillation column, the choice of the
operating parameters include fixing of the feed location
and reflux rmatio (entrainer gquantity lor azeotropic
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Figure |, Schematic of continuous distiliation colammn.

distillation), whereas the number of smges becomes the
design variable. The total (minimum) reflux condition, gives
the minimum (infinite) number of stages. Thus, it can be
seen that all distillation columns operate between these
extreme limits, In continuous distillation, the reboiler and
condenser operations are energy intznsive. While an
increasing reflux ratio increases both the energy consump-
tion and the tower diameter, it decreases the number of
distillation stages. This eventually results in a trade-off
between the energy and the fixed costs necessitating process
optimization. The objective of such an optimization is the
determination of the optimal operating and design para-
meters for achieving the desired degree of separation at the
lowest total cost. The total cost of a distillation operation is
made up of two major components. In the first component,
the annual running cost of utilities i.e., the heating media to
prodece vapours, and the cooling media for vapour
condensation, are accounted for. The second cost compo-
nent refers to the annual fixed charges that take into account
the interest and depreciation on the installation cost of the
column, condenser, and reboiler; this component also
includes maintenance of the installed equipment.

Several optimization studies that deal with various design
aspects of continuous distillations are reported in the
literature'**. A comprehensive list of the pre-1989 refer-
ences on the distillation column optimization can also be
found in Edgar and Himmelblau’,

For optimizing the continuous distillation columns, the
mixed integer non-linear programming (MINLP) seems to
be an attractive approach®=*. A related optimization study”
employing the outer loop method around the well-known
Napthali-Sandholm procedure has also been performed.
Both these techniques involve gradient computations at
some stage in their optimization simulations. It is known
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Figure 2. Schematic of areotropic distillation colemn,

that the MINLP formalism can get entrapped into a locally
optimum solution instead of the desired globally optimum
one. Moreover, MINLP methods are complex, computa-
tionally intensive and many simplifications become
necessary to make them affordable®.

For optimizing continuous azeotropic distillation,
Prokapakis and Seider' used Powell's algorithm together
with the material and energy balances, and equilibrium
relations. The Powell’s algorithm is a direct optimization
methodology and simple to execute. The drawback of the
direct methods, however, is that they are not as efficient and
robust as the indirect methods, such as the gradient-based
Newton's (guadratic) approximation techniques’. Kingsley
and Lucia® studied the relationship between the two-phase
and three-phase solutions 1o heterogeneous distillation
simulation and optimization problems. Here, the problem
necessitating a global optimization methodology was
addressed using the tunnelling algorithm. This algorithm
is again gradient-based and, therefore, involves denvative
computations.

It is noticed, from the above discussion, that a majority of
studies on continuous distillation optimization include
applications of the deterministic optimization methods
(MINLP, Powell's method, tunnelling method, etc.)
These formalisms are mostly calculus-based involving
direct computation of the gradient. The gradient-based
techniques invariably require the objective function o be
smoaoth, continuoos and differentiable (well-defined slope
values). When the objective function is multimodal, noisy,
and fraught with discontinuities, simultancous fulfillment of
these criteria cannot be guaranteed, thus leading to
suboptimal solutions. For instance, if the search space
includes mixed inteper (e.g., the number of distillation
stages) and continuous {e.g., reflux ratio) variables, then the
objective function could be non-monotonic and possess
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multiple local minima. In recent years, the other class of
optimization formalisms, known as ‘stochastic (random)
search algorithms’ are becoming popular owing to their
capabhility of performing multi-modal optimization® "', The
stochastic methods differ from their deterministic counter-
parts in that they involve a random component at some
stage(s) during their implementation. It should, however, be
noted that a randomized search does not necessarily indicate
a direction-less search. The stochastic optimization algo-
rithms although computationally intensive, are finding
wide-spread acceptance in the chemical engineering
applications owing to their affordability and the speed of
the modern computing technology. In the present paper two
stochastic search techniques, namely genetic alporithms
(GAs) and simultaneous perturbation stochastic approx-
imation (SPSA) have been successfully explored for the
oplimization of continuous distillation columns.

This paper is organized as follows. The following
sections presents details of the optimization formulation
commesponding 1o the continuows simple and conlinuous
azeotropic distillations. This is followed by a review of the
conceptual framework and the implementation procedures
of the GA and SPSA methods. The final section discusses
and compares the results of the optimization simulations
conducted using the GA and SPSA strategies.

PROBLEM FORMULATION
Continuous Simple Distillation

The objective function used in this study is representative
of the total annual cost (Cy) that is made-up of two
components, namely, the operating cost (C;), and the fixed
cost (C3). While € accounts for the energy cost pertaining
to the reflux ratio and reboiler duty, the cost component Cp
accounts for the number of stages. The overall optimization
objective 15 expressed as:

Minimize C;{x); 4 =x=x (1
where Cp (8) is a function of the K-dimensional decision
variable vector, x = [x,, X3, ..., X4, ....%,]" and x} and x{
respectively, refer to the lower and upper bounds on x;. The
three decision variables (K = 3) considered for optimiza-
tion are: (i) the total number of stages (&), which is a
function of real-valued x; (i1) reflux rztio (x;), (iii) the feed
location f; (a function of x5 and x;). The evaluation
procedure for the cost components Cy and C; is discussed
in Appendix 1. The solution to the minimization problem
defined in equation (1) should satisfy the following
constraints:

& purity constraints:
T -xm=0
AT —g™=0 (2)

where xI™ and x7™, represent the desired top and bottom
concentrations (mole %) of the MVC, and ©™ and xim
refer to the optimized (simulated) values of the top and
bottom concentrations of the MVC,

* equalily constraints.

