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Abstract—Automotive engines have been increasingly equipped
with devices that can vary engine parameters with operating con-
ditions. Optimizing these parameters via standard engine mapping
and calibration has become a very time consuming task. The spe-
cific problem under consideration in this paper is optimization of
intake, exhaust, and spark timings to improve the brake specific
fuel consumption of a dual-independent variable cam timing en-
gine. We have explored extremum seeking (ES) as a method to find
the optimal setting of the parameters. During ES, the engine is run-
ning at fixed speed and torque in a dynamometer test cell, while an
optimization algorithm is iteratively adjusting the three parame-
ters. For our purposes, we have modified several algorithms avail-
able in the literature. The details about the algorithms and the ex-
perimental results they produced are presented and discussed in
the paper.

Index Terms—Extremum seeking (ES), gradient search, variable
valve timing.

I. INTRODUCTION

A. Motivation and Problem Description

TODAY’S automotive engines come with many devices
that can vary engine parameters with operating points

(typically specified by engine speed and output torque) to
improve emissions, fuel consumption, and/or peak torque.
Among these devices are external exhaust gas recirculation,
electronically controlled throttle, variable cam timing, variable
valve lift, cam profile switching, etc. In contrast, in conven-
tional engines parameters such as cam timing or valve lift are
fixed at the design stage.

The standard strategy of an on-board electronic control unit
(ECU) is to assign parameter values that are optimal for the cur-
rent operating point. Only a finite number of optimal parameter
values indexed by operating point (speed and torque) are prede-
termined in the calibration process and stored in lookup tables.
For other operating points, optimal parameters are interpolated
from the lookup table values. When the number of parameters
is relatively low, conventional grid-based engine mapping can
be applied to find optimal values to fill the lookup tables. For
a fixed preselected speed/torque operating point, the procedure
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involves dividing the parameter space into a grid, measuring the
engine performance for each grid knot, and then selecting the
best values out of the tested ones (or alternatively, creating a re-
gression from the data and finding the optimal parameter values
from the regressed model). Because the experimental burden in-
creases exponentially with the number of parameters, this pro-
cedure becomes very time consuming even in the case of three
parameters. In such cases, extremum seeking (ES) can be used
to quickly and directly locate optimal parameters. We demon-
strate this on a dual-independent variable cam timing (di-VCT)
engine.

In a di-VCT engine we can independently change three
timing parameters, where the timing (phase) is measured rel-
ative to the crankshaft (and piston) position. The parameters
are the spark ignition, opening/closing of the intake valves,
and opening/closing of the exhaust valves. Because the cam
profiles are fixed, so is the duration between timing of opening
and closing of a valve; therefore, changing the timing of valve
opening changes the timing of valve closing by the same
amount. The tuning of these three parameters can bring several
benefits. By varying the intake and exhaust cam timing, an
appropriate amount of the residual exhaust gas can be recir-
culated into the cylinder thereby suppressing NOx formation
[2]–[4]. Furthermore, this residual contains some unburned
hydrocarbons; consequently, retaining it in the cylinder through
two combustion cycles also reduces hydrocarbon emissions [5].
Late intake valve closing reduces engine volumetric efficiency,
hence, resulting in part-load operation at higher intake manifold
pressures and reduced pumping losses [6]. Note that to achieve
these benefits, spark timing must be tuned together with the
other two parameters, since these two significantly affect the
burn rate through varying in-cylinder dilution and turbulence.
More details about operation of variable cam timing engines
can also be found in [7].

In this work we were interested in optimizing the engine’s
brake specific fuel consumption (BSFC) alone or in combina-
tion with a constraint on combustion stability. We implemented
several optimization algorithms, tested each on the engine at
different operating points (specified here by engine speed and
output torque) to locate the optimal parameters, and compared
the results they produced to the results of a more conventional
engine mapping process.

By installing an experimental di-VCT engine in a dy-
namometer test cell and conducting a number of ES experi-
ments at various engine speeds and low to medium torques we
were able to show the following.

