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Simultaneous Perturbation Optimization for
Efficient Image Restoration

The Gibbs sampler of Geman and Geman (G&G) (1984) is

a standard technique for image restoration. We implemented

a similar estimation technique based on a new optimization

method (simultaneous perturbation stochastic approximation

(SPSA)). Preliminary tests of our results show comparable

performance to the Gibbs sampler but with faster running times.

This study suggests that SPSA is a strong candidate for use in

image restoration.

I. INTRODUCTION

Techniques of image processing and pattern
recognition are in widespread use in defense,
manufacturing, medical applications, and control [4].
Automated image processing algorithms generally
are comprised of several steps such as image
segmentation, object detection, and classification.
We examine the process of image restoration, which
refers to the task of recovering an image from a
given degraded image (in pixel form), where some
knowledge is available regarding the degradation
process. We distinguish this from the process of image
enhancement, which applies to various manipulations
(such as modifying the contrast between the pixels
of the image) that attempt to make the resulting
image more pleasing to the human eye, but usually
without any assumptions on the degradation process.
Our objective is to investigate the applicability of an
advanced optimization technique to the restoration
process, and to compare the performance of our
approach to that of a state-of-the-art restoration
methodology.

II. IMAGE RESTORATION

In image restoration problems, the assumed
degradation process usually involves a distorting
function and random noise acting on the original
image. Then it is appropriate to apply statistical
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estimation techniques to try to arrive in some optimal
way at the image that most likely generated the
given degraded image. A popular technique for this
application is Bayesian maximum a posteriori (MAP)
estimation, which has received much attention in
recent years [17 and the references therein]. We
are concerned here mainly with the case where
the given image is blurred by a convolution plus
added Gaussian noise. This assumption is often
made in restoration applications, and corresponds to
expected modes of degradation. It is also possible
(using arguments similar to those discussed below)
to create methodologies based on criteria other than
maximizing the Bayesian posterior distribution,
such as maximum likelihood or conditional mean
estimates. We focus on the MAP method because it
provides an easy formalism for incorporating extra
(“prior”) information into the estimation process, and
its computational demands are less than those of the
conditional mean estimate.
In a landmark paper, Geman and Geman (G&G)

[5] introduced the use of a sampling approach to
image restoration, combined with stochastic relaxation
(a type of “annealing”) to produce the MAP image.
The sampling methodology used by G&G, called the
“Gibbs sampler,” iteratively updates the pixel values,
providing a recursion that converges to the MAP
estimate of the original image. For ease of discussion,
we restrict attention to the simple degradation model
mentioned above, but the methodology also applies
to more general models, e.g., where the noise is
non-Gaussian or multiplicative and the distortion
function is nonlinear (see [5, p. 723]).
The annealing method in G&G controls the shape

of the Gibbs distribution (by decreasing a parameter
called “temperature,” analogous to the annealing
process used in metalworking) that is used in the
algorithm, making it more “peaked” as the algorithm
proceeds in time. This contrasts with the method used
in the popular simulated annealing algorithm, where
“annealing” refers to changing a step-size parameter
over time. The objective of numerical annealing is
to promote convergence to a global, rather than a
local, optimum solution, in G&G’s case to the global
maximum (mode) of the posterior distribution. Their
algorithm has enjoyed success and is often cited
(e.g., [17 and 7]).

III. A NEW APPROACH

Our approach to MAP estimation for image
restoration is based on the same framework as that
used by G&G, but replacing the Gibbs sampler
with a relatively new optimization procedure called
simultaneous perturbation stochastic approximation
(SPSA), introduced by [10] and [11]. The
implementations of the two methods are discussed in
detail in Section IV, below. SPSA is an optimization