As defined by the matenal balance, equilibrium, summa-
tion of the mole fraction and heat balance (MESH)
equations (see Appendix 11},

In the present work, the matrix method developed by
Napthali and Sandholm'? has been utilized for the
simulation of simple multicomponent distillation 1o solve
the steady-state MESH equations for each plate. The
Mapthali and Sandholm (NS) method uses the Newton-
Raphson technigue to simultaneously solve all the variables
in the MESH equations. For simuolation purposes, the full
NS matrix method for the continuous distillation simulation
is combined with the UNIQUAC method for predicting the
vapour-liquid equilibriom (VLE).

Continuous Azeotropic Distillation

The optimization objective for the azeotropic distillation
also involves minimization of the total cost, Cy , with the
pssociated bounds on the three decision variables (see
equation (1}). In the present case the decision vanable, xs
signifies the entrainer quantity, For a C-component
azeotropic system, the optimized solution should satisfy
the following purity constraints:

yr-xg =0 i=4L3,...,C (3)
where 27~ and x;™ respectively refer to the desired and
optimized bottom concentrations of the jth component of
the azeotropic mixture.

By assuming constant molar overflow”, it is possible to
simplify the equality constraints defined by the MESH
equations. Under this assumplion, the energy balance can be
ignored and only the total stage mass balance znd
component balance equations, which are coupled with the
equilibrium equations, need te be solved. The equality
constraints in respect of the MES (mass balance, equili-
brium and summation) equations are described in Appendix
IL

In the case of helerogeneous azeotropic distillation, two
phases are formed following the condensation of vapours on
the top plate. Thus, additional computations taking inlo
account the liquid-liguid equilibum are necessary for
determining the composition and the amount of reflux. For
simulating an azeotropic distillation colomn, the simplified
NS method described above which considers the material
balance on each plate, is coupled with the phase separation
calcuolations for the condenser; the prediction of the vapour-
liquid and liquid-liquid equilibria has been made using the
UNIQUAC method.

STOCHASTIC OPTIMIZATION FORMALISMS

Solutions to the cost minimization problem defined in
equation 1 were obtained using the GA and SPSA stochastic
optimization formalisms. In the following section, the two
optimization methodologies are descrnibed in detail along
with their step-wise implementation procedures.

GA-Based Function Optimization

The Genetic Algorithms™ " are based on the mechan-
isms of natural selection and gepetics, which play a
dominant role in the Darwinian evolution of biological
organisims. The GAs are known to be efficient in searching
noisy, discontinuous and non-convex solution spaces', their
characteristic features are:
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* They are ‘zero' order search technigues implying that
they nead only the scalar values of the objective function
to be optimized.

* GAs perform a global search, and hence, they mostly
converge 1o (or in the vicinity of) the global optimum of
the objective function.

* The search procedure used by the GAs is stochastic and
hence they can be utilized without invoking ad-hoc
assumptions, such as smoothness, differentiability, and
continuity, pertaining to the form of the objective
function. Owing to this feature, GAs can be used to
solve optimization problems that cannot be conveniently
solved using the classical gradient-based algorithms,
which require the objective function to simultaneously
satisfy the above criteria.

¢ The GA procedure can be effectively parallelized, which
helps in efficiently searching a large multi-dimensional
solution space.

Owing to the above-stated attractive features, GAs have
been utilized in diverse chemical engineering optimization
applications'®=. In the earlier studies on the GA-based
optimization of distillation processes, Fraga and Matias™
optimized a reduced optimization problem in which a
preselected sequence of distillation units and the associated
heat exchanger network (HEN) was considered for the
separation of ternary azeotropic mixtures. The objective
function evaluation used by Fraga and Matias™ is a design
procedure in itself determining the unit design parameters
(reflux rate and number of stages), and the HEN along with
the full annualized operating cost. For this objective, they
used a parallel version of the GA that was implemented
using a distributed memory multicomputer in the form of a
network of workstations. In the other study, Wang er al.®
utilized an improved GA (IGA) for synthesizing an optimal
distillation sequence and its HEN, with the objective of
minimizing the total annual cost. The specific problems
considered for validating the 1GA methodology were
separation of the five- and four-component (non-azeotropic)
feed streams. As can be seen, the GA-based studies
mentioned analyzed the HEN-zugmented distillation
columns. In the small and medium-scale industries, the
distillation columns are often operated in a stand-alone
mode ie., without HEN-sogmentation. This happens
particularly when the hot and cold streams are not readily
available. In the present paper, therefore, the basic
continuous and azeotropic distillation oplimization problem
involving a single distillation column has been addressed.

To understand the working principles of the GAs,
consider a generic version of the optimization problem
defined in equation (1%

Minimize fix), X sx, =x: k=12....K 4

where x, denotes the kh decision varsble and f(x)
represents the non-linear objective function. For obtaining
a GA-based solution 1o the minimization problem, first a
population of probable (candidate) solution vectors is
randomly genmerated. The suitability of the candidate
solution at fulfilling the optimization fask is ascertained
by evaluating its fitness value (score). It may be noted that
the GAs essentially search for solutions possessing high
fitness values. Upon cvaluating the fitness scores of all
candidate solutions in a population, three GA operators

namely, selection, crossover and mutation are used
sequentially to prodoce a ‘new peneration’ of probable
solutions. The solutions represented by the new-generation
chromosomes are usoally better (in terms of their fitness
values) as compared to those represented by the chromo-
somes in the current population. Subsequently, the new
population is also subjected to the actions of the three GA
operators and this procedure is iterated over successive
populations till cenvergence is achieved. The essence of the
GA-methodology can be stated as: the better solutions in the
current population are selected for the reproduction and
their offspring, generated via the crossover and mutation
operations, replace the sub-optimal (i.e. with low fitness
values) solutions. The solution population, owing to the
repetitive actions of the three GA operators, improves itself
from one generation to the next The GA converges
eventually and the best chromosome i.e., the one possessing
the maximum fitness score, represents the solution to the
optimization problem. Below, a detailed stepwise procedure
for the GA implementation s described.