• The results were repeatable from run to run, algorithm to
algorithm.
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• These results agreed with the results obtained by engine
mapping.

• The algorithms were able to quickly locate a local min-
imum, taking about 15 min on average.

Higher torques were avoided since the algorithms did not have
a built-in procedure that handles engine knock.

Finally, it is worth mentioning that ES methods are excep-
tionally well suited for situations when detailed knowledge of
response surfaces in the parameter space are not needed. For ex-
ample, at the engine design stage, “mini-maps” needed to eval-
uate effects of various hardware modifications (e.g., cam pro-
files, compression ratios) on cycle average fuel consumption or
emissions can be efficiently obtained by ES. A second example
is the calibration of a control strategy proposed in [8] that does
not rely on the grid-based lookup tables for response surface
representation.

B. Historical Perspective

ES has a long history and was a popular subject of adap-
tive control in the 1950s and 1960s. One of the first works on
the subject was a classic 1951 paper by Draper and Li [9] and
[24]. They introduced the principles of the so-called “Self-opti-
milizing Control Systems” through one automotive application:
an (analog) control system for maximizing output torque of an
engine running at constant speed with constant fuel flow by ad-
justing air flow and spark timing.

Over the years, interest in ES in the automotive field slowly
diminished. The work was mainly focused on adaptive spark
timing adjustment in vehicles [10], [11]. In this work we show
that ES is a viable and fast option for multi-parameter engine
optimization in test cells.

There are several existing software packages that include ES,
such as the one described in [12] that combines design of exper-
iments (DOE) methods [13] with “local” extremum seeking. In
this case, the ES procedure relies on a good initial guess from
the DOE part for the optimization. Our concept, however, is an
ES tool that does not rely on any prior results of engine mapping
(or DOE).

II. EXTREMUM SEEKING

ES is an iterative optimization process performed in real
time on a physical system. The function being optimized is the
steady-state relationship between the system’s input parameters
and its performance output. This function, denoted here by ,
is usually called the response map. Since is not known
(otherwise, it could be optimized in a computer), ES algorithms
rely only on its measurements to search for the optimum.
Starting from some initial parameter values, such an algorithm
iteratively perturbs the parameters, monitors the response, and
adjusts the parameters toward improved performance. This
process runs usually as long as improvement is being produced.

Aside from algorithmic steps, ES software also performs
sequencing of input commands, and collection and filtering
of measurements. The software usually assigns the parameter
values in step increments. Because the map is generated by a
dynamical system, the response of to a change in input
parameters can be measured only after some time has passed,

usually after large transients die down. In addition, the mea-
surements are usually noisy and require filtering, which takes
additional time. For example, with simple averaging we can
get

(2.1)

Here, the inputs are fixed at from to ; is the
waiting time, is the averaging or filtering time, and is the
measured performance output. Note that the transient errors can
be controlled via , and the noise errors via .

In ES applications, the goal is to locate optimum in minimum
time. This is achieved by an appropriate choice and design of
algorithms and by their tuning; waiting and filtering times must
be manipulated (and thereby, more or less measurement error
allowed) together with other algorithm parameters to produce
fastest ES [14]. Note that by manipulating waiting time, we con-
trol the dynamical interaction between the optimized system and
the algorithm. If the waiting time is reduced, the system is not
fully settled down at times when a new measurement is taken
(and a new command assigned). It can be shown that under
broad conditions this interaction remains of small-gain type,
which assures that the ES process will remain stable and that
the parameters will converge to the optimum [14].

A. Algorithms Used in This Work

Let be a vector with entries , , and
corresponding to the parameters of our engine optimiza-

tion problem: intake cam timing, exhaust cam timing, and spark
timing, respectively. The cam hardware constrained (see Sec-
tion III) to the interval [ 30, 30] degrees after top dead center
(ATDC) and to the interval [0, 40] degrees ATDC. Let the
function represent the BSFC response map of the
engine, which is a function of the three optimization parameters,
and is measured in real time.

