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A B S T R A C T  
A desire with iterative optimization techniques is that the 
algorithm reach the global optimum rather than get stranded at a 
local optimum value. In this paper, we examine the theoretical and 
numerical global convergence properties of a certain "gradient 
free" stochastic approximation algorithm called "SPSA," that has 
performed well in complex optimization problems. We establish 
two theorems on the global convergence of SPSA. The first 
provides conditions under which SPSA will converge in 
probability to a global optimum using the well-known method of 
injected noise. The injected noise prevents the algorithm from 
converging prematurely to a local optimum point. In the second 
theorem, we show that, under different conditions, "basic" SPSA 
without injected noise can achieve convergence in probability to a 
global optimum. This occurs because of the noise effectively (and 
automatically) introduced into the algorithm by the special form of 
the SPSA gradient approximation. This global convergence 
without injected noise can have important benefits in the setup 
(tuning) and performance (rate of convergence) of the algorithm. 
The discussion is supported by numerical studies showing 
favorable comparisons of SPSA to simulated annealing and genetic 
algorithms. 
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1. INTRODUCTION 
A problem of great practical importance is the problem 

of stochastic optimization, which may be stated as the problem of 

finding a minimum point, 0* R p , of a real-valued function 
L(O), called the "loss function," that is observed in the presence 

of noise. Many approaches have been devised for numerous 
applications over the long history of this problem. A common 
desire in many applications is that the algorithm reach the global 
minimum rather than get stranded at a local minimum value. In 
this paper, we consider the popular stochastic optimization 
technique of stochastic approximation (SA), in particular, the form 
that may be called "gradient-free" SA. This refers to the case 
where the gradient, g(O)= cgL(O)/30, of the loss function is not 

readily available or not directly measured (even with noise). This 
is a common occurrence, for example, in complex systems where 
the exact functional relationship between the loss function value 
and the parameters, 0 ,  is not known and the loss function is 
evaluated by measurements on the system (or by other means, such 
as simulation). In such cases, one uses instead an approximation 

to g(O) (the well-known form of SA called the Kiefer-Wolfowitz 

type is an example). 
The usual form of this type of SA recursion is: 

where gk (0) is an approximation (at the k th step of the recursion) 

of the gradient g(O), and {a k } is a sequence of positive scalars 

that decreases to zero (in the standard implementation) and 
satisfies other properties. This form of SA has been extensively 
studied, and is known to converge to a local minimum of the loss 
function under various conditions. 

Several authors (e.g., Chin (1994), Gelfand and Mitter 
( 1991), Kushner (1987), and Styblinski and Tang (1990)) have 
examined the problem of global optimization using various forms 
of gradient-free SA. The usual version of this algorithm is based 
on using the standard "finite difference" gradient approximation 
for ~b k (0). It is known that carefully injecting noise into the 

recursion based on this standard gradient can result in an algorithm 
that converges (in some sense) to the global minimum. For a 
discussion of the conditions, results, and proofs, see, e.g., Fang et 
al. (1997), Gelfand and Mitter (1991), and Kushner (1987). The 
amplitude of the injected noise is decreased over time (a process 
called "annealing"), so that the algorithm can finally converge 
when it reaches the neighborhood of the global minimum point. 

A somewhat different version of SA is obtained by using 
a "simultaneous perturbation" gradient approximation, as 
described in Spall (1992) for multivariable ( p > 1 ) problems. The 