o Step 1 {initialization): Randomly create a population of
Npop number of binary (base-2) strings where the length of
each string equals [, elements (bits). Every string is
divided into K segments where kth segment of length [,
refers to the base-2 representation of the kth decision
variable, x;; the decimal equivalent of x, can be evaluated
using the corresponding lower and upper limits (x5, xf') as
given by:

x:+|‘,x x'-}xs

X =

Zf,_i (5)

where 5, represents the base-10 equivalent value of the kth
binary segment. Upon decoding all the N, strings in this
manner, evaluate their fitness values, §,(n=1,2,... N},
using the pre-specified fitness function, £{x). Depending
whether the optimization task involves function maximiza-
tion or minimization, the corresponding fitness furction is
defined by suvitably transforming the objective function.
More specifically, for the problems involving function
maximization (minimization), the fitness' valee should
increase (decrease) with the increasing value of the
objective function. After evaluating the fitness scores of
all the strings in the cumrent population, rank the strings in
the decreasing order of their fitness scores,

s Step 2 (selection): From the current population, select
N, number of strings possessing high i.c., above-average
fitness values, for constructing the mating pool of parent
strings, The parents are selected in a manner such that the
sirings with betier fitness values (scores) get prionty for
inclusion in the pool. This pool may comprise multiple
copies of the fitter chromosomes. Instead of the commonly
employed neisy Rowlerre-Wheel (RW) method, it is
advantageous to use a more stable method termed stochastic
remainder .s'ci'arrmn (SRS), for choosing the parent
chromosomes'”, In the RW technique, the probability of
selecling mth slnng x,, is directly proportional o its
normalized fitness (Z,):

7, = bate

f £alx)
=l

(6)
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whereas in the SRS scheme, a Z -dzpendent real-valued
quantity (g,) is computed first:

B=%LxNg; 1=n=N, (7)

which is then separated into its integer (int,) and the
corresponding remainder (rem,) parts, where inf, denotes
the number of copies of the ath chromosome to be certainly
included into the mating pool. The remainder part, rem,,
represents the probability of taking an additional copy of the
nth chromosome into the mating pool. For instance, in the
case of g, = 2.6 (int, = 2 and rem, = 0.6}, the mating pool
receives two copies of the nth chromosome with unit
probability and an additional copy with probability equal to
(1.6. This mating pool selection procedure is implemented
with the successive chromosomes in the fitness hierarchy
until a total of N, chromosomes are selected in the pool.
& Step 3 {crossover): Select a pair of parent chromosomes
at random from the mating pool following which the
decision to perform the crossover operation is made based
upon the pre-specified value of the crossover probability
(F. ). typically, & random number is generated between 0
and | and the crossover operation is performed on the
chosen parent-pair if the number falls below P_,. Note that
the magnitude of P, chosen is usually high (P, = 0.9}, In
the single point crossover, which is a widely employed
crossover method, the chosen pair of parent strings is cut at
the same randomly selected crossover point for generating
two subsirings per parent chromosome. The second (or the
first) substrings of the respective chromosomes are then
mutually exchanged and combined to form two offspring
chromosomes. This crossover operation is repeated on the
N,/2 number of parent-pairs to obtain N, number of
offspring chromosomes. The crossover operator in essence
belps in improving the combinatorial diversity of the
offspring population by uvtilizing the building blocks of
the parent population’”,

» Step 4 (mutation): Randomly mutate (flip) elements of the
offspring strings, from zero to one and vice-versa, using P,
as the probability of performing mutation. Unlike the
crossover operation that exchanges the existing information
(albeit partly) between the parent chromosomes, the
mutation operation introduces characteristics hithenio
absent in the offspring population. The mutation operation
helps in conducting a local search around the point solutions
represented by the unmutated offspring strings. A low value
(0.01-0.05) of P_. is desirable since 1t avoids creation of
very different search sub-spaces, thereby preventing the GA
search from becoming absolutely random. Since poor
solutions need more comections than their fitter counter-
parts, it is advantageous 10 use a mulation probability value,
Q... that is dependent on the chromosome’s fitness score™.

Qo = (&,(x) % 101 — &, (x)) % Py, (8)

where £ (x2) refers to the fitness value of the fittest string,
x.

The chromosome population resulting from the actions of
the mutation operator represents a new generation. There-
after, steps (2-4) are repeated for a sufficiently large
number of gencrations (N.') to achieve convergence. The
criterion for the GA convergence could be that the fitness
score of the best string in a population undergoes a very
small, or no change, over a large number of successive
generations. Upon convergence, the K number of binary

segments in the chromosome possessing highest fitness
score, are decoded (sze equation (5)) and the values of the
decision variables obtained thereby represent the optimal
solution searched by the GA.

SPSA-Based Function Opiimization

The SPSA"™** technique is based on a highly efficient
‘simultaneous perturbation’ scheme for approximating the
objective function gradient. Here, the gradient approxima-
on irrespective of the number of decision variables (K) to
be optimized, is performed using only two measurements of
the objective function. This procedure is in contrast, for
instance, to the standard two-sided finute-difference approx-
imation needing 2K objective function measurements for
approximating the gradient. Although an effective stachas-
tic optimization technique that has been suvccessfully
utilized in numerous optimization tasks®®, the chemical
engineering applications of the SPSA formalism are not as
widespread as that of the GAs. Notwithstanding this fact, in
a recent study” ', the SPSA formalism has been successfully
and advantageously utilized for optimizing an ANN-based
process model to conduct the parameter and tolerance
design concurrently. The primary virtues of the SPSA
scheme are™:

(i) ease of implementation;

(ii) no need for measurements or direct calculation of the
objective function gradient;

(iii) robusiness to noise in the objective function measore-
ments;

{iv) an empirical evidence of the ability to find the global
minimum,

To illustrate the SPSA formalism, the authors reconsider
the function minimization problem defined in equation (4).
The implementation of the SPSA formalism is an iterative
procedure thal begins with a randomly initialized &-
dimensional guess solution vector, ; i = &, = if'. Unlike
the GAs, the SPSA technique requires the objective function
to be differentiable since it searches for the optimal solution
vector (x'), such that the gradient of the objective function,
pix*) atteins @ zero magnitude. That 1s:

§(x") = df (x)/dxl,... =0 (9)

In each SPSA iteration, gix) is approximated osing the
numerically efficient simultaneous perturbation technique
mentioned earlier. The step-wise procedure for the SPSA
implementation is presented below.