technique based on stochastic approximation in the
Kiefer-Wolfowitz setting. We chose to investigate
the application of SPSA optimization methodology
to the image restoration problem because it is easy
to implement and has been shown to be efficient in
other large-scale optimization problems. A related
application of SPSA to a pattern recognition problem
is discussed in [8], and an application to processing
magnetospheric images is discussed in [3]. The
efficiency of SPSA arises from the use of a special
“simultaneous perturbation” gradient approximation
that requires very few loss-function computations
per iteration. The loss function used in the SPSA
optimization for MAP image restoration is a quantity
called the “energy function” that is closely related
to the posterior probability function (see Section IV
below). Minimizing the energy function is equivalent
to maximizing the posterior.
SPSA is described in detail in [11] (see also

www.jhuapl.edu/SPSA). For completeness, we provide
a summary here. SPSA uses the standard stochastic
approximation algorithm structure:

!k+1 = !k ¡ akĝk(!k)
where !k represents the current estimate of the MAP
image as a vector of all the pixel intensities, fakg
is a “gain” sequence (described further below), and
ĝk(!) is an approximation to the gradient of the loss
(or “energy”) function UP(!) defined in Section IV.
In standard implementations, fakg is a sequence of
positive numbers that decreases to zero, often chosen
to be of the form ak = a=(k+A)

®, where a, A, and ®
are positive constants and ®· 1. The novel feature
of SPSA is the so-called “simultaneous perturbation”
gradient approximation, which is defined as

ĝk(!k) = (2ck¢k)
¡1[UP(!k + ck¢k)¡UP(!k ¡ ck¢k)]

(1)
where fckg is a decreasing sequence of positive
numbers, usually of form ck = c=k

°, with c > 0, and
0· ° < ®; ¢k is a vector the same size as !k, say a
p-vector; and the inverse of a vector is defined to be
the vector of inverses (¢k = (¢k1,¢k2, : : : ,¢kp)

T)
¢¡1k = (¢¡1k1 ,¢

¡1
k2 , : : : ,¢

¡1
kp )

T, where superscript T
denotes transpose). The elements, ¢ki, of ¢k are
chosen randomly according to the conditions in [11].
We often use the simple Bernoulli (§1) distribution.
(Uniformly or normally distributed perturbations are
not allowed by the regularity conditions.)
Of course, the quantities !k § ck¢k will seldom

form a vector of integer pixel levels. However, since
the function UP(!) is differentiable for real vectors
! (using VC(!) = 0 for the ĝk(!k) computation, with
negligible loss of generality), this causes no problem
for the optimization performed by SPSA. After SPSA
develops !k+1, the progress of the energy function
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is evaluated by rounding the elements of !k+1 to
the nearest integer contained in the allowable set
f1,2, : : : ,11g. Other implementations of SPSA are
possible for more general applications involving a
discrete parameter (!), e.g., [6].
Examination of definition (1) reveals that only two

evaluations of the loss (energy) function are required
in order to calculate this gradient approximation,
in contrast to the “finite difference” gradient
of elementary calculus, which would use p+1
evaluations (or 2p, for a two-sided approximation).
The power of SPSA lies in the fact that, for
optimization, this rough gradient approximation
is nearly as informative as the standard gradient
approximation. This surprising phenomenon has
both theoretical underpinning [11], and empirical
experience to support it. There is a large body of
theory covering the convergence properties of various
forms of SPSA [11, 2, 14 and the references therein],
successful applications [12, 16] and helpful hints for
implementation [13].
We mentioned above that the objective of G&G’s

annealing feature is convergence to the global
optimum (MAP) solution. In fact, G&G proved a
global convergence theorem for their methodology.
However, the conditions for this convergence are
often not met in practical applications (the starting
temperature suggested by theory is so large that it
would take impractical computation times to arrive
at temperatures that are empirically known to be
effective [5, p. 732]). SPSA also converges to a
global optimum solution, under conditions developed
in two theorems established in [9]. In addition,
several numerical studies have demonstrated global
convergence of SPSA [9, 1]. An intuitive explanation
of this global convergence performance of SPSA
is that the rough gradient approximation used in
the algorithm introduces enough jitter into the early
iterations to allow the search to escape local minima.
Eventual convergence is enabled by the decreasing
nature of the gain and fckg sequences.
It is difficult to make analytical comparisons of