gradient approximation in simultaneous-perturbation SA (SPSA) is 
much faster to compute than the finite-difference approximation in 
multivariable problems. More significantly, using SPSA often 
results in a recursion that is much more economical, in terms of 
loss-function evaluations, than the standard version of SA. The 
loss function evaluations can be the most expensive part of an 
optimization, especially if computing the loss function requires 
making measurements on the physical system. Several studies 
(e.g., Spall (1992), Chin (1997)) have shown SPSA to be very 
effective in complex optimization problems. A considerable body 
of theory has been developed for SPSA (Spall (1992), Chin 
(1997), Dippon and Renz (1997), Spall (2000), and the references 
therein), but, because of the special form of its gradient 
approximation, existing theory on global convergence of standard 
SA algorithms is not directly applicable to SPSA. In Section 2 of 
this paper, we present a theorem showing that SPSA can achieve 
global convergence (in probability) by the technique of injecting 
noise. The "convergence in probability" results of our Theorem 1 
(Section 2) and Theorem 2 (Section 3) are standard types of global 
convergence results. Several authors have shown or discussed 
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global convergence in probability or in distribution (Chiang et aL 
(1987), Gelfand and Mitter ( 1991), Gelfand and Mitter (1993), 
Geman and Geman (1984), Fang et al. (1997), Hajek (1988), 
Kushner (1987), Yakowitz et al. (2000), and Yin (1999)). 
Stronger "almost sure" global convergence results seem only to be 
available by using generally infeasible exhaustive search (Dippon 
and Fabian (1994)) or random search methods (Yakowitz (1993)), 
or for cases of optimization in a discrete ( 0 -) space (Alrefaei and 

Andradottir (1999)). 
The method of injection of noise into the recursions has 

proven useful, but naturally results in a relative slowing of the rate 
of convergence of the algorithm (e.g., Yin (1999)) due to the 
continued injection of noise when the recursion is near a global 
solution. In addition, the implementation of the extra noise terms 
adds to the complexity of setting up the algorithm. In Section 3, 
we present a theorem showing that, under different (more 
demanding) conditions, the basic version of SPSA can perform as 
a global optimizer without the need for injected noise. Section 4 
contains numerical studies demonstrating SPSA's performance 
compared to two other popular strategies for global optimization, 
namely, simulated annealing and genetic algorithms; and Section 5 
is a summary. The Appendix provides some technical details. 

2. SPSA W I T H  INJECTED NOISE AS A GLOBAL 
O P T I M I Z E R  

Our first theorem applies to the following algorithm, 
which is the basic SPSA recursion indicated in equation (1), 

modified by the addition of extra noise terms: 

tgk+l = Ok - ak g, k (Ok) + qk°gk , (2) 

where co k ~ R p is i.i.d. N(O,I) injected noise, a k = a / k ,  

q~ = q / k l o g l o g k ,  a > 0 ,  q>  0,  and ~bk(* ) is the "simultaneous 

perturbation" gradient defined as follows: (3) 

gk (0) - (2ckA k ) - I  [L(O + CkAk ) - L(O - ckA k ) + e(+) - e( - )  ], 

Ok, e (+) are scalars, A k E R p , and the inverse of a vector where 

is defined to be the vector of inverses. This gradient definition 
follows that given in Spall (1992). The c k terms represent 

(unknown) additive noise that may contaminate the loss function 
observation, c k and A kI are parameters of the algorithm, the 

c k sequence decreases to zero, and the A kl components are 

chosen randomly according to the conditions in Spall (1992), 
usually (but not necessarily) from the Bernoulli ( +_1 ) distribution. 
(Uniformly or normally distributed perturbations are not allowed 
by the regularity conditions.) 

In this Section, we will refer to Gelfand and Mitter 
(1991) as GM91. Our theorem on global convergence of SPSA 
using injected noise is based on a result in GM91. In order to state 
the theorem, we need to develop some notation, starting with the 

definition of a key probability measure, ¢c ~7 , used in hypothesis H8 

below. Define for any 77 > 0 : 