The applied algorithms iteratively search for optimal param-
eters using a recursion of the form

step (2.2)

Here is the iteration number, is the current esti-
mate of the optimal parameters, the positive number is a step
size or gain,1 and step is a vector calculated from estimates
of partial or directional derivatives of at . The algorithms
use symmetric two-sided finite differences to estimate partial, or
directional (along some vector ) derivatives

(2.3)

respectively. Vector denotes a unit vector with 1 in the th
place, and 0’s elsewhere, dither is a small nonzero constant,

1We call � a step size when step is a unit vector. When norm of step varies
with measurements, we call � gain, which conforms to the control systems ter-
minology.
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and is a perturbation vector. Computation of one finite differ-
ence requires two new measurements of .

In this work we applied the simultaneous perturbation sto-
chastic approximation (SPSA) algorithm by Spall [15], and the
related Persistently exciting finite differences (PEFD) algorithm
used by Teel [16] for nonsmooth optimization problems. SPSA
and PEFD use one finite-difference per iteration. We also ap-
plied the Box and Wilson steepest descent (BWSD) [17] al-
gorithm, which needs up to three finite-differences per itera-
tion. For various reasons we had to substantially modify the
off-the-shelf versions of these algorithms, and we will describe
that in detail. Also note that we applied versions of these algo-
rithms suited for our parameter constraints.

Comments on Our Selection of Algorithms: Our expectation
was that SPSA and PEFD would have required a comparatively
low number of measurements to locate optimal parameters, and
hence would have produced fast ES, and this turned out to be
the case. This expectation was supported by the experience of
the others in a number of SPSA applications [18]. PEFD had
not been applied before, but the form we used in this work dif-
fers from SPSA only in the way it selects perturbation vectors,
so we expected good performances too. The performance stan-
dard for us was the classical Kiefer Wolfowitz Stochastic Ap-
proximation (KWSA) [19]. KWSA requires estimation of all
the gradient components at each iteration, which, in our case
requires three finite-differences and six measurements per itera-
tion. SPSA and PEFD use an estimate of a directional derivative
(one finite-difference) along the currently selected direction to
produce an estimate of the gradient. Spall in [15], theoretically
showed that SPSA, at least asymptotically, needs
times fewer measurements than KWSA to locate an optimum,
being the number of optimized parameters. We applied KWSA
to our problem and found that it needed fewer iterations than
SPSA/PEFD to converge, but significantly more measurements
overall. In fact, KWSA was close to three times slower, as pre-
dicted by the theory. Another classical algorithm we tried out is
the BWSD, which matched the speed of SPSA and PEFD after
it was substantially modified.

We also decided against the very popular, though heuristic,
Nelder–Mead simplex algorithm [20]. In an -dimensional
problem, this algorithm needs one or two measurements to
produce an improved point in a typical iteration; the new
measurement points are chosen based on the best of
the measurements collected up to that moment (which can be
seen as the vertices of a simplex in an -dimensional space).
We dropped this algorithm for two reasons. First, it is not
clear how to adapt it to constrained problems, especially when
the optimum lies on the boundary. Second, to achieve fast
optimization, and successfully cope with noise, the algorithm
requires comparatively larger steps between experiments. This
is undesirable when the algorithm drives a dynamical system,
since it can produce large transients.

Finally, we considered the sinusoidal perturbation algorithm
(see, for example, [9, Sec. V], [24], [21]), which has been re-
cently frequently discussed in the control literature. The main
reason we did not test this algorithm is that it was not clear how
to modify it for the constrained problems (to our knowledge,
such a modification still does not exist).

1) SPSA and PEFD: For this application we selected one
common form of SPSA and PEFD [see (2.4)] with projection.
The original algorithms had to be modified because of certain
problems that were preventing them from fast convergence. We
will first describe what we selected from the literature and then
explain the modification.