the two approaches (Gibbs sampler and SPSA) for
arriving at the MAP estimate, since their formal
structures differ. As noted above, SPSA updates
the entire image at each iteration, using a standard
“stochastic approximation” recursion in tandem
with its special gradient approximation. In contrast,
the Gibbs sampler updates its estimate of the MAP
image one pixel at a time while cycling repeatedly
through all of the pixels. The update of a pixel is
done by sampling from the set of pixel intensity levels
according to probabilities defined as follows. Suppose
that the sth pixel is to be updated. Let ¤ represent the
set of possible pixel intensity levels, !k the current
Gibbs sampler estimate of the MAP image (at the
kth update), and !xk the image !k with the sth pixel
replaced by x 2 ¤. For every x 2 ¤, probabilities Pk(x)

are calculated as follows:

Pk(x) = Z
¡1
s exp(¡UP(!xk )=T)

where UP(²) is the energy function and T is the
current value of the annealing temperature, both
described in Section IV, and

Zs =
X
y2¤
exp(¡UP(!yk )=T):

The updated value of the sth pixel is generated by
sampling x 2 ¤ using the probabilities Pk(x).
Some rough comparisons of the Gibbs sampler

to SPSA can be made from our experience in the
numerical example described below. G&G require
several evaluations of the function exp(¡UP(!)=T)
to update each pixel in a sweep through all the
pixels, and the Gibbs sampler makes several sweeps.
However, they are able to take advantage of a
simplification in the computation (using only cliques
containing neighbors of the pixel being updated) due
to the local nature of the assumed Gibbs distributions
[5, p. 730]. In our example, we found that the
computation of the energy function by SPSA took
about four times as long as G&G’s simplified
computation of the posterior. Also, one sweep by
the G&G sampler took about 100 times as long to
compute as one iteration of SPSA, but the G&G
sweep made more progress towards the solution.
While these results give a feel for the computational
demands of the two algorithms, they give no obvious
indication of the comparative performance, which is
discussed further in Section IV below.

IV. NUMERICAL STUDY

The goal of this work is to demonstrate that
SPSA should be considered as an optimizer for use
in image restoration. We have already noted that
SPSA’s design and previous performance experience
are strong indicators for SPSA’s suitability for image
processing. In addition, a theoretical comparison [15]
of SPSA relative to a generic simulated annealing
algorithm indicates that SPSA is likely to provide
superior optimization performance. For a numerical
demonstration, we chose G&G’s implementation of
the Gibbs sampler as a standard algorithm to compare
with. Although G&G’s original work is somewhat
dated, their explanation of the algorithm is particularly
clear. Our goal here is to show that SPSA can, in fact,
outperform such a standard method using the same
input image and the same basic assumptions.
We implemented the G&G Gibbs sampler

restoration method along with an SPSA-based
version of the same Bayesian MAP approach. The
implementations of the two methods largely followed
the description in G&G, using only the pixel intensity
process (G&G also allow a treatment of lines in the
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image, which we suppressed). For fairness in the
comparisons, these implementations were as much
alike as possible. In particular, the following elements
were the same for our setups of both SPSA and the
G&G Gibbs sampler:

