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This article presents two hybrid robust process optimization approaches integrating
antificial neural networks (ANN) and stochastic optimization formalisms— genetic al-
gorithms (GAs) and simultaneous perturbation stochastic approximation (SPSA). An
ANN-based process model was developed solely from process input—output data and
then its input space comprising design and operating variables was optimized by employ-
ing either the GA or the SPSA methodology. These methods possess certain advanitages
over widely used deterministic gradient-based techniques. The efficacy of ANN-GA and
ANN-SPSA formalisms in the presence of noise-free as well as noisy process data was
demonstrated for a representative systemt involving a nonisothermal CSTR. The case
study considered a nontrivial optimization objective, which, in addition to the conven-
tional parameter design, also addresses the issue of optimal tolerance design. Compari-
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son of the results with those from a robust deterministic modeling/optimization strategy

suggests that the hybrid methodologies can

tion.

Introduction

Conventionally, chemical plant design consists of choosing
and sizing appropriate process equipment, as well as fixing
the nominal operating points. In this endeavor, deterministic
gradient-based optimization techniques that mostly use
steady-state process models are utilized. Here, the objective
function to be optimized is a suitably chosen cost function (to
be minimized) or a profit function (to be maximized). Tradi-
tionally, issues such as the choice and design of the process
control system are addressed once the nominal operating
point is known consequent to the process design activity.

Availability of a process model assumes considerable im-
portance in the process design activity, For a given process, a
“first principles (phenomenological)” model can be con-
structed from the knowledge of mass, momentum, and en-
crgy balances, as well as from other chemical engineering
principles. Owing to the lack of a good understanding of the
underlying physicochemical phenomena, development of
phenomenological process models poses considerable diffi-
cultics. Moreover, nonlinear behavior being a common fea-
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be gainfully employed for process optimiza-

ture of chemical processes, it leads to complex nonlinear
models, which in most cases are not amenable to analytical
solutions; thus, computationally intensive numerical methods
must be utilized for obtaining solutions. The difficulties asso-
ciated with the construction and solution of the phenomeno-
logical models necessitate exploration of alternative modeling
formalisms. Process identification via empirical models is one
such alternative. They are mostly discrete-time dynamic mod-
els comprising, for instance, Hammerstein and Wiener mod-
els, Volterra models and polynomial autoregressive moving-
average models with exogenous inputs (ARMAX) (Henson,
{998). These linear models and their nonlincar counterparts
are constructed exclusively from the input-output process
data. A fundamental deficiency of the empirical modeling ap-
proach is that the model structure (form) must be specified a
priori. Satisfying this requirement, especially for nonlinearly
behaving processes is a cumbersome task, since it involves
selecting heuristically an appropriate model structure from
numerous alternatives.

in recent years, artificial ncural networks (ANNS) have
heen found 1o be an attractive 1ol for steady-state /dynamic
process modeling, and model-based control in situations
where the development of phenomenological or the empiri-
cal models just given cither becomes impractical or cumber-
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some (such as Bhat and McAvoy, 1990; Hernandez and
Arkun, 1992; Nahas et al,, 1992; Ramasamy et al,, 1995; Ten-
dulkar et al., 1998; and reviews by Narendra and Partha-
sarathy, 1990; Hunt et al, 1992; Agarwal, 1997). ANNs are
based on the concept that a highly interconnected system of
simple processing elements (called neurons or nodes) can ap-
proximate complex nonlinear relationships existing between
independent (ANN input) and dependent (ANN output) vari-
ables to an arbitrary degree of accuracy (Hornik et al., 1989
Poggio and Girosi, 1990). The advantages of a neural-net-
work-based process model are (13 it can be developed solely
from the process input—output data (that is, without invoking
process phenomenology); (2) even multi-input multioutput
relationships can be approximated easily; and (3) it possesses
generalization ability owing to which the model can accu-
rately predict the outputs corresponding to a new set of in-
puts that were not part of the data used for constructing the
ANN model. For design purposes, it is nol adequate that a
generalization-capable ANN model is available. What is im-
portant is. that the ANN model should be amenable to opti-
mization. Specifically, it should be possible to optimize the
input space of the ANN model, representing process vari-
ables, such that the mode! output (product concentration, re-
actor temperature, etc.) is maximized or minimized. This ob-
jective differs from that involving ANN model development
where given an input-output example data set, a suitably
chosen optimization algorithm finds a set of network parame-
ter (weights) that minimizes a prespecified error function.

In commonly used deterministic optimization techniques,
the solution to an optimization problem is represented in the
form of a vector consisting of values of decision variables at
which the gradient of the objective function with respect to
the decision variables becomes zero. Thus, gradient computa-
tion is an integral feature of such optimization paradigms.
Additionally, most gradient-based techniques require the ob-
jective function to be smooth, continuous, and differentiable.

In the case of an ANN, it is possible to express the nonlin-
car mapping that it exccutes in terms of a generic closed-form
function. It can be noted that the nonlinear mapping ability
of ANNs is due to the nonlinear activation function used for
computing the node-specific outputs, For computing an ou-
put, the nonlinear activation function makes use of the argu-
ments comprising a number of network parameters (weights)
and node-specific inputs. Consequently, the mapping exe-
cuted by an ANN attains a complex nonlinear character that
cannot be guaranteed 1o simultaneously fulfill the smooth-
ness, continuity, and differentiability criteria for the objective
function. This feature of ANN models poses difficulties in
using the conventional deterministic techniques for optimiz-
ing their input space. Hence, formalisms that do not impose
stringent conditions on the form of the objective function
need to be explored. The stochastic optimization formalisms,
namely, genetic algorithms (GAs) and simultancous pertur-
bation stochastic approximation (SPSA), among others, are
not heavily constrained by the properties of the objective
function, and thus they arc potential candidates for employ-
ment in the optimization of an ANN madel. An important
characteristic of the GA and SPSA methodologies is that they
need measurements of the objective function only, and not
the measurements (or direct calculation) of the gradient (or
higher-order derivatives) of the objective function (Spall,
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1998a,b). This characteristic of the GA and SPSA methods
can be fruitfully exploited for optimizing the ANN-based
models whose functional forms do not assuredly satisfy the
requirements of the gradient-based optimization methods. An
additional benefit of the GA and SPSA methods is that they
can be used in situations where input information into the
optimization method (such as objective function evaluations)
may be noisy. The objective of this article, therefore, is to
present two hybrid “‘modeling-optimization™ techniques,
namely, ANN-GA and ANN-SPSA, for the purpose of robust
chemical process design and optimization. In this approach,
an ANN-based process model is first developed and its input
space is optimized next using either the GA or the SPSA
formalism. The principal advantage of the hybrid methods is
that process design and optimization can be conducted solely
from the steady-state process input—output data.

For validating the ANN-GA and ANN-SPSA methods, we
have considercd a nontrivial process optimization objective,
which not only aims at obtaining the optimal values of pro-
cess variables, but also the optimal values of lolerances (op-
erating windows) for the process variables. Fixing the values
of the tolerances becomes important owing to the fact that
chemical processes involve a number of variables and/or pa-
rameters that are always subjected to some degree of uncer-
tainty (stochastic variability). For instance, irrespective of how
good a control system is, process variables such as concentra-
tion, temperature, and pressure do vary randomly, albeit
within a narrowly bounded window. Depending upon their
origin, uncertainties can be classified into the following four
categories (Pistikopoulos, 1995; Pistikopoulos and lerapetri-
tou, 1995; Diwekar and Kalagnanam, 1996; 1997a,b).