» Step | (Parameter initialization}: Set the iteration index 1
to zero and initialize the non-negative SFSA parameters
namely o, ¢, 7, & and 6.
e Step 2 (Gain-sequence computation): Calculate the -
dependent values of the SPSA gain sequences (f, and 7.}
using:

8 =0k+t+1

1, =1t+ 1) {10)

o Step I (Formation of simultaneous perturbation vecior):
Construct a K-dimensional perturbation vector (4,) using
Bermoulli =1 distribution by taking 0.5 as the probability of
occurrence of +1 or —1.

» Step 4 (Evaluation of the objective function): Obtain two
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measurements f(£]) and f(£) of the objective function
where £} =2, + 1A, and 7 = £, — r,A,. It can be noticed
in this step that all the elements of the current solution
vector %, are perturbed simultanecusly to obtain the
respective perturbed vectors £ and £,
» Step 5 (Approximation of the gradient): Generate the
simultaneous perturbation approximation of the unknown
gradient 2(¥,) as given by:
+ o -
L

where A, refers to the kth component (+1 or —1) of the
perturbation vector, A,

* Step 6 (Updation of X, vectorj: Updale the estimate of the
decision variable vector £, to get its new value as given by:

j:H-r =¥ - ,g,{f.] (12)

s Step 7 (Continuation or termination); Increment the
iteration counter ¢ 1o t+ 1 and retumn to step 2 unless
convergence is attzined. Any one of the following criteria
may be used for determining the convergence: (i) successive
ilerations impart negligible or no corrections to the decision
vector eshmate, X,_,; (ii) the algorithm has performed the
prespecified maximum number (tgpey) of iterations.

A judicious choice of the five SPSA-specific parameters,
namely, &, a, 7, k and 8, critically contributes to the success
of the SPSA simulations. Although the detailed guidelines
for selecting the five parameters can be found in Spall® they
are summarnized here for the sake of bravity:

(i) The theoretically valid and practically effective values
of ¢ and o are 0.602 and 0.101, respectively, although
u}unptoticall; optimal values of 1.0 and 0.1666 may
also be used”™’,

() In a situation where perfect (ie. noiseless) measure-
ments of {X) are possible (as in the present study), then
7 should be chosen as some small positive number.

(iii) Choose K such that it is smaller (10% or less) than the
maximum number of iterations allowed or expected,

(iv) Select the # wvalue such that @/i(x+ 1)* times the
magnitude of elements in §,(¥;) is approximately equal
to the smallest of the desired change magnitudes among
the elements of the £ in the early iterations.

T

]:-:[ﬁ;'.aa’...,.a;‘ (11)

RESULTS AND DISCUSSION
Continuous Distillation Optimization

For evaluating the performance of the GA and SPSA
techniques for optimizing the steady-state staged continuous
distillation columns, the authors have considered the
separation of three industrially important binary mixtures:
(1) methanol-water; (ii) ethanol-water. (iii) water-acetic

acid. The distillation column is often operated with multiple
feeds and therefore the methanol-water system with two
feed streams has also been examined. The procedural details
of the above-stated optimization case studies and the results
obtained are described below,

Since the number of stages (V) can assume only discrete
values, the related decision variable (x,) is converied into its
integer equivalent. Also, for the convemience of the
procedure, the values of the feed location variable (13) are
normalized. The following expressions have been used for
computing N and the diserete value (f; ) of the feed location
variable, 13

N =int{x;)
Sfi=int[l + 5N - 2));
=5=L (x-D>f>1 (13)

where int(.) refers to the integer function. In equation (13),
the reboiler and the condenser represent the first and the last
distillation stages.

In the GA-based function minimization procedure, the
fitness function value should scale inversely with the
decreasing value of the objective function. The choice of
an appropriate fitness function fulfilling this criterion is
critical for obtaining good solutions. Accordingly, 2 number
of fitness function forms were tested and the one given
below, which in addition to the total cost also accounts for
the purity constraints, yielded consistently good selutions;

Elx) =R+ R: {14)
where:
1
Rl=[ﬂ'|x(i—'m)]. (13)

and:

|
R, = [w,)( (l + abs(x™ — xi™) + abs(xP™ _J;W}):I
(16)

In the above, the term defined by B, takes into account the
total distillation cost, while R; accounts for the purity
constraints, wy, w; and, wy are the weight factors used for:
(i) avoiding the computational errors, such as, numerical
overflow, division by zero, etc. during the evaluation of the
objective function; (ii) expressing the relative importance of
the cost components; (iii) making the fitness values more (or
less) sensitive to the objective function values. In the GA
procedure, a check for the constraint satisfaction is made
before evaluating the fitness value of a candidate solution. If
any of the equality or purity constraints are violated then the

Table 1. System parameters used for simolating simple continoogs distillation simulation,