1) The vector, say !, of intensities (gray levels) of
all of the pixels comprising the image, is modeled as a
Markov random field, which is equivalent to assuming
that the probability law for ! is a Gibbs distribution.
For more details, see the discussion in [5, p. 722]. The
definition of the Gibbs distribution [5, p. 725] is based
on a system of neighborhoods, one for each pixel, and
on cliques, which are sets of points, all of which are
neighbors of each other [5, p. 724].
2) The neighborhood system consists of the

eight nearest neighbors to each point, with the
appropriate natural adjustments at the boundaries of
the image; this is the neighborhood system shown in
[5, Fig. 1(b)].
3) The cliques are determined by the

neighborhoods, and are shown in [5, Figs. 1(d) and
1(e)].
4) The degraded image (to be restored) is

obtained by convolving the original image with
the shift-invariant blurring matrix, or point-spread
function H defined in [5, eq. (2.3)], and adding
Gaussian N(¹,¾2) noise. The effect of the blurring
matrix convolution is to replace each point of the
original image by weighting the original intensity
equally with the average of those of the eight nearest
neighbors. We took ¹= 0, ¾ = 1.
5) The Markov random field and Gibbs

distribution assumptions are as described in [5]. The
upshot of this is that the posterior probability P(! j g),
of an image !, where g is the vector of intensities
of all of the pixels comprising the observed image
(i.e., the given degraded image), is given by the Gibbs
distribution [5, p. 728]:

P(! j g) = Z¡1 exp(¡UP(!)=T)
where T is an annealing temperature (discussed
below), Z is a normalizing constant, and UP , the
“energy function,” is given by [5, eq. (8.2)]:

UP(!) =
X
C2C

VC(!) + k~¹¡ (g¡H(!))k2=2¾2

where H(!) is the image that results from applying
the point-spread function to !, ~¹ is a vector having
every component equal to ¹, k ² k2 is the vector inner
product (sum of squares of the components), C is the
set of cliques, and VC , the “potential” for any clique C
is as described in [5, p. 732 under “Group 1”]:
VC(!) = 1=3, if C is a clique of two elements, say

fr,sg, and the r,s components of ! are equal,
VC(!) =¡1=3 in the same situation except that the

r,s components of ! are different,
VC(!) = 0, otherwise.

Regarding the temperature T we adopted a suggestion
of [5, p. 732] of having T traverse from approximately
T = 4 to T = 0:5 over 300 sweeps, by taking T =
3= log(1+ k), where k is the sweep number and goes
from 1 to 300. We emphasize that the setups (input,
image, Gibbs distribution, energy function, etc.) for
both algorithms were as much alike, and as close to
that specified by G&G, as possible.
For the implementation of SPSA, we used T = 1,

along with the setup described above in Section III,
with a= 1:5, A= 20, ®= 0:602, c= 0:001, and
° = 0:101. A discussion of the choice of parameters
to use for SPSA is given in [13]. Another point about
the implementation of the SPSA algorithm is that
we used the following option, which often improves
performance. The option is to prevent any update
of the image that does not lower the cost function.
Using this option requires an extra evaluation of
the loss function at each iteration (in addition to
the two evaluations that are required by the basic
SPSA algorithm), in order to see whether the next
image decreases the loss function value relative to
the last update. If there is no decrease, the algorithm
does not update the current image, and instead
proceeds to the next iteration. Since the steps of the
algorithm are based on a random process (used in
approximating the gradient of the loss function), the
next trial image will be different, and hence could
decrease the loss function. While this idea of blocking
updates that do not decrease the loss function is often
a useful strategy, it can inhibit convergence to the true
(global) minimum of the loss function by encouraging
convergence to a local minimum. Using SPSA for
convergence to the global minimum was discussed
in Section III above.
To compare the two methods, we started with

several 10£ 10 images (100 pixels) having 11
intensity levels (from zero to 10), and generated
degraded images, blurred by the “point spread”
convolution and additive noise described above.
We applied both methodologies to restore (de-blur)
the images. For each image, we tuned both the
G&G and the SPSA algorithm by using a few test
runs and observing how the loss function (i.e., the
energy function, which both algorithms are trying to
minimize) changed with various parameter settings. A
comparison of typical final results is given in Fig. 1,
which shows the original image (which, of course,
is unknown to the algorithms), the degraded image
(which is input to the algorithms), the G&G and
SPSA solutions for the MAP image, and the loss
function history over the span of the recursions. We
found the SPSA approach to be competitive with the
established method, both in finding an image that
minimized the energy function (hence maximized the
posterior conditional probability) and in the quality
of the final image (measured subjectively by eye and
also by summing the absolute differences of pixel