» Process-inkerent uncertainty. Due to random variations in
process paramelers/variables, such as flow rate, temperature,
and pressure.

o Model-inherent uncertainty, Accounts for variations in the
phenomenological model parameters representing, for in-
stance, kinetic constants, heat-/mass-transfer coefficients,
and physical properties.

e Fxternal uncertainty. Considers variations in parameters
that are external to the process, but influencing the process
cost (feed stream availability, product demand,
pollution/economic indices, etc.).

s Discrete uncertainty. Accounts for the equipment avail-
ability and other random discrete events,

The conventional deterministic process optimization ap-
proach ignores uncertainties, thereby resulting in suboptimal
solutions. Uncertainties are capable of influencing, for in-
stance, the product quality and control cost and, therefore,
they need to be considered during process design and opti-
mization activity. Accounting for uncertainties leads 10 toler-
ance design, which aims at obtaining the optimal size of the
window for each uncertainty-affected process variable/
parameter. The best average process performance can be
achieved consequent to optimal tolerance design so long as
the process operates within the oplimized operating zones.

In a recent article by Bernardo and Saraiva (1998). the au-
thors have introduced a novel robust optimization (RO)
framework that deals with the optimization objective alluded
to earlier. An advantage of the optimal solution given by the
RO framework is that it provides the best operating regions
for designing a control system. One of the optimization prob-
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lems considered by Bernardo and Saraiva was minimization
of the continuous stirred-tank reactor’s (CSTR) annual plant
cost that comprises four components, namely, equipment, 0p-
erating, control, and quality costs. The RO formalism, which
accounts for the control costs right at the process design stage,
was shown to yield qualitatively improved results as com-
pared to those obtained using a fully deterministic optimiza-
tion approach. Specifically, it was shown for the case of CSTR
that simultaneous optimization of process operating variables
and the respective tolerances could reduce the total annual
plant cost by nearly one order of magnitude, that is, from
$101,872/yr to $14,716/yr. For the sake of affording a direct
comparison, we adopt the RO framework with necessary
modifications to account for the ANN-based process model.
The principal differences between the RO methodology and
the hybrid formalisms presented here are as follows.

« While the RO framework assumes knowledge of a phe-
nomenological process model, the ANN-GA and ANN-SPSA
formalisms utilize a ncural-network-based process model.

e In the RO approach, the phenomenological process
model is optimized using a deterministic successive quadratic
programming algorithm (NPSOL package; Gill et al.,, 1986),
whereas hybrid methodologies optimize the ANN-based
model using inherently stochastic optimization technigues,
namely, GA and SPSA. It may be noted, however, that evalu-
ation of the objective function accounting for the stochastic
behavior of the uncertainty-affected process variables, re-
mains the same in the RO- and ANN-based hybrid for-
malisms.

e In the present study it is shown that the hybrid optimiza-
tion methodologies are capable of yielding comparable solu-
tions when noise-free and noisy process data are utilized for
constructing the ANN-based process model.

This article is structured as follows. First, the mathematical
formulation of the ANN model-based robust optimization is
presented. A detailed discussion of the development of the
ANN-based process model and the stepwise implementation
of the ANN-GA and ANN-SPSA hybrid optimization
methodologies are provided next. Finally, results pertaining
to the CSTR optimization case study are presented and dis-
cussed,

ANN-Assisted Robust Optimization Framework

While developing the framework, it is not necessary o tuke
the model-inherent uncertainty into account, since the ANN-
GA and ANN-SPSA strategies do not utilize a phenomeno-
logical model. Among the remaining three uncertainty cate-
gories, only process-inherent uncertainty has been considered
although the optimization framework presented below is suf-
ficiently general toward inclusion of the remaining two (ex-
ternal and discrete) uncertainties. The origin of the com-
monly encountered process-inherent uncertainty lies in the
small but significant random (uncontrolled) fluctuations
present in the process operating variables.

We define the optimization problem under consideration
as; given the process input data comprising the steady-state
values of equipment (design) and operating variables, and the
carresponding values of process output variables, obtain, in a
unified manner, the optimal values of (1) design variables, (2)
operaling variables, and (3) tolerances defining hounds on the

128 January 2001 Vol. 47, No. 1

operating variables. The optimal solutions so obtained should
ensure minimization of the annual plant cost while maintain-
ing the desired product quality.

The ANN-assisted RO framework assumes that a steady-
state process model defincd as

y=f(¥,®, W) M

is available, where y represents the process output variable
that also determines product quality; W and @, respectively,
refer to the M- and N-dimensional vectors of design and op-
erating process variables (W = [, ¥z 5.00o ¥ o0 Vv b=
[ysdhayeiosdiyaneer By 1), W denotes the weight matrix of the
ANN model; and [ represents the ANN-approximated non-
linear function.

The total annual plant cost (C,,) to be minimized is as-
sumed to consist of four components, namely, equipment cost
(C,,p) Operating cost (C,p), control cost (C.), and quality
cost (C,):

Gy =Cogy ¥ Cop+Ce*Cy. )

¥r

Among the four cost components, the operating, control, and
quality costs have uncertainties associated with them that
emanate from random fluctuations in the process operating
variables. However, the equipment cost, which is usually a
deterministic quantity, has no uncertainty attached to'it. The
extent of uncertainty in an operating variable can be charac-
terized in terms of a probability density function (PDF) (Di-
wekar and Rubin, 1991, 1994) where mean value of the PDF
represents the nominal value of that operating variable. Ac-
cordingly, defining J(®) to be the set of PDFs associated
with the operating variables, @, the corresponding set (d)
describing the operating space regions can be represented as

& =(0:0el(®)). (3)

The physical operating regions, &, comprise a set of oper-
ating windows (@, }, where L denating the window for the
nth operating variable, is defined as

&, =[ol d]:  n=12...N, (4)

Here, ¢! and &V, respectively, representing the lower and
upper bounds on the nth operating variable, are expressed as

dl=w(1-6): =1+ e) ()
where g, refers to the mean value of the ath operaling vari-
able and ¢, is the associated lolerance. Commonly, varia-
tions in &, obey Gaussian (normal) probability distribution,
and therefore the respective tolerance (e,) can be approxi-
mated as

€, = 3.09( 7 /1) (6)

where @, refers 10 the standard deviation of the Gaussian
PDF.
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Owing to the random fluctuations in process operating
variables, the steady-state value of the process output (qual-
ity) variable, y, also deviates from its desired (nominal) set-
point. Thus, it becomes essential to define a PDF, L(y), per-
taining to the quality variable y as well. Accordingly, an ex-
pression similar to Eq. 3, but involving L(y), can be written
for defining the corresponding space region (y):

F={y:y e L(y)}. (7
Using Eqs. 2-7, it is possible 10 write the complete mathe-

matical formulation of the robust optimization problem un-
der consideration as

minC,, (¥, B, §) = C,gp(¥) + Cop( ) + C(P)
Lt

+Co(9) (8)
subjeet 1o,

() f(¥,® W)=y ded;
& =[dy by dy] b= (D:0EJ(®)} (9)

(I §={yyelL(y)}- (10)

for all

This formulation makes use of an ANN model (Eq. 1) pos-
sessing the following properties: (1) the input space of the
ANN model comprises design variables, ¥, and uncertainty-
involving process operaling variables, ®; (2) the output space
of the ANN model represents the quality variable y; (3) the
weight matrix (W) of the ANN model is available; and (4) the
model is valid over operating variable regions, ®, and the
output region, §; consequently, the equality constraint de-
fined in Eq. 9 always holds.

In the objective function defined by Eq. 8, the clements of
vectors W and @ signify the decision variables; §, represent-
ing the space region of the output variable, depends on ¥
and ‘i\, and therefore is not a decision variable. However, the
optimization objective, which involves the simultancous de-
termination of the operating variables (nominal operating
points) and associated tolerances, necessitates: (1) optimiza-
tion of the mean values ( p; n=1,2,..., N) of the Gaussian
PDFs characterizing uncertainty-involving operating vari-
ables @, and (2) optimization of the tolerances, €, (n=1, 2
vy N Simultaneous determination of the mean () and
tolerance [(e,} values also fixes the corresponding standard
deviations, (a,} (sce Eq. 6), which can be used to characterize
the PDF set, J(®). It is thus clear that optimization of the
mean and associated tolerance values in turn leads 1o the
optimization of the PDF set, J(®D).