Methanol-water Methancl-water Water-acetic
Binary system porameter {single feed) (two feads) Ethinol-water acid
* Number of feeds I 2 | 1
¢ Feed compesition of MVC, mole % 50 £, 40 il 50
* Feed Flow rate, kmol hr?! B0 34, 30 L) 10
* Top composition of MVC, £7™, mole % &9 29 95 %0
+ Botom composition of MVC, 57, mole % 5 5 1 I
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Table 2. GA-based optimized solutions for continuous distllation®,

'C.r 'E‘F'IDF
Eyutem N R 5 o i $ year! Skp!
(i}  Methanol-water (single feed ) 3 [ER 12 0.9%0 0.050 151117 0.021
(i) Methanol-water (double feed ) 5 093 9.7 0.990 0.050 145906 0.020
(tit} Ethapol-water 47 73 33 0.92E 0,004 137549 D015
(iv) Water-acetic acid b2 ] 153 17 0.900 0,010 576523 D22

* The desired purity values of the more volatile compound (MVC) in top (=3 and botlom (x™) compositions were: (i) mﬂami—w:hr.t system

;. =089, x™ = 0,05, (i) ethanol-water syst=m: 27~ =095 and z7™" =
C,m is the cost per kg of distillate,

(.01, and (iif) water-acetic acid system: =™ = 0.90, ™ = 0.01.

" The weight factors (w,: £ = 1,2, 3) msed in the optimization simulations are : (i} 2.0, —0.0065 1.0, (i) 2.0, —0.0054,1.0, (i) 2.0, —0.0056,1.0 and {iv}

2.0, —0.0065 , L0,

corresponding candidate solution is penalized by assigning
it a zero fitness score'”. This is one way of ensuring that the
constraint violating solution does not compete for a place in
I]m mam]jg pool. A more rgorous penalty function
could also be used as an alternative to the
above—smmd simple approach for the constraint handing.
Unlike the GAs that search solutions with high fitness
scores, the SPSA formalism searches for a solution that
minimizes the objective function directly. The following
objective function form has been used in the SPSA-based
optimization simulations;
1
i s

During the SPSA implementation, a check was made to
ensure that the elements of the perturbed solution vectors
(&7 and &) satisfy the comresponding equality and purity
constraints. In the event of constraint violation, the
objective function (equation (17)) was penalized by
equating it to its largest magnitude ie., unity and
simulations were restarted with a new guess solution
vector. With these preliminaries, the results of the GA/
SPSA-based optimization comresponding to the three case
studies are described below.

The values of the GA-specific parameters used in the
optimization simulations are: K = 31 N, = 30 P, = 0.95;

(mn
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Figure 3. Composition profiles corresponding 1o the GA-based optimal
solution fo rthe ethanol-water system.

Foo =001 and £, = 120, The values of K, Npgp and 1, are
chosen such that; (i) the GA simulations do not take long
CPU times to converge: (if) the GA-searched solutions
possess adequate precision. It may be noted that as the N,
value {representing the size solution population) decreases,
the CPU time required to manipulate the candidate solutions
also goes down proporticnately. On the other hand, it is
essential that N, should be sufficiently large to explore the
solution-space as widely as possible. The values of K =3
and [;, = 120 suggest that in a binary-coded solution stning,
each decision variable is represented with a 40 (= [, /K) bit
precision. This precision can be lowered (enhanced) by
appropriately reducing (increasing) the [ JK ratio. The
system specific parameter values corresponding to the three
binary systems, are listed in Table |. The GA-optimized
values of the three decision variables namely: (i) number of
stages (N), (ii) reflux ratio, R(= x,), and feed location (f})
along with the respective purity values (for bottom and top
composition) and the corresponding minimized value of the
total cost, are listed in Table 2. For illustration purposes,
the composition and tempetature profiles as a function of the
stage number, pertaining to the GA-based solution for
the ethanol-water system, are shown in Figures 3 and 4.
The case studies described above were repeated using the
SPSA as an optimization algorithm for which the following
values of the SPSA-specific parameters were used:

100.0
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Figure 4. Temperuture profile comesponding to the GA-based optimal
solution for the ethanol-water system.
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Table 3. SPSA-based optimized solutions for continuous distillation®,

Cr Craca
System N R 1 o o $ year™ Skg™!
(1 Methanol-water (single feed ) 9 098 13 0.5990 0.0501 151240 0021
(i) Methanol-water (double feed ) 25 031 85 0.990 0.0496 144413 0.020
{iii} Ethanol-water 43 74 34 [HES S (0.0084 137899 0015
(iv) Water-acetic acid 37 253 0 0500 0.0101 STETHE 0022

* Same desired purily valucs 25 in the GA-based simulations were employed (see Table 20,

t The weight factars (w,; & = 1,2, 3) nied are same as listed in Table 2

a=0101,¢ =0602, + =0.10, k = 250 and 8 = 0.16: the
optimal solutions obtained are listed in Table 3. A
companson of the GA- and SPSA-based optimal solutions
reveals that the total cost values minimized by both the
approaches have nearly the same magnitudes (see Tables 2
and 3), although the optimized values of N, R and f; show
minor differences. It is also observed that the optimal
solutions very closely satisfy the purity constraints in
respect of the top and bottom compaositions of the MVC.