drf l  (0) / dO = exp(-2L(0)  / 17 2 ) / Z r/, where 

Z rl = fR p exp(-2L(0) / r/2 )dO. Next, define an important 

constant, CO, for convergence theory as follows (GM91). For 

t ~ R and Vl, v 2 6 R p , let 

l i t  I ( t 'V l 'V2 )=in f  -2 0 IdO(s)/ds + g(O(s))12 ds , 
O 

where the infis taken over all absolutely continuous functions 

O" R ~ R p such that ~(0) = v 1 and O(t) = v2, and I • is the 

Euclidean norm. Let V(Vl,V2)= lim I(t, V l ,V2) ,and  

S O = {OIg(O) = 0}. Then 

3 C O - ~ sup (V(Vl, v 2) - 2L(v 2)).  
Vl ,v2~S 0 

We will also need the following definition of tightness. If K is a 

compact subset of R p and { X k } is a sequence of random p - 

dimensional vectors, then { X k } is tight in K if X 0 ~ K and for 

any e > 0 ,  there exists a compact subset K e c R p such that 

P ( X  k ~ K e) > 1-  e, Vk > 0 .  Finally, let (~  - £~k (Ok) -  g(Ok ) 

and let superscript prime (') denote transpose. 
The following are the hypotheses used in Theorem 1. 

H1. Let Ak ~ R p be a vector of p mutually independent mean- 

zero random variables {Akl,Ak2 ..... Akp }' such that {Ak} is a 

mutually independent sequence that is also independent of the 

sequences {t~ 1 .... ,t~k_l} , {e~ +)- ,...,ek(+)l}---_ , and {o) 1 ..... C.Ok_l} , and 

such that Ah. is symmetrically distributed about zero, 

IAk/ l<oq  <oo a.s. and EIN72 
- ki I<Ot2 < ~ , a . s .  Vi ,  k .  

H2. Let e(k +) and e(k-) represent random measurement noise 

terms that satisfy Ek(e(k +) -e(k-))  = 0 a.s. Vk,  where E k 

denotes the conditional expectation given 3 k -= the sigma algebra 

induced by {t~0,6o I ..... C_Ok_l,(~ ..... ~";-1}. The {e (+) } sequences 

are not assumed independent. Assume that 

Ek[(e(k+)) 2 ] '  < a 3 < oo a.s. Vk.  

H3. L(O) is a thrice continuously differentiable map from R p 

into R 1 • L(O) attains the minimum value of zero; as l0 I--+ oo 

we have L(O) --+ oo and [ g ( 0 ) I ~  oo ; 

inf(I g(O)12 - Lap(L(O))) > -oo (Lap here is the Laplacian, i.e., 

the sum of the second derivatives of L(O) with respect to each of 

its components); L (3) (0) - 33L(0) /30"30"30" exists 

continuously with individual elements satisfying 

,(3) (0) l_ < a 5 < oo. 
] Li 1 i 2 i 3 

H4. The algorithm parameters have the form 

a k = a / k ,  e k = c / k Y , f o r  k = l , 2  ..... where a , c > O ,  q / a > C  O, 

and 7'~ [1/6, 1/2) .  

H5. [(4p - 4 ) / ( 4 p -  3)] 1/2 < lim inf(g(O)'O/(] g(O) ]] 0 ])). 
101~oo 
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H6. Ek(L(O k +_CkAk)) 2 <_6¢ 4 <oo a.s. V k .  

H7. Let (.o k be an i.i.d. N(O,I)  sequence, independent of the 

sequences {6~1,.. tgk_l} {e~ +) e(+) ., . . . . . .  k_l} ,  and {A1, .... Ak_l}. 

H8. For any r] > 0, Z ~ < 0% z~7 has a unique weak limit n: as 

r/--) 0. 

H9. There exists a compact subset K of R p such that (t~ k } is 

tight in K .  
C o m m e n t s :  
(a) Assumptions H3, H5, and H8 correspond to assumptions (A1) 

through (A3) of GM91; assumptions H4 and H9 supply the 
hypotheses stated in GM9 l ' s  Theorem 2; and the definitions of 
a k and qk given in equation (2) correspond to those used in 

GM91. Since we will show that assumption (A4) of GM91 is 
satisfied by our algorithm, this allows us to use the conclusion of 
their Theorem 2. 
(b) The domain of 7 given in H4 is one commonly assumed for 

convergence results (e.g., Spall (1992)). 
We can now state our first theorem as follows: 

Theorem 1: Under hypotheses H1 through H9, t~ k converges in 

probability to the set of global minima of L(O). 