Following the prescription of Bernardo and Saraiva (1998),
the objective function defined in Eq. 8 can be evaluated as

G E(Cq) +E(C,p) + Cogp( W) + C‘_(ti'). (11)
where E(C,) and E(C,,) refer to the expected values of the
quality cost and the operating cost, respectively. For comput-

ing these expected costs, an efficient sampling technique
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known as Hammersley sequence sampling (HSS) (Diwekar and
Kalgnanam, 1996, 1997a,b) could be utilized. In this tech-
nique, a statistically adequate number (N,,) of observations
is sampled from the Gaussian PDFs associated with the un-
certainty-involving operating variables. Next, each of the N,
sampled sets, ®; (j=1, 2, ..., Ny,), along with the design
variable vector, W, is applied 1o the ANN model for comput-
ing the magnitude of the process output, y. The estimate of
the quality cost can then be computed using the Taguchi loss
function (Taguchi, 1986), as given below:

E(Cq)=k:[(#,—y*)’+ or,‘]. (12)

where k; refers to the quality loss coefficient; y* is the de-
sired value of y; and o, denotes the standard deviation of
N,y number of y values. The mean value of the quality vari-
able, p,, is calculated as

Vs
(w9, W)
j=1
= 13
By N (13)
For computing the estimate of the operating cost, E(C,,),
the following expression is used:

Moo

Z Ccp( ¢':)
f=1

E(C,,) = g (14)

Since the design variables are not associated with any uncer-
tainty, the W-dependent equipment cost, C,,,(¥), can be
calculated deterministically. The last of the four cost compo-
nents representing the control cost, C,, can be determined
using the mean ( »,.) and standard deviation (@,) of the PDFs
describing operating variables:

E - i [a+b+§'—'~]. (15)

=\ "

where a, b arc constants and » refers to the operating vari-
able index.

Construction of ANN-Based Process Model

A prerequisite to the implementation of the ANN-GA and
ANN-SPSA methodologies is the development of a suitable
ANN-based process model. For this purpose, a class of ANNs
known as multilayered feedforward networks (MFFNs) can be
used. An MFFN (sce Figure 1) is a nonlinear mapping device
between an input set (/) and an output set (O). It represents
a function f that maps [ into O, that is, f:] = O, or y = f(x),
where y € O and x € [. The widely used MFFN paradigm is
mudtilayered perceptron (MLP), mostly comprising three se-
quentially arranged layers of processing units. The three suc-
cessive layers, namely, input, hidden, and outpue layers, house
N, Ny, and N number of nodes. respectively. Usually, the
input and hidden layers also contain a bias node possessing a
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Figure 1. Three-layered feed-forward neural network.

constant output of +1. All the nodes in the input layer are
connected using weighted links to the hidden layer nodes;
similar links exist between the hidden and output-layer nodes.
Nodes in the input layer do not perform any aumerical pro-
cessing, and thus act as “fan-out” units; all numerical pro-
cessing is done by the hidden and output-layer nodes, and
thus they are termed “active’ nodes.

The problem of neural network modeling is to obtain a set
of weights such that the prediction error (difference between
network-predicted outputs and their desired values) mea-
sured in terms of a suitable error function, for instance, the
root-mean-squared error (RMSE), is minimized. The RMSE is
defined as:

Mot
T 2E
I= 1

Npll X Nfl !

RMSE = (16)

where [ refers to the input pattern index (=12, ..., Nyu);
N, denotes the number of output layer nodes, and E; is a
measure of the sum-of-squares error (SSE), defined as

1 M -
E=3 L (vi-ai), a7

i=1

where, y} denotes the desired output of the ith outpul node
when the Ith input pattern is presented to the network, and
of refers 1o the corresponding desired outpul. The task of
RMSE minimization is accomplished by “training” the net-
work wherein a gradient descent technique, such as the gen-
eralized deita rule (GDR) (Rumelhart et al., 1986), is utilized
for the updation of connection weights.

Network training is an iterative procedure that begins with
initializing the weight matrix randomly, A training fleration
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consists of twa types of passes, namely, forward and reverse,
through the network layers. In the forward pass, an input
pattern from the example data sct is applied to the input
nodes und outputs of the active nodes are evaluated. For
computing the output, the weighted-sum of the inputs to an
active node is calculated first, which is then transformed us-
ing a nonlinear activation function, such as the sigmoid func-
tion. The outputs of the hidden nodes computed in this man-
ner form the inputs to the output-layer nodes whose outpuls
are evaluated in a similar fashion. In the reverse pass, the
pattern-specific SSE defined in Eq. 17 is computed and used
for updating the network weights in accordance with the GDR
strategy. The weight-updation procedure when repeated for
all the patterns in the training set completcs one training it-
eration.

The RMSE minimization procedure described earlier does
not ensure that the trained network possesses satisfactory
generalization ability. To possess good generalization ability,
it is cssential that the network captures the underlying trends
existing in the example input—output data. The phenomenon,
which affects the network's generalization ability, is known as
“overfitting.” When it occurs, the network attempts to fit even
the noise in the example data set at the cost of learning the
trends therein. As a result, the network makes poor predic-
tions in the case of new inputs. Overfitting occurs due 10 two
factors: (1) when the network is trained excessively (over-
\rained), that is, over a large number of training iterations,
and (2) when the network’s hidden layer contains more units
than necessary, To prevent the occurrence of overfitting, the
network's generalization performance is monitored at the end
of every training iteration on a set different than the one
used for updating the weights. Specifically, the available ex-
ample input-output data are partitioned into  two  sets,
namely, the training and test sets. While the former set is
used for adjusting the network's weights, the latter set is uti-
lized for monitoring the network’s generalization perfor-
mance. In cssence, the RMSE magnitude with respect to the
training set (E,,,) indicates the data-fitting ability of the net-
work undergoing training, and the test set RMSE (E,,) mea-
sures how well the network is generalizing. Upon training the
network over a large number of iterations, the weight matrix
resulting in the smallest £, magnitude for the test set data,
is taken to be an optimal weight set. It may, however, be
noted that this weight set pertains to the specific number of
hidden units (N;) considered in the network architecture.

For a given ANN-based modeling problem, the number of
nodes in the network’s input layer (V) and output layer (Np)
are dictated by the input-output dimensionality of the sys-
tem being modeled. However, the number of hidden units
(N,,) is an adjustable structural parameter. If the network
architecture contains more hidden units than necessary, they
lead 10 an oversized network and, consequently, an overpa-
rameterized network model. Such a model, like an over-
traincd one, gives poar representation of the trends in the
example data. For excluding the possibility of an oversized
network, it becomes essential (o study the effect of the num-
ber of hidden units on the network’s function approximation
and generalization capabilities. Accordingly, multiple net-
work training simulations are conducted by systematically
varying the number of hidden units. Theses simulations es-
sentially aim at obtaining an optimal network architecture
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(that is, housing only adequate number of hidden units),
leading to the smallest possible RMSE magnitude for the test
set data.

The enlire procedure for selecting an optimal MLP archi-
tecture and associated weight matrix using the GDR strategy
is summarized in the following steps (Bishop, 1994):

1. Fix a small value (such as one or two) for the number of
hidden units, Ny, and initialize the network weight matrix
randomly. Also select values of the GDR parameters, namely,
learning rate (n;; 0 < 7, < 1.0) and momentum coefficient (a,,,;
0 < a,, < 1.0): addition of the momentum term in the GDR-
based weight-updation expression helps accelerate the weight
convergence and to avoid the local minima on the error sur-
face.

2. Minimize the test set RMSE (£,,) using the GDR-based
error-back-propagation (EBP) algorithm. Repeat the training
procedure a number of times using different random number
sequences for initializing the network weights. This proce-
dure is performed for exploring the weight—space rigorously
and, consequently, locating the deepest local minimum (or
the global one) on the error surface. Store the network weight
matrix that has resulted in the smallest E,,,.