CORRESPONDENCE 359



Fig. 1. Images and loss function values (same loss function for
both; G&G 300 sweeps took eight times as long as SPSA 3500

iterations).

intensities between the original and the MAP images).
Of course, since MAP is our criterion, the only true
measure of the quality of the solution (final image) is
the level of the final energy function. But the visual
and pixel-difference comparisons provide further
evidence that the two algorithms are arriving at very
similar solutions.
The SPSA algorithm achieved these results

in much faster execution times on several tests
involving these relatively small images. Typical
timing results saw 300 sweeps of the Gibbs sampler
running about eight times as long as 3500 iterations
of SPSA (we chose the running times so as to
match the loss function performance of the two
algorithms) on a Pentium-class computer. We tried
some longer runs, but they did not improve the loss
function perceptibly. These timing results should be
interpreted with caution. The Gibbs sampler is an
established and successful algorithm, and, although
we implemented it carefully, results are likely to be
implementation-dependent. We wrote both algorithms
in Matlab, and ran them without using a compiler.
While these results are preliminary, they indicate that
the SPSA approach has the potential to improve on
current technology.

V. SUMMARY

SPSA is an efficient methodology designed
to handle complex optimization problems such
as image restoration. We compared SPSA to the
well-established Gibbs sampler of Geman & Geman.
We found SPSA easier to implement than the Gibbs
sampler since the SPSA algorithm has a simpler
form. Our numerical comparisons showed that SPSA
can provide comparable MAP solutions for image

restoration in much faster running times than the
Gibbs sampler. Our experience with other applications
indicates that the SPSA computational advantage
may increase with larger images. This is because the
number of loss function evaluations per iteration for
SPSA does not increase with increasing image size
and the required increase in number of iterations tends
to be moderate. Further, a “second order” version
of SPSA [14], not implemented in the preliminary
study described here) has shown the ability to
provide potentially dramatic further improvements in
convergence without requiring information beyond
that of the basic SPSA used here. SPSA’s large body
of supporting theory, its proven performance in other
complex optimization applications, and its competitive
performance with the established G&G algorithm
provide strong indications of the suitability of SPSA
for image processing.
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Modeling Study for Evaluation of Aeronautical
Broadband Data Requirements over Satellite
Networks

We focus on the modeling and evaluation of the bandwidth

requirements of the next generation of satellite communication

technologies, which support future aeronautical applications.

For modeling purposes, we chose the real-time delivery of

high resolution weather maps to the cockpit as a particularly

demanding future application. Focusing on this application, we

investigate the use of low and geosynchronous Earth orbit (LEO

and GEO) satellite networks for efficient delivery of the data. We

propose a joint uni-cast and broadcast communication technique

that offers bandwidth reduction. We quantify our results through

simulation and compare the techniques with other methods.

I. INTRODUCTION

The development of aeronautical data
communication has been slow compared with the
advances in consumer data communications. The
difficulty and high costs associated with certifying
and installing new equipment in aircraft cockpits, the
short turn-of-investments and the lack of consensus
high-demand applications are several reasons.
However, aviation is currently undergoing major
changes in its telecommunications infrastructure
with modernization efforts underway to convert from
the current analog, primarily voice-based system
to a digital voice and datalink system for both air
traffic management (ATM) and airline operations
center (AOC) communications. Future air-ground
aeronautical telecommunications infrastructure will
be a hybrid, made up of numerous terrestrial and
space-based links such as VDL-Modes 2 and 3,
Mode S, SATCOM, and HF [1]. Furthermore, the
introduction of next-generation satellite systems
(NGSS) into the global telecommunications landscape
offers the potential to revolutionize how consumers
and business entities communicate in the future.
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