Proof: See Maryak and Chin (1999), and the remark on 
convergence in probability in GM91, p. 1003. 

3. SPSA WITHOUT INJECTED NOISE AS A GLOBAL 
OPTIMIZER 

As indicated in the introduction above, the injection of 
noise into an algorithm, while providing for global optimization, 
introduces some difficulties such as the need for more "tuning" of 
the extra terms and retarded convergence in the vicinity of the 
solution, due to the continued addition of noise. This effect on the 
rate of convergence of an algorithm using injected noise is 
technically subtle, but may have an important influence on the 
algorithm's performance. In particular, Yin (1999) shows that an 
algorithm of the form (2) converges at a rate proportional to 

~/loglog (k + const) ,  while the nominal local convergence rate for 

an algorithm without injected noise is k 1/3 , i.e., k 1/3 (Ok - 0 " )  

converges in distribution (Spall (1992)). These rates indicate a 
significant difference in performance between the two algorithms. 

A certain characteristic of the SPSA gradient 
approximation led us to question whether SPSA needed to use 
injected noise for global convergence. Although this gradient 
approximation tends to work very well in an SA recursion, the 
SPSA gradient, evaluated at any single point in 0 -space, tends to 
be less accurate than the standard finite-difference gradient 
approximation evaluated at 0 .  So, one is led to consider whether 
the effective noise introduced (automatically) into the recursion by 
this inaccuracy is sufficient to provide for global convergence 
without a further injection of additive noise. It turns out that basic 
SPSA (i.e., without injected noise) does indeed achieve the same 
type of global convergence as in Theorem 1, but under a different, 
and more difficult to check, set of conditions. 

In this Section, we designate Kushner (1987) as K87, 
and Kushner and Yin (1997) as KY97. Here we are working with 
the basic SPSA algorithm having the same form as equation (1): 

0k+l --Ok - ak~,k(Ok ) , (4) 

where gk (*) is the simultaneous-perturbation approximate 

gradient defined in Section 2, and now (obviously) no extra noise 
is injected into the algorithm. For use in the subsequent 
discussion, it will be convenient to define 

bk (~k) = E(~k(Ok)- g(Ok) I ~k), and 

where R k denotes the o" -algebra generated by {/91,02 ..... /gk }, 

which allows us to write equation (4) as 

4+,--  ktg(4)+ k(4)+bk( k)J (5) 
Another key element in the subsequent discussion is the ordinary 
differential equation (ODE): 

= g(O), (6) 

which, in Lemma 1 of the Appendix is shown to be the "limit 
mean" ODE for algorithm (4). 

Now we can state our assumptions for Theorem 2, as 
follows: 

J1. Let A k ~ R p be a vector of p mutually independent mean- 

zero random variables {A kl, Ak2 .... , A kp }" such that {Ak } is a 

mutually independent sequence and A k is independent of the 

sequence {t91 ..... t~k_l}, and such that Ak/ is ~' i ,k symmetrically 

distributed about zero, [ Ak/I < a l  < ~ a.s. and E [ A ~  [ < ct 2 < oo. 

e l  +) and e l - )  represent random measurement noise J2. Let 

terms that satisfy E((e(k+)-el- ) ) [  ~ k ) = 0  a.s. Vk.  The {e (+)} 

sequences need not be assumed independent. Assume that 

E((ek(-+) )2 ] R k) -- o~3 < oo a.s. Vk. 

J3(a). L(O) is thrice continuously differentiable and the 

individual elements of the third derivative satisfy 

15(3) (0) I<_ a 5 < oo. 
ili2i3 

(b). IL(0)I-  as 101---) oo. 