At each iteration , both PEFD and SPSA imple-
mentations select perturbation vector out
of the pool of vectors

The only difference between the two implementations is that
SPSA selects the perturbation vectors s randomly (each
vector from the pool is assigned the same probability), and
PEFD periodically, in a round robin fashion.2 These implemen-
tations satisfy general requirements for : for the SPSA, the

components of the vector need to be generated stochas-
tically as independent random variables, usually Bernoulli
symmetrically distributed (flipping a coin decides whether

or ), in the case of PEFD, the condition
is that the sequence of s is persistently exciting, which is
satisfied when the sequence periodically spans the parameter
space.

Once is selected, the algorithms perturb the current esti-
mate along to collect two measurements of the response
map, and , and then update the es-
timates by, first, calculating

(2.4)

then, projecting onto the constrained set (the stan-
dard SPSA form [15, eq. (2.2)] can be obtained from
(2.4) if we observe that

when ). Note
that in our case, the projection operator

, is a simple truncation. We get

(2.5)

SPSA with projection is analyzed in [22].
We now present the modification. Combining SPSA or PEFD

with projection produces an undesirable effect that we can very
loosely describe as “bouncing of parameter estimates against the
constraints.” This effect slows down the convergence when the
optimum is located on the constraints, which was the case in our
application. The bouncing effect and an appropriate modifica-
tion for SPSA are detailed in [23]; here we only briefly describe
one iteration of the modified algorithm.

1) Given , separate those parameters,
, , 2, 3, that are on the constraints from those that

are not.
2) Generate .
3) Randomly decide whether to perturb just one of the pa-

rameters on the constraints, or simultaneously perturb all
of the ones that are inside the constrained set, e.g., if

2Periodic selection was also discussed in the SPSA context in [15].
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or then can be either
or .

4) Update parameters, for , 2, 3, according to

(2.6)
where is a scaling parameter that depends on and
the way the algorithm made a random decision in step 3.

5) Apply projection, i.e., .

In the stochastic context (noisy measurements), a sequence pro-
duced by the modified SPSA will converge to a Kuhn–Tucker
point with probability one; this was shown in [23]. Similar mod-
ification was implemented for PEFD; the analysis of conver-
gence properties of PEFD with projection is a subject for future
research.

2) Modified Box and Wilson Algorithm: This algorithm is
based on the steepest descent procedure introduced by Box and
Wilson in their seminal 1951 paper on process improvement
[17]. Each iteration of this procedure has two stages.

1) The negative direction of the gradient is estimated:
, when ; The proce-

dure stops when the gradient, i.e., linear model, cannot ad-
equately represent the function curvature, usually when it
becomes too small; “small” is controlled here by the pa-
rameter .

2) The estimates are updated in direction of in steps of
fixed size as long as there is an improvement: if

then , . Oth-
erwise, and the procedure returns to gradient
estimation.

The algorithm was modified so that, in the first stage, it uses
three two-sided finite differences to estimate the gradient, rather
than a more complicated DOE based estimate. Each component
was estimated from:

, , 2, 3. The algorithm does not use additional
measurements to verify that a good estimate of the gradient is
obtained, although this was done in the original procedure.

In the second stage, after the first and before each of the
subsequent update steps, the third (spark) component of the
gradient is re-estimated, which requires two measurements,

, and the unit
update direction recalculated. By this, we exploit a prop-
erty of the performance map: spark sensitivity varies much more
with parameters than with two other components of the gradient.
As a result, the algorithm performs more second stage updates
(with two measurements each) before returning to full gradient
estimation (with six measurements). To additionally speed up
ES, the central value, is not measured but estimated as
the average of two values obtained during the estimation of
spark sensitivity: .

The last implemented modification is first-step line search.
If the first step after gradient estimation is not producing an
improvement, the next estimate is sought between and

. The algorithm explores
,

, etc., until one of the values, say the
one corresponding to , shows an improvement;

then ; if no improvement was produced
after several cuts of , old parameters are kept: .