GA/SPSA-Based Optimization of an Industrial
Distillation Column

The efficacy of the GA and SPSA techniques was also
examined for the optimization of an existing six-stage
continuous distillation colamn in a pharmaceutical industry.
In the un-optimized column operation, a feed comprising
70wt% methanol and 30 witth water, used 10 be fed at the
rate of 200kghr~! on the fourth stage from the bottom to
produce the distillate containing 95 wi% methanol at the
rate of 135kghr". The reflux ratio employed was 2.5:1.
Being of lower purity (95% against the desired 98%), the
top product methanol could not be recycled back to the
process. A physical constraint existed that limited the total
column height to a maximum of ten stages. This column was
subjected to the GA- and SPSA-based optimization,
wherein the number of stages were varied between 6 and

# feed location from the bottom (f) = 3 (GA/SPSA).

It is seen from the above values that the solutions given
by both the methodologies are the same except for the minor
difference in the magnitude of the optimal reflux ratio. Next,
the GA-based optimization solution (N =9, K= 1.82,
fi=3) was physically implemented where the feed rate
for the 70wt% methanol was 200kghr!. The column
operated in this manner gave a distillate of the desired purity
(98%) at the rate of 136kghr~'. It is noticed that the GA-
based optimized solutions could be validated physically
with excellent accuracy. The use of the optimized solution
resulted in two major benefits to the industry: (i) since the
methanol of the desired purity was obtained, it could be
recycled to the process; (i) the vapour load and the energy
consumption were redoced by 20%.

Continuous Azeotropic Distillation Optimization

Two industrially important systems necessitating the
azeoiropic distillstion are ethanol-water and ethylene dia-
mine (EDA)-water. In both these systems, benzene is
utilized as an entrainer. The column specifications used in
the optimization simulations corresponding to the ethanol-
water and EDA-water systems are given in Table 4. In these
simulations, a fitness function similar o equation (14), but
modified Lo account for the purity constraint with respect 1o
the third component (benzene), has been utilized. In this

R =[w x( . . )} (18)
P TN+ abs(a T — i) + absta — x50) + abs(xl — 1

10; the desired purity values for the top and bottom products
were 98 wi% and 10 wi% methanol, respectively. For these
specifications, the optimal solutions given by the GA and
SPSA are:

* number of stages (V) = 9 (GA/SPSA);
* optimum reflux ratio (R) = 1.82 (GA), 1.87 (SPSA):

function, while the term R remains unchanged, the term R
is modified as:

where 27 and xj™ (j = | —3) represent the desired and
the simtﬁn{cd bottoms concentrations of the temary system
components. The GA-based solutions corresponding to the
ethanol-water-benzene and the EDA-water-benzene sys-
tems are listed in Table 5. These simulations were

Table 4. Column specifications® for cantinuous azeotropie distillution of EDA-waler-benzene and ethanal-witer-benzene systems.

Companent Aows, kmol e Component flows, kmal hr-!
Feed Benzene Ethano] Water Benzene EDa Water
o First feed, F 2 556 794 05 313 1.1
= Sccond feed mt &, (L4, ) x 0.5 0.5 x3 ] o

* Colum pressure; 1,1 atm,
* To be optimized.
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Tuble 5. GA-ISPSA-based optimized resulis for continuons azeatropic distillation®.

lI-l"slln:l C}' c-nup-
System e e =0 N kma] he! 5 Syear! $kg!
»  GA-based solution
{t) Ethanol-water-benzene 0.9862 00003 00135 14 2592 9 197510 0.073
(o) EDA-water-benzene 05916 0.0013 0.0066 9 2949.09 7 1782071 0.020
®  SPSA-based solution
(i) Ethanol-water-benzene 0.9853 0.0003 .44 14 2597 7 196030 0.072
(1} EDA-water-benzens 09835 0.0008 0.0156 9 299.47 f 1782145 0.020

* The desired purity values of the bottom product for bath the systems wers: 37 = 0.99, 15" = 0008, 55 = 0008,

* Crrop refers to cost per kg of bottom

" The weight factors (w,: k= 1,2, 3) sed in the optimization simulations are: 2.0, 1, 1.225 (ethanal-witer-benzene) and 2.1, 1.0 and 1.0 (EDA-water-

benzene),

performed using the same values of the GA-parameters as in
the earlier case studies. The SPSA—based optimal solu-
tions for the two azeotropic systems are also listed in Table
5, and they are in good agreement with those obtained using
the GAs, The equilibrium composiion and temperature
profiles as a function of the stage number in respect of the
GA-based optimal solution for the ethanol-water-benzene
system are depicted in Figures 5§ and 6. The trends of profiles
shown in the figures are in good apreement with those
obtained by Georgoulaki and Korchinsky™,

Issues Related to the GA-/SPSA-Based Optimization

For non-linear objective functions, the decision surface
may consist of multiple local minima of various shapes and
sizes. In the case of problems involving function minimiza-
tion. locating the deepest local or the global minimum
assumes great importance. The stochastic nature of the GA
and SPSA search methods assists in achieving this
objective. Notwithstanding this observation, a special care
was faken during the GA/SPSA implementations so that the
search space was thoroughly explored. Specifically, for a
fixed set of GA- and SPSA-specific parameter values,
multiple optimization simulations were performed using a
different random number sequence each time. Using
different random number sequences changes the initial
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Figure 5, Composition profiles (GA-based) for ethanol-wiler-bentens
system.

candidate solution population in the GA-based optimiza-
tion, and the initial guess solution vector in the SPSA-based
opumization. In this way, a different search sub-space is
explored each tme, thereby, giving the optimization
algorithm a fair chance of locating the deepest local or
the global minimum on the objective function surface.
Since multiple optimization simulations are necessary 1o
obtain an overall optimal solution, it becomes necessary to
examing the CPU time requirements of the GA/SPSA
methodologies. The CPU times consumed by the two
methods, while arriving at the optimal solutons (Tables 2,
3 and 5) are listed in Table 6. Both the optimiration
techniques required sbout ten to fifteen runs to amive at
the overall optimal solutions although the GA-based
optimal solution in each run (in contrast to the SPSA-
based solution) was nearly the same. It is seen from the
CPU time values that the GA and SPSA methods are not
computationally costly, even if multiple optimization runs
need to be performed. Addinonally it is noticed that,
except in the case of EDA-water-benzene system, the
SPSA methodology has consumed a significantly lower
CPU time as compared to the GA method. It was also
observed that the SPSA-based solutions are consistently
more sensitive to the magnitudes of the SPSA-specific
parameters. Thus, it can be inferred that the GA