3. Repeat steps 1 and 2 by systematically increasing the
number of hidden units until &,,, attains its smallest possible
magnitude.

Implementation of these steps optimizes the network ar-
chitecture and the associated weight matrix, thereby creating
an optimal network model possessing the much desired
data-fitting and generalization capabilities, For details of the
GDR-based EBP training algorithm, the reader may refer to,
for example, Hecht-Nielsen (1990), Freeman and Skapura
(1991), and Tambe et al. (1996).

ANN-Model-Assisted Stochastic Process
Optimization Methodologies

The principal difference between the widely used deter-
ministic gradient-based optimization schemes and the
stochastic ones, such as GA and SPSA, is that the latter class
of methodologies involves a random component at some stage
in their implementation. For instance, GAs manipulate a sct
of candidate solutions at random with the objective of sam-
pling the search (solution) space as widely as possible, while
at the same time trying to locate promising regions for fur-
ther exploration (Venkatasubramanian and Sundaram, 1998).
In the present work, GA and SPSA methodologics have been
used, in conjunction with an ANN-based process model,
for optimizing (1) process design variables, W; (2) process
operating variables, ®; and (3) tolerances, E =
[€1,€3,00- €y1---, € |7, associated with the process operaling
variables. In what follows, the salient features and implemen-
tation details of the ANN-GA and ANN-SPSA methodolo-
gies are provided.

ANN-GA optimization methodology

Genetic algorithms (Holland, 1975, Goldberg, 1989) com-
bine the “survival of the fittest” principle of natural evolution
with the genetic propagation of characteristics, 10 arrive at a
robust search and optimization technique. Principal features
possessed by the GAs are: (1) they are zeroth-order optimiza-
tion methods requiring only the scalar values of the objective
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function; (2) capability to handle nonlinear, complex, and
noisy objective functions; (3) they perform global search, and
thus are more likely to arrive at or near the global optimum;
and (4) their scarch procedure being stochastic, GAs do not
impose preconditions, such as smoothness, differentiability,
and continuity on the objective function form. Owing to these
altractive features, GAs are being used for solving diverse
optimization problems in chemical engineering (such as
Cartwright and Long, 1993; Hanagandi et al., 1996; Garcia
and Scott, 1998; Garcia et al., 1998; Garrard and Fraga, 1998;
Polifke ct al., 1998). An application of the ANN-GA formal-
ism for the purpose of parameter design of an industrial dryer
using noise-free data has been shown recently by Hugget et
al. (1999), To illustrate the working principles of GAs, we
recast the cost-minimization problem (Eq. 8) as

Minimize C,(x): e crbikb=1,2,..Ki

x=WUDUE, (18)

where K-dimensional vector, x=[x,, X3 y..sy Xp vrees %5
represents the set of decision variables, and xt and x{ are
the lower and upper bounds on x,.

In a typical GA procedure, search for the optimal solution
is conducted from a randomly initialized population of candi-
date solutions, wherein each solution is usually coded as a
string (chromosome) of binary digits. A coded string is com-
posed of as many segments as the number (K) of decision
variables. The resultant population of candidate solutions is
then iteratively refined in a manner imitating sclection and
adaptation in biological evolution, until convergence is
achieved. Within an iteration, GA evaluates the goodness of
a candidate solution by employing a fitness function, whose
magpitude is indicative of the objective function value, For a
function maximization (minimization) problem, the fitness
function value should scale up (scale down) with the increas-
ing value of the objective function. In cach GA-iteration, a
new population (generation) of candidate solutions is formed
using the following GA operators:

s Selection: This operator chooses chromosome strings to
form a mating pool of parent strings that are subsequently
used for producing offspring. Selection of parent strings is
conducted in a manner such that fitter strings enter the mat-
ing pool on a priority basis. For selection purposes, the
roulette wheel (RW) or less noisy stochastic remainder (SR)
methodologies (Goldberg, 1989) may be used.

e Crossover: The action of this critical GA operator pro-
duces an offspring population wherein randomly selected
parts of the parent strings arc exchanged mutually to form
two offspring strings per parent pair, Whether a pair (also
selected randomly) undergoes crossover or not is governed by
the prespecified value of the crossover probability 0 AN |
Action of the crossover operator tends to improve the combi-
natorial diversity of the offspring population by utilizing
the building blocks of the parent population (Venkata-
subramanian and Sundaram, 1998). A high P, magnitude
(such as 0.5 < P, < 1.0) ensures more crossover between
parent pairs, and thereby greater diversity in the offspring
population.

 Mutation: This operator introduces new characteristics
in the offspring population by randomly flipping bits of the
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offspring strings from zero to one and vice versa, The bit-flip-
ping operation performed with a small (0.01-0.05) probability
of mutation (P,,,,) helps in conducting a local search around
point solutions represented by the unmutated offspring
strings.

The stepwise procedure for implementing the ANN-
model-assisted GA strategy is now in order (also see flow
chart in Figure 2).

Step 1. Initialize generation counter, N,.,, to zero.

Step 2. Create the initial population of N, number of
candidate solution strings randomly using binary digits; each
string of length equal to /. digits comprises K segments.

Step 3. Using the HSS technique on the ith (i=1, 2,

<3 Npop) string, sample N, number of operating variable

sets from the Gaussian PDFs associated with the operating
variables, .

Step 4. Apply the jth (j=1,2, ..., Ny,) sampled set (&)
along with the corresponding design variable vector (¥,) to
the ANN model and obtain the model output, ¥;- Next, com-
pute mean ( u,) and standard deviation (g,) of the ANN out-
put set, {y;}.

Step 5. Evaluate the objective function (Eq. 11) and fit-
ness score of the ith population string.

Step 6. Repeat steps 3-5 for all population strings (that
isyi="t. 2 e NI,OP) and rank the strings in the decreasing
order of their fitness scores.

Step 7. Create a mating pool of parent strings using the
SR selection scheme.

Initialize number of generations, N, = 0—|

Lerit 1|

Y

vector, X;

* Randomly generate binary coded population
comprising N, candidate solutions (strings).

» Each string of length [, comprises K equal segments
and describes binary coded decision variable

x=YUbUE

v

ANN input, (‘P- ,(D‘,)

* Use HSS scheme on ith (i = 1,2,.. .,NW) candidate
solution string to randomly sample N, sets of
operating variables

* Utilize each sampled set, @ ; j =1,2,..,N,, along

l with design variable vector (¥, )for computing

corresponding ANN output, y,

F N

Trained ANN model,
Y., W

I ANN output, ¥

Evaluate objective function (C,,) for the ith
(i=1.2,...,N,,,) population string using ANN

input-output values

Compute fitness scores of all (i.e., N, ) population strings
and rank them in decreasing order of their fitness scores

v

Create a mating pool of N, parent strings using
Stochastic Remainder (SR) selection scheme

Generate offspring population by performing crossover
on the randomly selected parent pairs from the mating pool

[_ Perform mutation on the offspring strings [

[ Update generation index: N, = Np,,+1 l

No

The top ranked binary string in the converged
population is decoded to obtain the optimal solution

Figure 2. Implementation of ANN-GA hybrid methodology.
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Step 8 From the mating pool, choose pairs of parent
strings randomly and perform crossover operation on each
one of them to obtain the offspring population.

Step 9. Perform mutation on the offspring population.

Step 10. Update gencration index by one: Nyg, = Npey + 1.

Step 11, Repeat steps 3-10 on the new generation strings
until a convergence criterion, such as (1) N, exceeds the
prespecified maximum generations limit (Ngi®), or (2) the
fitness score of the best string in a population no longer in-
creases, is satisfied.