At each update, violations of the constraints are checked and
parameters are projected if needed. When the estimates hit a
new constraint, the algorithm returns to the first stage and full
gradient estimation.

Note that this is a heuristic algorithm, and that rigorous con-
vergence analysis does not exist.

III. IMPLEMENTATION

An experimental di-VCT engine was installed in a dy-
namometer test cell at Ford Research Laboratory. The hardware
configuration consisted of the engine attached by a common
shaft to the dynamometer (electric motor/generator) that main-
tained constant rotating speed. Constant torque was maintained
by a controller that actuates the electronically controlled throttle
based on measurements from an inline torque sensor. The phase
shift of the cam-shafts relative to the crank-shaft was regulated
by electro-hydraulic actuators. In this way, the actuators could
continuously vary the timings for intake cam opening
and exhaust valve closing ( could be varied within

, and within [0 40] degrees ATDC).
For control algorithm development, we used combination of

Simulink/Stateflow and a dSPACE3 rapid prototyping system, in
conjunction with other computer-aided system engineering and
computer-aided control system design tools.

During experimental runs, the dSPACE processor executed
the ES code as well as local control loops for intake and ex-
haust cam timing and electronic throttle. An existing electronic
control unit (ECU) capable of running the engine was already
available and was used for closed loop air-fuel ratio regula-
tion and to control spark timing and fuel injector pulsewidths.
The dSPACE system and ECU communicated through a shared
memory board. Fig. 1 depicts the configuration of our setup.

IV. EXPERIMENTAL RESULTS

We bring experimental results in four parts. The first part
brings the results obtained by conventional engine mapping,
which we performed separately. The second part describes the
way we processed the measurements for ES. That part should
distinguish the difference between processing of the measure-
ments for ES and engine mapping. In the third part, we present
results of ES for the best fuel consumption. The goal is to com-
pare the optimal parameters as located by ES with those ob-
tained by engine mapping. The final part deals with optimiza-
tion of fuel consumption constrained by combustion quality.

A. The BSFC Response Surface Obtained by Engine Mapping

Before running the ES experiments, we mapped the engine
at several operating points specified by fixed speed and output
torque. The parameter space of timings for intake valve opening

, and the exhaust valve closing was spanned by a
35-point grid ,
and at each point of the grid, a spark-sweep was performed and
the engine performance was measured and documented. Spark

3Simulink and Stateflow are trademarks of Mathworks Inc. dSPACE is the
trademark of dSPACE GmbH.
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Fig. 1. Configuration of the experimental hardware for ES experiments.

Fig. 2. BSFC for optimal spark versus cam timing. Engine mapping at
1500 rpm and 62.5 N�m. The point (ivo; evc) = (�30; 40) has not been
mapped due to unstable combustion, and was extrapolated in the figure.

sweep means measuring engine variables at seven to ten values
of spark timing selected around a subjective optimal, maximum
brake torque (MBT), spark timing, while the other engine
parameters are kept constant. This “full-factorial” mapping
process is very time consuming since for each new value of
the three parameters, the measurements are averaged for two
minutes after the temperature transcients have settled down
(which takes typically another 1–2 min).

The response surface in Fig. 2 obtained by the procedure out-
lined above represents a typical shape of the di-VCT brake spe-
cific fuel consumption as a function of and . To pro-
duce the two-parameter plot, for each pair of cam timing values,
the spark timing was set to the corresponding optimum MBT
value. Fig. 2 represents measurements taken at 1500 rpm, 62.5

Fig. 3. BSFC signal used for ES. Signal before (plain) and after (bold) the 3 s
moving average filter. Engine speed was 1500 rpm, output torque 62.5 N�m.

N m. The BSFC values for points which are not grid knots were
interpolated.