. —
0 F & 8 B 10 12 14 18

Emge Murmier

Figure f. Tempersture profile comesponding to the GA-bised optimal
solution for the ethanol-water-benrene system.
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Fable 6 CPU tme consumed by GA/SPSA-based optimization

simulations*
Ga SPEA
CFU time, CPU time,
System N s finks soc

(i)  Methanol-water (single feed) 5 34 150 2
(i) Methanol-water (doohle feed) 352 153 o0 14

(i) Ethanol-water 100 293 166 43
(i) Water-acetic ecid 101 47 k-1 32
(v) EDA-water-benzens 5 25 &4 S
(vi) Etfhanol-water-benrene 142 09 1 5

* Evalnated on 366MH2 Pentium Celeron PC

formalism is more robust compared to the SPSA, although
the latter is numerically more efficient.

CONCLUSION

To summarize, this paper presents two stochastic
formalisms, namely GA and SPSA for the optimization of
continvous simple and continuous azeolropic distillation
columns. These optimization paradigms possess positive
characteristics, such as: (i) only the objective function
measurements and not the measurements (or direct caleula-
tion) of the objective function derivatives, are needed in
their optimization procedures; (i) simplicity of the algo-
rithms; (iii) tolerance to noisy objective functions. A
particularly significant advantage of the GA methodology
is that unlike most commonly used gradient-descent
optimization methods, it does not require the objective
function to be smooth, differentiable and continuous,
simultaneously. The efficacy of the GA/SPSA formalisms
for the optimization objective involving minimization of the
total distillation cost, has been demonstrated by considering
three binary (non-azotropic) and two tertiary (azeotropic)
systems of industrial importance; the column parameters
optimized are the number of stages, reflux ratio (entrainer
quantity for azeotropic distillation) and the feed location.
The optimization results obtained suggest that the GA and
SPSA methodologies can be gainfully employed for
optimizing the continuous distillation columns.

APPENDIX 1
Computation of Total Cost

The objective function (Cy) for both, continuous simple
and continuous azeotropic distillations represents the total
annual cost ($). This cost comprises two  additive
COmponents:

Total Cost [ Energy
C, = | Cest,C,
+ {(depreciation + interest + maintenance)

“ (cf:j:;)}

where the energy cost, €, which is directly proportional to
the heating cost is calculated according to:
@, < C %Ny %24

(Al)

C = l’ﬂ}

Aam

where @, is the reboiler duty (keal hr'}; (= 500 keal hr-! Vis
the latent heat of steam vaporization; C, refers to the steam
cost (= 0.0186$kg~") and N, denotes the number of yearly
working days {= 330).

The fixed cost, C, ($ yr'), consists of packing (C.) and
column (C,) costs where C,_, is computed as:

Cois =A. XN xHETPX C,, (A3)
Here, A, representing the column area is calculated from the
total vapour load on the basis of vapaour  velocity
corresponding to the top temperature and capacity factor
(C;) of the packing (C; = L5); Ci, denotes the packing
cost per unit volume (= 2325.58%m™") and the HETP
value for the packing is 0.6 m. The secand cost component
of C; i.e., C,, is calculated on the basis of internals from the
following correlation,

Cot =314X 14X, X N X HETP x W, % p, X ooy
(A4)

In this expression, d., W,, p, and C,,_,, refer to the column
diameter, column thickness (= 0.006m), density
(= 8000kgm™) of the column material (steel) and its
cost ($/kg). Assuming depreciation, interest, and main-
tenance costs of 18%, 15% and 2%, respectively, the total
unnual cost to be minimized is evaluated as:

C; = C, +035¢C, (AS)

In the operation of an azeotropic distillation column, a
small quantity of entrainer is lost through the vent condenser
and bottom product. Thus, the cost of entrainer loss
approximately amounting to 3% of the total entrainer
quantity, maust be additionally considered while evaluating
C:r.'-

Cr=C, 4 035C, +C, (A6)

where, Cy(= 0.23$kg™') refers 1o the cost of entrainer, i.e.
benzene,

APPENDIX Il

Napthali-Sandholm (NS) Model For Continuous Simple
Distillation

The case of N stages separating C number of components
15 considered, where the first stage refers to the reboiler and
the Nth stage is the condenser. The NS model accounts for
the material balance, equilibrium, summation and heat
balances (MESH) on each stage, thus forming a set
ofN/(2C + [) algebraic equations in as many unknowns.
The assumptions for the model are: ideal vapour phase,
constant column pressure and molar overflow, and ideal
stages. The total liquid and vapour flows entering the ith
(i=1,2,...,N) stage are expressed as I, and V.. respec-
tively, while the individual flow of the jth (j = 1,2,..., ()
component is expressed as I, and v, respectively, It is now
possible 1o write the MESH equations as given below:
* component material balance:

5

M, = (1 4 %) xv,.j+(l + E) Xy~ fo=tury= vy

=L uN=-1 j=12..,C (AT)
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+ material balance for the reboiler and condenser:

Sr L
M;= (l +E)!VU+ (l'i-l—j)x-*u—f,‘,—.f#

(A8)
SH Iy

M= {1422 scvg+ [ 142 ) sty =iy = vy,
v, L.

(A9)

where, M, represents the discrepancy function expressed in
terms of moleshr'; S, and s, are the vapour and liquid
side-streams, and f; refers to the feed flow.

+ equilibriom relationship:

0 = e Xm X Vixl; (L+g)xv_,xV,
J 3 T

3 Ve, Y

(Al0)

where J,, refers to the discrepancy function (moleshr'); n;
is the Murphree stage efficiency, and m,, represents the
cquilibrium constant for the component j on ith stage. In
equation (A10), the UNIQUAC method enters into
calculations via the equilibrium constant, m;;.