ANN-SPSA optimization methodology

The SPSA optimization methodology (Spall, 1987, 1998a,b)
differs from the commonly employed deterministic gradient-
based techniques in the following respects. Instead of directly
evaluating the gradient with respect to each decision variable
by perturbing it separately (as done in the standard two-sided
finite difference approximation), the SPSA methodology ap-
proximates the gradient by perturbing all the decision vari-
ables simultancously. Thus, irrespective of the number (K) of
decision variables, only two objective function measurements
are necessary for gradient approximation; this is in contrast
to the finite-difference approximation, where 2K function
measurements are necessary for the gradient evaluation. The
implementation procedure of ANN-SPSA formalism is an it-
crative that begins with a randomly initialized (guess) solu-
tion vector, £. The SPSA technique stipulates the cost func-
tion, C,, (x), to be differentiable, since it searches for the
minimum point, x*, at which the gradient of the objective
function, g{x*), attains zero magnitude. That is,

&
s =[] -0 (19)

In cach SPSA iteration, the gradient is approximated by
utilizing the numerically efficient simultaneous perturbation
technique alluded to earlier. With these preliminarics, the
stepwise procedure for ANN-SPSA implementation can be
given as (also see flow chart in Figure 3%

Step 1. Set the iteration index, t, to zero and choose ran-
domly a K-dimensional guess solution vector, £ |,-¢.

Step 2. Compute the r-dependent values, A, and Z,,
termed “gain sequences” using,

A
A=—i
(r+1+1)

(20)

Zim———
e+ ?

where constants, A, Z, r, 7, and B assume nonnegative val-
ues. The optimal values of 5 and B are either 0.602 and
0.101 or 1.0 and 0.1667, respectively (Spall, 1998a).

Step 3. Generate a K-dimensional perturbation vector, 4.
using Bernoulli + 1 distribution, where probability of occur-
rence of either +1 or —1 is 0.5; next, perturb all the K ele-
ments of the vector £, simultaneously, as given by

it=R+ZA;  E=8-24, @n
] i ¢ F r
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Step 4. Using £ and £ as arguments, compute two
measurements, that is, C,, (£ ) and C,, (£7), of the objective
function defined in Eq. 11. This step involves usage of (1) the
HSS technique for sampling N, sets of operating variables,
and (2) the ANN model for computing the expected costs,
E(C,) and E(C,,), as well as the control cost, C D).

Step 5. Generate the simultaneous perturbation approxi-
matian of the unknown gradient, g,(£,), using

8(2)= [ Gyl ;z-‘y(i? ) ] x[&48:) 8], (22)

where g,(%,) is K-dimensional and A, refers to the kth cle-
ment (+1 or —1) of the perturbation vector, A,.

Step 6. Update estimate of the decision vector according
to

-

B =E-Ag(X). (23)

Step 7. Increment the iteration counter ¢ to t+1(1<i =<
{,e;) and repeat steps 2-6 until convergence; the criterion
far convergence could be that in successive iterations the de-
cision variable values exhibit very litlle or no change.

Optimization of CSTR Using ANN-GA and
ANN-SPSA Strategies

Consider a steady-state process involving a jacketed non-
isothermal CSTR wherein two first-order reactions in series,
A— B - C, take place. For implementing the ANN-GA and
ANN-SPSA schemes, an MLP-based model approximating
the functional relationship between the CSTR's design and
operating variables, and the corresponding steady-state val-
ues of the output variable, was first developed. For conve-
nience, the steady-state CSTR data required for developing
the MLP model were generated using the CSTR's phe-
nomenological model. In actual practice, the MLP model can
be developed from a representative steady-state database that
is already at hand or generated by conducting specially de-
signed experiments. The phenomenological equations of
CSTR used for simulating its steady-state behavior are given
in Appendix A, where volume (V. m*) represents the design
variahle and, flow rate (F, m%/min), heat removal rate (0,
kJ/min), inlet concentration of reactant 4 (C§, mol/m?), in-
let concentration of B (CJ, mol/m"), and inlet temperature
(T°, K), collectively denote the five operating variables. The
CSTR output variable, namely. the rate of production
(mol/min) of B, has been chosen as the quality variuble, and
its steady-state value (y) has been obtained as

y=(Cy=Cl)x F. (24)
where, €, represents the steady-state concentration of B, The
desired value of y defined as y™ is 600 mol/min.

For operating a process, ranges of design and operating
variables arc usually specified. Accordingly, the following
ranges were considered for the steady-state CSTR simula-
tion: ¥ =[0.3-0.4] m?, F=[0.5-1.1) m"/min, Q=[100-1,100]
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Set iteration index =0 J

v

+ Randomly initialize K-dimensional guess solution veetor, &, .,
« Initialize SPSA parameters A, r, Z, 7 and B using non-negative values

v

Compute gain sequences 4, and Z,

v

Generate a K dimensional perturbation vector A, randomly
using Bernoulli’s +1 distribution

v

Perturb all K elements of %, simultaneously using perturbation vector
vector A, to obtain %} =%, +Z,A, and X; =%, -ZA,

ANN input (‘P»‘I’_,]

Y

« Use HSS scheme for sampling N, sets of operating variables
corresponding to &/ and X,
« Utilize each sampled set,®; j=1,2, ..., Ny, along with design

ANN output, y,

variable vector for computing ANN output
Trained ANN model, i A s s ety
7(¥.0,.7) v
1 Evaluate two values Cr(i;] and C,,[i,‘)

of the objective function, C,, ()

.

Approximate gradient g (i;) (see Bq.22) ‘

v

Update %, as: X, =%, =4, &(x)

%' =X,, represents the optimal solution |

Figure 3. Implementation of ANN-SPSA hybrid methodology.

kJ/min, C3=[3,000-4,000] mol/m’, Cj=[30-600] mol/m’,
and 7 =[300-320] K. Using these ranges, 50 random combi-
nations of the CSTR’s design and operating variubles were
generated, and using each combination, the corresponding
steady-state value of the quality variable, y. was computed.
The data set comprising design and operating variables forms
the network's input space, and the corresponding y values
represent the network’s desired (target) output space. After
normalizing and partitioning these data into the training set
(40 patterns) and the test set (10 patterns), an optimal MLP
network model was developed in accordance with the three-
step network training procedure described earlier. In the

134 January 2001 Vol. 47, No. |

MLP training simulations, use of sigmoid transfer function
was made for computing the outputs of the hidden and out-
put-layer nodes. The optimal MLP architecture obtained
thereby has six input nodes, two hidden nodes, and one out-
put node (N, =6, Ny =2, Ny =1); the corresponding values
of the learning rate (n,) and momentum coefficient (a,,)
were 0.7 and 0.01, respectively. An MLP network with good
function approximation and generalization abilities results in
small but comparable RMSE values for both the training set
(E,,) and the test set (£,,). In the case of the MLP-based
CSTR model, the E,,, and E,, magnitudes were 0.0061 and
0.0063, respectively. Additionally, values of the coefficient of

ALChE Journal



correlation (CC) between the MLP-predicted and target y
values were calculated. The CC values for the (raining and
test scts were (1,999 and 0.998, respectively. It can be inferred
from the very small magnitudes of the training and test set
RMSES and the corresponding high { =1) CC magnitudes,
that the MLP network has excellently approximated and gen-
eralized the nonlinear relationship existing between its six in-
puts and the single output,

The generalized framework of the ANN-based robust opti-
mization aims at not only obtaining the optimal values of the
design and operating variables, but also the optimal values of
tolerances (E) associated with the process operating vari-
ables. Thus, for the CSTR case study, the overall decision
space denoted by vector x (sce Eg. 18) becomes eleven-
dimensional (one design variable + five operating variables +
five tolerances); for clarity, the correspondence between x-
vector elements and the CSTR variables has been tabulated
in Table 1. Upon appropriate substitution from the notation
given in Table 1 and the definition of the Taguchi loss func-
tion (Eq. 12), the CSTR-specific form of the objective func-
tion representing the total annual cost (Eq. 8) can be written
as