We can locate two local minima in the figure. The optimal
values for cam timing, , are (30, 40) and ( 20, 40).
Here, the point ( 20, 40) borders the region of unstable com-
bustion; measurements at the point ( 30, 40) were not taken
due to combustion instability (see Section IV-D for more de-
tails). Note the following.

• The optimal points are located on the constraint .
• At 62.5 N m, the difference in BSFC among the points with

minimal, less than 0.5%. This creates an oppor-
tunity to combine BSFC with some other criterion to select
the best point. One option is to use emissions, which should
be a subject of further work.
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Fig. 4. Response in the BSFC signal to a step change in cam and spark timings. Initial (ivo; evc; spark) were (10,10,30) degrees, final (20,20,35). The filtered
signal is the bold curve.

Fig. 5. SPSA, 1500 rpm, 62.5 N�m. Run A. Initial values (ivo; evc; spark) =
(�15; 10; 30).

B. BSFC Measurements for ES

To update input parameters, an ES algorithm collects several
BSFC measurements per iteration, as described in Section II.
Because the value of BSFC is changing during engine transients,
the ES algorithm waits for one second after changing parameter
settings ( , , and ), then averages the BSFC signal for
3 s. We have found that the combination of one second waiting,
followed by the three second averaging (4 s per measurement)
produced the fastest ES. In contrast, it typically takes several
minutes to get one measurement of an engine map by the pro-
cedure described earlier. The difference can be explained by the
desire in conventional mapping to have accurate readings at all
recorded points, while in ES we insist only on the final “optimal”
readings being accurate. The intermediate measurements can be
inaccurate provided that, on the average, this does not affect the
direction of the parameter updates.

Fig. 6. SPSA, 1500 rpm, 62.5 N�m. Run B. Initial values (ivo; evc; spark) =
(�15;10;30). Note at t � 1100, the algorithm gain was reduced to a half of
its initial value.

The BSFC was calculated from the following formula:

BSFC
Fuel flow

Speed Torque
(4.1)

where the three variables were measured with 1-kHz sampling
frequency and then passed through a 1.63-Hz low-pass filter.
This signal is then passed through a moving average filter (with
the 3 s window mentioned above and 10-Hz sampling). The
BSFC signal before and after the moving average filter is shown
in Fig. 3. There are several points we would like to make about
these figures and the BSFC signal, more specifically about dis-
turbances and noise.

• The fuel flow information was calculated from the ECU
generated fuel-per-stroke signal. This ECU signal had
faster response than the signal coming from the fuel flow
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Fig. 7. PEFD, 1500 rpm, 62.5 N�m. Initial values (ivo; evc; spark) =
(�15; 10; 30). Note at t � 1200, the algorithm gain was reduced to half its
initial value.

sensor, which was used to get the BSFC during mapping.
There was an offset between the two fuel measurements.

• The air/fuel ratio was kept constant by the ECU, which
used information from the production heated gas oxygen
(HEGO) sensors. The HEGO sensor is of relay type and
produces residual oscillations (several percent amplitude,
1 Hz frequency) in the fuel flow, as it can be seen from the
unfiltered BSFC signal in Fig. 3. The moving average filter
was able to filter most of that out.

• The filtered signal contained a relatively large, low-fre-
quency additive noise component of unknown origin with a
period of approximately 25 s. Most of it was filtered out by
using finite-differences, (a difference of two measurements
that are separated by approximately 4 s acts as a high-pass
filter).

Our algorithms were able to cope with these noise problems
successfully. However, we expect that use of universal exhaust
gas oxygen sensors (which measure continuously) for air/fuel
ratio control would reduce the noise and speed up the search
process significantly.

Fig. 4 shows a response in the BSFC signal to a step change
in cam and spark timings. It can be seen that in about 4 s after
the step change, the averaged BSFC approaches its final value.