J4. The algorithm parameters satisfy the following: the gains 

ak > 0 ,  ak ---> 0 as k --> oo, and k=l ak = oo. The sequence 

{Ck} is ofform e k =c /k~ ' ,where  c > 0  and y'~ [1/6,1/2) , and 

k=0 (ak / ck < oo. 

J5. The gradient g(O) is bounded and Lipschitz continuous. 

J6. The ODE (6) has a unique solution for each initial condition. 
J7. For the ODE (6), suppose that there exists a finite collection of 
disjoint compact stable invariant sets (see K87) K 1,K2,...,K m , 

such that U i K i  contains all the limit sets for (6). These sets are 

interpreted as closed sets containing all local (including global) 
minima of the loss function. 

J8. For any 7/> 0, Z r/< 0% xr/ has a unique weak limit x as 

r/--) 0 ( Z r/ and ~r/ are defined in Section 2). 
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k e J9. E [ ~ i =  1 i(Oi)l<,~Vk. 

J10. For any asymptotically stable (in the sense of Liapunov) 

point, 0 ,  of the ODE (6), there exists a neighborhood of the origin 

in R p such that the closure, Q2, of that neighborhood satisfies 

i f+Q2 = {if+y" y~  Q2} C ®  , where ® c R  p denotes the 

allowable 0 -region. There is a neighborhood, Q1, of the origin in 

R p and a real-valued function H 1 (gl ,~t2) ,  continuous in 

Q1 x Q2, whose ~1 -derivative is continuous on Q1 for each 

fixed V2 ~ Q2, and such that the following limit holds. For any 

z , A  > 0 ,  with Z being an integral multiple of A,  and any 

functions N1 (*), g2 (*) taking values in Q1 x Q2 and being 

constant on the intervals [iA, iA + A), iA < Z ,  we have 

IoZH1 (s),N2 (s))ds = (7) (~1 

. . . .  x-,im+m-1 )1" limsup A---l°gEexpIE}Z--/A)-lq/l bn+j(On+j 
m,rl 

Also, there is a function H 2 (q/3) that is continuous and 

differentiable in a small neighborhood of the origin, and such that 

IZo H (s))ds = (8) (~'1 

. . . .  x-, im+m-1 )l . 
lim sup----Am log E expI~If0/A)-I  ~t{ Uzx)2.,j=im en+ j (On+j J 

m,f/ 

A bit more notation is needed. Let T > 0 be interpreted 

such that [0,T] is the total time period under consideration in 

ODE (6). Let 

H(N1, N2) = 0.5[H1 (2~1, ~2)  + H2 (2~rl)], 
m 
L (fl, 1if2 ) = sup[lff{ (fl - g(N2 )) - H (~1, q/Z)], 

and, for 0(0) = x ~ R 1 , define the function 

S(T,O) = ff-E((~(s),O(s))ds, 
if 0(*) is a real-valued absolutely-continuous function on [0,T] 

and to take the value ,,o otherwise. S(T,O) is the usual action 

functional of the theory of large deviations (adapted to our 
k-1 

n-1 t n = Ei_o  an+i Define context). Define t n - Z i = 0  ai ' and k _ • 

{tg~ } and O n (.) by 

"r/ "n 0 ;  g;'=x~O, 0~+1=0 ~-a~+~n+k( ),and 

on(t)=O~ for t~ [t~ t n 
' k + l  ) " 

Now we can state the last two assumptions for Theorem 2: 
J l l .  For each 6 > 0 and i = 1,2,...,m, there is a p -neighborhood 

of K i , denoted Np (K i ), and 6p > O, Tp < ~ such that, for each 

x,y~ Np(Ki ) ,  there is apath, 0 ( ' ) ,  with 0(0) =x,  O(Ty)=y, 

where Ty < Tp and S(Tp,O) <- 8 .  