Cyr = Cogp(V )+ Cop( 1 E) 4+ Col 10 E)+ Col 1y,3*,03).
(25)

where, p, and o, respectively, represent the menn and stan-
dard deviation of lhc quality variable, y, and y* denotes the
desired value of y (=600 mol/min). The five-dimensional
vectors p and E, respectively, representing the mean and
tolerance values of the operating variables are defined as:

e
1= ke g Moy ey o] and

. r
E =€ eqr€ct ey €]

GA-based optimization of CSTR

For performing the GA-based optimization of the CSTR
model, the following values of the GA-specific parameters
were used: K =11, Ny, =30, L =35, Prgee =095, Py =
0.01, and N2> =250, The values of parameters /4, and K

gon

Table 1. Equivalence Between Decision Vector
Elements and CSTR Variables

Decision Decision Decision
Variable Vector Variable
Index (k) Variables Type*
Xy DES
xy(=pp) OPR
(= pg) OPR
1,;{” H-c“} OPR
Xyl = _uq) OPR
x,{=ppo) OPR
x»l=¢) TOL
xl=¢y) TOL
Iu{ = €c“} TOL
10 x,(=¢yp) TOL
1 il = s,—u) TOL

Corresponding
CSTR

Variable

Volume, ¥ (m*)

Flow rate, F (m"/min)

Heat removal rate, Q fk.lfmm)

Inlet concentration of A, C§ 4 {mnI/m ]
Inlet concentration of B, C§ (mol/m")
Inlet temperature, T" (K)

Tolerance for F (m’/min)

Tolerance for @ (kJ/min)

Tolerance for C§ (mol/min)
Talerance for Cjj (mol/min)
Tolerance for T" (K)

[l Y I Lk

*Abbreviations: DES: design variable: OPR: operating variable; TOL: tol-
erunce of an operating variable,
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indicate that within a solution string each decision variable is
represented with five-bit precision. This precision can be en-
hanced further by choosing the [, and K values such that
the ratio, I;,/K, attains a higher (> 5) integer magnitude.
For sampling values of the five operating variables from their
respective PDFs, a statistically adequate sample size of 400
measurements (Bernardo and Saraiva, 1998) was utilized (that
is, Ny, =400). The function used for computing the fitness
score of a candidate solution (£;) was

15,000

§'=—_-; =
15,000+ C},

1,2y =i,

o (26)

where Cj, refers to the overall annual plant cost correspond-
ing to the ith candidate solution string. The functions used
for computing various components of the annual plant cost
are described in Appendix B.

In a typical plant, the controller action constraints an oper-
ating variable from deviating beyond a specific limit. Accord-
ingly, the tolerances (ej,€q.€c.€cp, €ro) for five operating
variables were made to satisfy the followmg constraints: (1)
0.0001 < e <0.15, (2) 0.0001 < €5 <0.15, (3) 0.0001 < €y <
0.1, (4) 0.0001 < €y < 0.1, and (5% 0.0001 < €50 < 0.02; these
constraints can also be expressed as inequality constraints.
Any candidate solution violating the constraints was penal-
ized during the fitness evaluation by resetting its fitness score
to zero magnitude (Goldberg, 1989). A more rigorous, that is,
penalty function (PF), approach can also be used for con-
straint handling. In the PF approach, the objective function
f(x) to be minimized is replaced by the penalty function, P(x)
(Goldberg, 1989; Deb, 1995):

P(x)=f(x)+ E?ju"a-["g,,(x)] ¥ )E.Ynu-“,[gx,(-f)]- (27)
o .

where j, and ky denote the index of inequality and equality
constraints, respectively, v, and vy, refer to the penalty co-
efficients (these are usualjy kept constant throughout the GA
simulation); A, {x) and g, (x), respectively, represent the in-
equality and equahly constramts and «, and k, describe the
penalty terms associated with #; (x) and g, (x) The penalty
terms can assume different iorms. which are discussed in
greater detail in Deb (1995).

The GA-optimized values of eleven decision variables and
corresponding costs are listed in Table 2 (column 1). Addi-
tionally, in Figure 4 the Gaussian PDFs defining the apnmai
space regions of the five operating variables (F, 0, C§. Cj,
and T?) are depicted in panels 4a to 4e, respectively.

SPSA-based optimization of CSTR

Implementation of the ANN-SPSA formalism was per-
formed using the following SPSA-specific paramerter values:
A=0.1, r=20.0, Z=002, n=00602, g=0.101, and ¢, =
32,000. In the SPSA procedure, it was ensured before objec-
tive function evaluation that those elements of the perturbed
vector £, describing tolerances do fall within the specific lim-
its; if a olerance value failed this test, then it was reset to its
nearest limiting value (Spall, 1998b). Alternatively, the more
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Table 2. Comparison of Solutions Obtained Using RO Framework and Hybrid Methodologies

ANN Model Based on ANN Model Based on
Noise-Free Process Data Noisy Process Data
GA-Based SPSA-Based GA-Based SPSA-Based RO Framework
Solution Solution Solution Solution Solution®
1 2 3 4 5
¥ (m”) 0.3428 0.3458 0.3726 0.3617 01,3463
F (mY/min) 0.5437(1 + 0.0936) 0.5506(1 +0.0929) 0.5270(1 4 0.0649) 0.5096(1 +0.0573) 0.5023(1 +0.099)
@ (kJ/min) 262.253(1 £0.0585) 208.878(1 +0.0492) 68413701 £0.0617) 611.213(1 £ 0.0482) 146.7(1 4 0.080)
€4 (mol/m") 3,312,741 +:0.0314) 3260.577(1 £0,0200)  3,801.78(1£0.0219) 3,775.73(1 £ 0.0122) 1,140 (1 £ 0.050)
CJ (mot/m*) 422.062(1 +0.0505) 399.18(1+0.0507) 542.44(1 £0.0543) 592.957(1 + 0.0380) 510.7(1+0.050)
T (K) 310,444(1 +0.0051) 310.82(1 +0.0040) 304.42(1 +£0.0051) 305.414(1 £0.0030) 313.8(1 +0.005)
y (mol/min)** 599.12 601,39 599,85 600,18 600
o, (mol/min) 11.48 8.54 11.26 7.0 16.8
v B0 1,057.03 1,062.79 1,113.31 1,092.99 1,064
C,, (8/¥r) 9,729.4 9,750.16 9,623.98 9,617.18 9,712
C, 8y 866.02 2,597.86 2,2882 328843 2,105
C, ($/1) 2,201.02 489,77 82832 320.61 1,835
. 13,853.47 13,900.58 13,853.81 14,319.21 14,716
cPU time' 80.3 47,0 85.5 540 =

*Obtained by Bernasdo and Saraiva (1998), Solutions wilh respeet to the operating variables are listed using w1+ €,) format

**Desired w, value (= y*): 600 mol/min.

ISeconds taken by 366-MHz Pentium-11 CPU to arrive at the optimal solution,

rigorous penalty function approach described carlier (Eq. 27)
can be used for handling constraints (Wang and Spall, 1999).
It was observed during implementation of the SPSA method-
ology that the proper choice of the SPSA parameters, namely
A, r,and Z, is a prerequisite to successful convergence. For
a judicious selection of the stated parameters, the reader may
refer to several guidelines provided in Spall (1998a). The re-
sults of the SPSA-based CSTR optimization are presented in
column 2 of Table 2, where it is seen that the SPSA-mini-
mized annual total cost ($13,900.58 /yr) is nearly equal to that
given by GA-based optimization ($13,853.47/yr). However, the
control and quality cost values corresponding to the GA- and
SPSA-based solutions differ significantly, A high value for the
quality cost results when (1) the mean of the guality variable
( ) deviates significantly from its desired magnitude, and for
(2) the corresponding standard deviation value (g;) is high
(see Eq. 12). It is noticed in the GA-based optimization re-
sults that the ¢, value (11.48) is higher than the correspond-
ing SPSA-based value (8.54). As a result, the product quality
will exhibit greater variability, eventually leading to higher
quality cost. In the casc of the SPSA-based solution, it
is observed that the control cost has a higher magnitude
($2,597.86/yr) as compared lo the GA-based solution
($866.02/y1). By definition, the control cost is inversely pro-
portional to the tolerance values (refer to Appendix B, Eq.
B4), since smaller tolerances necessitate stricter process con-
trol, thereby increasing the cost of control. This can be veri-
fied from the tolerance values corresponding to the SPSA-
based solution. Tt is observed that the optimized tolerances,
0.049, 0.02, and 0.004, in respect of the process variables 0,
€Y, and 79, are smaller as compared to those optimized by
the GA (0,059, 0.031, and 0.005). Consequently, the contral
cost has assumed a higher value (82,597.86/yr compared 10
$866.02/yr).