C. ES Results

This subsection shows results produced by the software
based on the algorithms described in Section II. The algorithms
were tested at various combinations of engine speed and torque
between 1000–2000 rpm and 16–100 N m (high torques were
avoided since the software did not have a built-in procedure
to handle spark knock). The results shown correspond to
1500 rpm/62.5 N m. Each figure brings the evolution of the
parameter estimates, together with BSFC, which was filtered
by the 4 s moving average filter.

Depending on the initial parameter values, the ES algorithms
find one or the other local BSFC minimum:

Fig. 8. PEFD, 1500 rpm, 62.5 N�m. Low gain. Initial values
(ivo; evc; spark) = (�15;10;30). Note that the algorithm gain had a
reduced value from the start.

Fig. 9. Modified BWSD, 1500 rpm, 62.5 N�m. Initial values
(ivo; evc; spark) = (�10;10;30).

• locating the first minimum : Figs. 5
and 6 for SPSA, Figs. 7 and 8 for PEFD, Fig. 9 for the
modified BW steepest descent;

• locating the second minimum , Fig. 10
for SPSA, and Fig. 11 for PEFD.

These figures illustrate also several important points about
our algorithms.

• Due to its randomized selection of perturbation vectors,
SPSA can produce different paths to the optimum. Hence,
the ES times can vary (compare Figs. 5 and 6).

• The PEFD presented here chooses perturbation vectors in a
periodic fashion and its results are more repeatable.

• In the experiments shown here, PEFD and SPSA were run-
ning with two different values of gain: high (1500) and low
(750). Most of the time, the high gain was used. Running
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Fig. 10. SPSA, 1500 rpm, 62.5 N�m. Locating the second local minimum.
Initial values (ivo; evc; spark) = (0; 10;30). Notes: the algorithm gain was
reduced at t � 1500.

Fig. 11. PEFD, 1500 rpm, 62.5 N�m. Locating the second local minimum.
Initial values (ivo; evc; spark) = (0;10;30).

the SPSA/PEFD with lower gain produced more robust-
ness to noise and more accurate estimation, but also slower
speed of convergence shown in Fig. 8. Our solution was to
run the algorithms at high gain until the operator concludes
that the estimates oscillate around the optimum; then the
gain should be set to low. Using the interactive features of
the software, the gain can be reduced online while the al-
gorithm is searching for the optimum, (see Figs. 6, 7, and
10). Comparison in parameter space between runs at low
and high gain is shown in Fig. 12.

• During ES, the estimates can approach or enter regions
where combustion is unstable. These regions are known
from mapping and are marked in Fig. 12.

Additional notes about our experiments are as follows.

• There were small day to day variations in BSFC and they
can be seen in the runs from the same initial conditions.

• Figures that represent convergence of the parameters are
showing only the estimates , not the actual inputs to the
system, which are estimates with superimposed perturba-
tion signals, i.e., or , needed to compute
the finite differences. Some of the oscillations visible in the
BSFC signal are the results of these perturbations.

D. Combustion Quality and ES for Best BSFC

At low output torques, optimal values of input parameters of
the di-VCT engine may lie in a region with high valve overlap
where combustion may not be sufficiently stable. Moreover, the
estimates can enter the unstable regions, and the algorithm may
start hunting for a local optimum among unstable points. This
was more the case for the SPSA and PEFD, which tend to be
more aggressive in their search, than for the Box–Wilson algo-
rithm (SPSA and PEFD update their estimates without testing
whether the updated estimate produces an improvement, the
gain or step size parameter is prescribed in advance. On the other
hand, improvement tests are a critical part of the Box–Wilson al-
gorithm). In many cases poor combustion will result in higher
BSFC and the algorithms are able to find their way out of the un-
stable region. However, in a few cases (typically at low torques),
the best BSFC is achieved at parameter combinations with in-
sufficient combustion stability.

We would like to force the algorithms to find the optimal
BSFC among points with sufficiently stable combustion. One
way to avoid unstable combustion is to pre-map parts of the en-
gine operating envelope to find unstable combustion regions and
then provide that information to the ES algorithms in some form
of prescribed constraints. This, however, would contradict our
concept, since we want ES that does not require pre-mapping of
the engine.