» encrgy balance equation:

y 1+ 85 5
,E,I- = (T)KH!+ (!. + ﬁ)xh;-}&—ﬂ_|_hgT]:
i=2,....N—1 {ALL)

*» energy balance equations for the reboiler and condenser:

5 :
'Ei= (l-l—F’)KH]-f' (1+;:)K:II| '—hﬂ—h;

(Al2)
Sy Iy

E,H'= I+_ XHH"" 14— xhﬂnhﬁ‘ﬂﬁr—l
Vi Ly

(Al13)

where E, refers to the discrepancy function (kcalhr'). In
equation (A11), the enthalpy values, H, and h,, are for the
vapour and liquid, respectively. Equations (AT-A13) were
solved simultancously using the Newton-Raphson method
for obtaining the stage temperature and component liquid
and vapour flow rates for which a linear pressure and
temperature profile was assumed, The pressure on the ith
stage (p,) is given by:

p=P —ixAp (Al4)
where, P, is the bottom pressure and Ap refers to the
pressure drop across the stage, The initial guess value for the
temperature at each stage is given by:
(i—1)x(Ty=T,)

(N—-1)
where Ty and T, are the temperatures of the condenser and

reboiler, respectively, that assume values of the boiling
points of the MVC and LVC.

T=T, + (Al5)

APPENDIX Il

Simulation Medel for Continuous Azeotropic
Distillation

The behaviour of the arzeotropic distillation was
simulated  using the simplified Napthali-Sandholm
model'”, coupled with the phase separation calcalations
for the condenser. In the model, the independent varisbles
are the tempersture and component liquid fow at each
stage. Under the assumptions stated in Appendix 1L, the
NS model gets simplified and only the total stage mass
balance and the component balances coupled with the
equilibrium equations need o be solved. Here, the
material balance on each stage for a C-component
system is represented by a set of [C+4 1] algebraic
equations (see Figure 2), For solving the case of phase
splitting, the overall component flow (I ), and the total
flow, I,, are used. The component balance equations
applicable for the jth component on the ith stage are:

I+ ‘uiﬂu = “"J—IJII'-!J = I“U _'f'-f =0

i=2...N-1; j=1,2...C (A16)

The material balance equations for the reboiler and Nih
stage are:

(ALT)
(A1B)

’u'l‘l'u’lial”l_'fu_ﬁ_::u

"nr.j + ’HJ'PNJ — Y- |,,«Ip.r—:__- _fn'., =10

where, [; represents the moles of jth component in the
liquid stream leaving the ith stage; f; refers to the moles of
Jjth component fed to the ith stage and ¢, is the stripping
factor defined as:

ViruPu
Pl

where L; is the total liguid flow from the ith stage; V; refers
to the total vapour flow from the ith stage; v, describes the
activity coefficient of the jth species in the ith stage; P,
represents the vapour pressure of jth pore component
corresponding to the temperature of jth stage, and P,
denotes the system pressure.

 the total material balance on the ith stage is given as:

i=12....N

iy = (A19)

Li—l,—...— =0

f=1 2 sl [Mﬂ]
Vapours leaving the Nth stage usually form two
immiscible phases after condensation.
Accordingly, the following equations apply for the
condenser:

* component balance equations:

.{hl.; +I£+u =wyforj=1wC (A21)
where ['jy,, , represents the moles of jth component in the
entrainer-rich phase which is refluxed to the column and
{%,,, represents the moles of jth component in the
water-rich phase.
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» phase equilibria equations for the dacanter™:

[y {4
N+Li ] !H—I:! i

Nl = TN
Z JIh‘+l N Z 'I?h-l /

where v, and ., ; represent the activity coefficients of
the jth species in the decanter comesponding to the
composition of phases [ and 11, respectively.

In the GA/SPSA optimization simulations, equations
(A16—-A20) were solved by the Gauss elimination method
using a prespecified value for the reflux composition. The
computed values of vy, were then used to solve equations
(A2]1) and (AZ22) and to obtain the values of the reflux
({1 ). The calculations for the main column are then
repeated till the assumed and the optimized reflux values
match closely.

(A22)

NOMENCLATURE

C number of components
Cy total ennualized cost, §
C. energy cost, §
fixed cost, §
C’;m product cost, $ kg™
discrepancy functron for encrgy balance
integer-valued feed location
feed flow, kmol hr!
enthalpy of liquid, keal mal~!
enthatpy of vapour, kcal mol ™!
number of decizion varables
liquid Aow of component, kmaol be!
tetal Liguid Aow, kmol he!
chromosome length
equilibrium coastunt
dizcrepancy function for component mass halance
string index
tedal number of stages including condenser and reboiler
number of generations
population sire
SYSiem pressure, Bim
bottom pressure, atm
VEpOUT Pressure, afm
pressure drop in each plate
probability of crossover
probability of mutation
discrepancy function for equilibrium relationship
variable probability of mutstion
reboiler duty, keel he™!
reflux ratio
vapour side-stream
liquid side-stream
rehoiler tempemture, °C
condenser lemperature, “C
total vapour Aow
vapour component flow
desired concéntrition of fth distllate component
tesired concentretion of jth bottom component
optimized conceatration of jth bottom canponent
decizion varishle vector
real-valued decision variable representing number of stages
refiux ratic; in the case of meotropic distillasion entrainer quantity
£ povmalized feed location
Z,  probability of selecting ath sinng

Greek symbols
k. fitness value of mth chromosome

¥ activity coefficient
8 decay rate

M= IR R el Tt o e 0 T T e ol p R - i Bl
Lol o PPRPAESSaEES TR
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1 Murphree's stage efficiency
¥ stripping factor
Moo latent heat of stesm vaporization
Supericripts
! organic liquid phase
n nguecus Liguid phase
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