CSTR optimization in the presence of noisy process data

Sensors monitoring process variables and parameters often
generate noisy measurements. Consequently, the mean

136 January 2001

recorded value of the noise-corrupted steady-stale measure-
ments may show a positive or negative deviation from its true
mean (nominal set point). The deviation magnitude, which is
variable/parameter-specific, is likely to vary from one run to
another. This situation is different from the process uncer-
{ainties that are caused by the random physical variations in
the process variables/parameters.

For the present case study, we consider a scenario wherein
steady-state values of all the monitored process variables are
corrupted, with noise obeying the Gaussian PDF. Accord-
ingly, the stcady-statc values of the CSTR's design, operating,
and quality variables obtained earlier by solving the phe-
nomenological model, were corrupted using the Gaussian
noise. The extent of measurement noise in each variable was
assumed to lie within + 5% tolerance limit. Letting p; be the
true steady-state value (nominal setpoint) of the Ith process
input/output variable, the corresponding standard deviation
o, required for generating the noisy measurements, was
computed as

0.05% g

TS e

o=

All seven elements of the 50 patterns representing the CSTR’s
noise-free steady-state input—output data set were randomly
corrupted using variable-specific Gaussian mean () and
standard deviation (o) values. Specifically, a time series se-
quence comprising one thousand noisy measurements was
generated for each pattern clement. The sequence obtained
thereby was denoised using a nonlincar noise-reduction algo-
rithm (Kaniz and Schreiber. 1997), and the resulting se-
quence was averaged out. The database obtained thereby
consists of 50 patterns representing nose-filtered sieady-state
values of the CSTR'sseven input-output variables. It is worth
pointing out here that even after naise-filtration, the resul-
tant steady-state values do contain a small amount of resid-
ual noise. For creating training and test sets the noise-filtered
steatly-state database was normalized and partitioned in a 4:1
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Figure 4. GA-optimized probability density functions
(PDFs) corresponding to five operating vari-
ables.

ratio. Using these sets, an MLP-based optimal steady-state
model was developed following the three-step training proce-
dure elaborated earlier. The optimal network model compris-
ing 6, 2, and 1 nodes in its input, hidden, and output layers,
respectively, was trained using n, and a,, values of (.7 and
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0.01. For this network model, the RMSE magnitude for the
training set was (L0134, and for the test set, the magnitude
was 0.0123. The corresponding CC magnitudes were 0.998
(training set) and 0,996 (test set). The RMSE (CC) values are
sufficiently low (high) to infer that the MLP-network has cap-
tured well the inherent relationship between the CSTR's
noise-filtered input and output variables. A comparison of
the £, and E, , values (0.0134 and 0.0123) pertaining to the
noise-reduced steady-state data with the corresponding ones
(0.0061 and 0.0063) when noise-free data were used for con-
structing an ANN model, reveals that the former set of RMSE
values is marginally higher. This indicates that the network
model has fitted the noise-filtered data with marginally lower
accuracy. It can be noted that the MLP-training procedure
utilized in this study ensures that the network is not an over-
fitted one. Due to avoidance of overfitting, the network has
not fitted the small amount of residual noise contained in the
noise-filtered data, but instead has approximated the under-
lying trends (physicochemical phenomena) therein, This in
turn has resulted in marginally higher RMSE values in re-
spect of the ANN model trained on the noise-filtered
steady-state data. A similar inference can also be drawn from
the lower CC values in respect of the predictions made by
the network trained on the noise-filtered data,

The MLP-network model just described was optimized us-
ing GA and SPSA formalisms; values of the various GA and
SPSA parameters used in the respective optimization simula-
tions were

* GA: Nyy =30, 1oy, =55, P =095, P, =001, and
Nyeo ™ = 250.

e SPSA: A=008, r=20, Z=005 n=0602, g=0.101,
and ¢, = 32,000,

The optimal solutions searched by the GA and SPSA meth-
ods are presented in columns 3 and 4 of Table 2, respectively.

In the case of nonlinear objective functions, the decision
surface can comprise several local minima with varying shapes
and sizes. Thus, for a problem involving function minimiza-
tion, it becomes important to obtain a solution that corre-
sponds to the deepest local or global minimum on the objec-
tive function surface. Stochasticity in the implementation
procedures of the GA and SPSA methodologies o some ex-
tent helps in achieving the stated goal. Nevertheless, it was
ensured during GA/SPSA-implementation that the search
space is thoroughly explored. This was done by using differ-
ent pseudorandom number sequences (generated by chang-
ing the random number generator sced) for initializing the
candidate solution population (in the GA-based optimiza-
tion), and the guess solution vector (in the SPSA-based opti-
mization). Usage of different random initializations in essence
helps in exploring different subsets of the decision space,
thereby locating the deepest local minimum on the decision
surface. By mapping the decision surface. it is possible to ver-
ify whether the optimization algorithm has indeed captured a
solution corresponding to the deepest local minimum. In the
present case study, it is not possible o view the surface
formed by the objective function, since the decision space is
cleven-dimensional. We therefore resort to mapping the ob-
jective function in single dimension only. For such a map-
ping, the GA-optimized solution listed in calumn 3 of Table
2 has been considered, Accordingly, values of the objective
function defined in Eq. 25 were evaluated by systematically
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Figure 5. Effect of variation in a process variable on (1) mean value of the quality variable ( s, mol/min), and (2)

annual plant cost (C,,, $/y1).

Panels (a)-() depict resulls corresponding to variations m ¥, F. Q. €Y, Ch, and T respectively

varying the magnitude of a design or an operating variable
while maintaining values of the remaining ten decision vari-
ables at their optimum. The six panels in Figure 5 depict the
effect of variations in V, F, @, CS, C3, and T on the values
of C,, and g, It is seen in all six C,, profiles that a single
minimum exists and that the GA-searched solution always lies
at the valley bottom. In view of the efforts made toward lo-
cating a deepest local or global minimum, it can thus be in-
ferred that the GA was successful in fulfilling the objective.

Discussion

Upon examining the solutions given by the hybrid method-
ologies (listed in Table 2), it is observed that the mean values
of the quality variable (599.12, 60139, 599.85, and 600.18) are
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very close 10 their desired magnitude (600 mol/min). Follow-
ing comparison with the RO solution (Table 2, column 3) ob-
tained by Bernardo and Saraiva (1998), the annual plant costs
in respect to the GA-based ($13,853.47/yr, $13,853.81/yr) and
SPSA-based ($13,900.58/yr, $14,319.21/yr) solutions are a few
percent lower than the corresponding RO solution value
($14,716/yr). Such a reduction of C,, was brought about ¢i-
ther by the reduction in the control cost, C. (see column | of
Table 2), or by the reduction in the quality cost, C, (see
columns 2, 3, 4 of Table 2). 1t is noticed from the standard
deviations (a;) of the quality variable that their magnitudes
11.48, 8.54, 11.26, and 7.0, pertaining 10 the solutions given
by the GA and SPSA methodologies, are smaller than the
corresponding RO solution value of 16.8, although the re-
spective p, values deviale marginally from their desired mag-
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Figure 6. Comparison of PDFs pertaining to the quality
variable, y.