The approach we tried, amounts to penalizing (artificially in-
creasing) BSFC measurements that are sent to the algorithm if
the combustion becomes unstable. Namely, the algorithm bases
its search on the following cost function:

(4.2)

where is some measure of combustion quality, or as we
will use it, instability. This information is usually obtained from
cylinder pressure statistics. Because the cylinder pressure and
the quality of the combustion are directly reflected in the output
torque, which we measured, we decided to use the latter.

Our instability measure was drawn from observing torque
variations between two consecutive changes of input parame-
ters. After each input change, some time for the transients to
settle was allowed (usually 1 or 2 s) before torque observation
started. Two averages of torque measurements were recorded:
a long-term torque average taken over the whole observation
period, and a short-term average taken over one or two strokes.
At the end of the period, the smallest short-term average was
divided by the long-term average. The obtained variable is
well correlated with LNV values obtained from processing the
cylinder pressure information. LNV is defined as the ratio of the
lowest to highest values of the indicated mean effective pressure
(IMEP) in the cylinder or engine over an observation period.
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Fig. 12. Comparison in parameter space between two runs (cf. Figs. 8 and 7) of PEFD with high (left) and low (right) gain. The figure on the left represents the
more aggressive run with higher gain at the start. The unstable combustion region, known from mapping, is shaded.

Thus, we will here call this variable to emphasize its
nature and dependence on input parameters.

Our measure of instability for our cost function was formed
as

(4.3)

where and are selected positive constants, and the satu-
ration function is defined by

otherwise.
(4.4)

Note that can be negative if the engine misfires. Ob-
viously, our measure of instability increases linearly as the
combustion worsens and drops more and more below

.
In Fig. 13 we show a result of a 62.5 N m run of PEFD. The

reader may compare this to Figs. 5–7. Note that the BSFC mea-
surements are less jittery and that there are several degrees of
difference in final spark end values compared to no-LNV
penalty runs, the estimates are pushed deeper into the stable re-
gion. However, we were still unable to produce successful re-
sults at low torques (16 N m).

Note that in this situation, time scales between the original
term, BSFC and the penalty term, , may not be
comparable since they use different measurements. In some
cases, the penalty term may require more time per measure-
ment and thus it may slow down the convergence. In our case,
the LNV was produced in the same time we spent on BSFC
averaging. The overall result is that our signal at low
torques was louder than the BSFC. This seems to be the main
reason why the approach did not succeed at low torque. We
did not perform experiments with longer torque processing
times. In addition, we recorded output torque from a high-speed
sensor with a 1-kHz sampling rate, limited by the speed of our
controller board. This rate may need to be increased for better
results.

Fig. 13. PEFD, 1500 rpm, 62.5 N�m. LNV penalty added to BSFC. Initial
values (ivo; evc; spark) = (�15; 25;30). Compare with Figs. 5–7. Note the
several degrees of difference in final spark end ivo values compared to no-LNV
penalty runs, estimates are pushed into the stable region.

Finally we note that only very simple statistical processing of
the torque information, a simple penalty function, and shorter
measurement processing times were employed. Nevertheless,
the results indicate that the problem can be successfully solved.

V. CONCLUSION

The increase in the number of tunable parameters, necessi-
tates new approaches to mapping and calibration of modern au-
tomotive engines. One approach to finding optimal combina-
tions of parameter settings is to apply ES algorithms. This paper
shows an application of several ES algorithms to optimization
of a dual-independent variable cam timing engine. The objective
is to find input parameters (intake, exhaust, and spark timings)
to minimize fuel consumption. We also performed BSFC opti-
mization constrained by combustion quality. The experimental
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results demonstrate the feasibility of this approach. Additional
work is needed to examine other possible performance criteria
that include a penalty on NOx, CO, and HC emissions, etc.
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