(2) GAsoptimized solution using noise-free dats (py=
599.12, o, = I1.48); (b) SPSA-optimized solution using
noise-free data (.,u, = 601.39, v, = B.354) {c) GA-optimized
solution corresponding 10 the noisy process data (py=
599.85, o, = 11.26); (d) SPSA-optimized solution corre-
sponding to the noisy process data ( g, = 80018, o, = 7.0
and (&) RO framework solution (Bernardo and Saraiva, 1998)
(i, = 6000, o, = 168).

nitude of 600 mol/min. These results suggest that for the case
of the CSTR, there exists a trade-off between the mean and
standard deviation values of the quality variable. The nature
of this trade-off can be understood from Figure 6, wherein
the PDFs pertaining to the quality variable y are plotted. In
the figure, the PDFs formed by the dashed lines correspond
to the solutions given by the GA and SPSA methods, whereas
the PDF formed by the continuous line refers to the RO so-
lution. It is noticed in the figure that implementation of
GA /SPSA-based solutions will result in the g, values, which
are marginally different from their desired value of 600
mol/min. On the other hand, implementation of the RO so-
lution will result in a u, value exactly equal 10 600 mol/min.
This, however, will be achieved at the cost of more widely
spread steady-state values of the quality variable.

A peculiar feature of the GA and SPSA techniques, which
is shared by most stochastic methods, is that the obtained
solution is influenced by the random number sequence used
during their implementation. As a result, multiple optimiza-
tion runs, each time taking a different random number se-
quence (by changing the random number generator seed),
were performed to obtain an overall optimal solution. It is
seen from the CPU times consumed by the GA/SPSA
methodologies (last row of Table 2) that the SPSA procedure
consumes less time (47 and 54 5) as compared to the time
taken by the GAs (80.3 and 85.5 s5). These values also suggest
that implementation of hybrid formalisms is nat computa-
tionally burdensome, even if multiple runs need to be per-
formed. In the case of GA-based optimization, it ook 10-15
runs o arrive at the overall optimal solutions reported in
Table 2, although it was noticed that the converged solution
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in each case was not very different. This is in contrast 1o the
SPSA implementation, where 15-20 simulations—each time
resulting in a different solution—were needed to arrive at
the overall optimal solution.

Conclusions

To summarize, this article presents two process optimiza-
tion strategies combining an ANN-based process model with
stochastic optimization formalisms, namely, GA and SPSA.
The principal advantage of using neural networks for process
modeling is that the model can be developed exclusively from
process input-output data without invoking process phe-
nomenology. Having built an ANN model, its input space
comprising process input variables is optimized using the GA
and SPSA technigues. These optimization paradigms possess
positive characteristics, such as; (1) only objective function
measurements (and not the measurements of objective func-
tion derivatives) are needed in their optimization procedurcs,
and (2) the paradigms can tolerate noisy objective functions,
It is necessary to point out at this juncture that the magni-
tudes of various algorithmic parameters utilized in the devel-
opment of the ANN models and implementation of the
GA/SPSA methodologies are problem-specific and, except
for a few (for instance, n and B values of the SPSA algo-
rithm), must be selected heuristically. Notwithstanding this
fact, development of ANN-based process models is still an
casier and more cost-effective task compared to the develop-
ment of phenomenological models. The efficacy of ANN-GA
and ANN-SPSA formalisms has been demonstrated by con-
sidering a nontrivial optimization objective, which in addition
to the parameter design, also addresses the issue of lolerance
design. Thus, the ANN-model-based mathematical frame-
work required for fulfilling the stated optimization objective
has been formulated. A case study involving CSTR has been
conducted for validating the optimization performance of the
ANN-GA and ANN-SPSA strategies; the optimization objec-
tive considered was minimization of the CSTR’s total annual
cost. In the case study, two ANN models were developed us-
ing noise-free and noisy steady-state process data. It was ob-
served that both the ANN models possess closely comparable
data-fitting and generalization abilities. Input space of the
ANN models consisting of the CSTR’s design and operating
variables was then optimized using the GA and SPSA meth-
ods: the tolerances associated with the operating variables
were simultancously optimized. The solutions obtained
thereby have been found to compare excellently with that
given by a robust deterministic optimization formalism. The
ANN-GA and ANN-SPSA approaches presented here arc
sufficiently general, and therefore can be employed for all
kinds of process design and optimization problems. These
strategies become considerably simple to implement when the
oplimization objective involves only paramerer design. In that
case, tolerances defining operating windows need not be de-
termined, thereby avoiding the usage of a sampling techmique
and associated numerical computations.
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Appendix A: CSTR Model Equations and Parameter
Values

The steady-state model for the nonisothermal CSTR,
wherein two first-order reactions, A — B = C, take place, is
given below. While Eq. Al refers to the energy balance, the
remaining two cquations account for the material balances of
components A (Eq. A2) and B (Eq. A3), respectively:

pe (T =T)+ ko exp(= E4/RT)C(~H )V
+ kyexp(~ Eg/RT)C4(-H:)V-Q=0 (A1)
F(C3-C)-k,exp(- E./RTYCV=0 (A2)

F(CH=Cy)+ ko oxp(- Eo/RT YC .V

~kpexp(~ E4/RT)C,V =0, (A3)
For generaling representative sicady-state data comprising
50 input-outpul patterns, the following parameter valucs
were considered: £, =3.64% 10" J/mol, E, = 3.46x 10°
J/mol, k, =84x10° min~. ky =76%10" min”'. H, =
-2.12x10¢ J/mol, Hy=-636x 10" J/mol. p=1.180 kg/m'
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¢,=32x10" JAkg-K), and R = 8314 J/Amol-K). The values
of other model parameters, namely, ¥, F, Q, C3, C3, and 7°,
describing design and operaling variables were randomly
chosen within the ranges specified in the main text.

Appendix B: Functions Used for Evaluating
Components of the Annual Plant Cost (C ,)

Here, only the final expressions used for computing vari-
ous CSTR costs have been given. For more details, the reader
may refer to Bernardo and Saraiva (1998).

1. The equipment cost C,, , is computed by using volume

eqp
(¥, m*), as given by:

(BI)

P 06227
Cogn($/7) = 4.19955(;-]

2. The operating cost (C,,) includes the utility cost (C,;,)
and the pumping cost (C,,..). The C,; value is calculated
using heal recovery rate, Q (J/min) and Q, (=2.54% 107
J/min), according to

Couit($/57) = 1,145 7,896~ 6,327(Q/Qy ) +4.764 X 104(Q/0 )’

~1.02x104Q/0y)]. (B2)

and Cp o0

given by

is evaluated using the flow rate (F, m%/min), as

Coump(8/y7) =13.8831(264.2F )% (B3)

3. The overall control cost (C,) is obtained by summing
the control cost contributions of five operating variables (see
Eq. 15). Using a=143.2 and b =1736, C, has been evalu-
ated as

- ] u‘il
cc(sm)=5a+b(ﬂ+ﬁ‘i+ﬂ+ﬁ+“—’"]
Oy O

G'Q Tp 7, (55

X X X X A
=716+ l.736><3.09(—3+ - st +—“) .
X3 Xy Lo Xy Xy

(B4)

where p, and g, refer to the mean and standard deviation
of the PDF pertaining to the nth operating variable.

4. The quality cost has been computed using Taguchi loss
function (Taguchi. 1986) given as

Cy(8/yr) =k:[( =yt )+ 03’]- (B3)

where g, and g, denote the mean and standard deviation,
respectively, of N,,, number of quality variable values, [y},
obtained using the ANN-based CSTR model; y* refers 1o
the desired value (600 mol/min) of the quality variable, y;
and k, (= 6.536) is the loss cocfficient.
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