312. There is a sphere, D 1 , such that D 1 contains UiKi  in its 

interior, and the trajectories of O n (o) stay in D 1 . All paths of 

ODE (6) starting in D 1 stay in D 1 . 

Note 1. Assumptions J1, J2, and J3(a) are from Spall (1992), and 

are used here to characterize the noise terms b k (Ok) and e k (Ok). 

Assumption J3(b) is used on page 178 of K87. Assumption J4 
expresses standard conditions on the algorithm parameters (see 
Spall (1992)), and implies hypothesis (A10.2) in KY97, p. 174. 
Assumptions J5 and J6 correspond to hypothesis (A10.1) in KY97, 
p. 174. Assumption J7 is from K87, p. 175. Assumption J8 

concerns the limiting distribution of O k . Assumption J9 is used to 

establish the "mean" criterion for the martingale sequence in 
Lemma 2. Assumptions J 11 and J12 are the "controllability" 
hypothesis A4.1 and the hypothesis A4.2, respectively, of K87, p. 
176. 
Note 2. Assumption J 10 corresponds to hypotheses (A10.5) and 
(A10.6) in KY97, pp. 179-181. Although these hypotheses are 
standard forms for this type of large deviation analysis, it is 
important to justify their reasonableness. The first part (equation 

(7), involving noise terms bk(O k) ) of J10 is justified by the 

discussion in KY97, p. 174, which notes that the results of their 
subsection 6.10 are valid if the noise terms (that they denote ~:n ) 

are bounded. This discussion is applicable to our algorithm since 

the bk(Ok) noise terms were shown by Spall (1992) to be 

O(c~) (c k ---> 0) a.s. The second part (equation (8), involving 

noise terms e k (O k) ) is justified by the discussion in KY97, p. 

174, which notes that the results in their subsection 6.10 are valid 
if the noise terms they denote tim n (corresponding to our noise 

terms e k (O k) ) satisfy the martingale difference property that we 

have established in Lemma 2 of the Appendix. 
Now we can state our main theorem: 

Theorem 2. Under assumptions J 1 through J12, t9 k converges in 

probability to the set of global minima of L(O). 
The idea of the proof is as follows (see the Appendix for 

the details). This theorem follows from results (in a different 

context) in K87 for an algorithm /gk+l = Ok -ak[g(Ok) + ~k ], 
where (k is i.i.d. Gaussian (injected) noise. In order to prove our 

Theorem 2, we start by writing the SPSA recursion as 

Ok + 1 = Ok - a k [g(0k ) + (~ ],  where (~ - gk (Ok) - g(0k ) is the 

"effective noise" introduced by the inaccuracy of the SPSA 
gradient approximation. So, our algorithm has the same form as 

that in K87. However, since (~ is not i.i.d. Gaussian, we cannot 

use K87' s result directly. Instead, we use material in Kushner and 
Yin (1997) to establish a key "large deviation" result related to our 

algorithm (4), which allows the result in K87 to be used with (~ 

replacing the (k in his algorithm. 
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4. NUMERICAL STUDIES: SPSA WITHOUT INJECTED 
NOISE 

4.1. Two-Dimensional Problem 
A study was done to compare the performance of SPSA 

to a recently published application of the popular genetic algorithm 
(GA). The loss function is the well-known Griewank function (see 
Haataja (1999)) defined for a two-dimensional 0 = (t 1 , t 2 ) ' ,  by: 

L(O) = cos(t 1 - 100) cos[(t 2 - 100) / ~/2] 

- [ ( t  1 - 100) 2 +( t  2 - 100) 2 ] / 4 0 0 0 - 1 ,  

which has thousands of local minima in the vicinity of a single 
global minimum at 0 = (100,100)' at which L(O) = 0. Haataja 

(1999) describes the application of a GA to this function (actually, 
to find the maximum of -L(O) ) based on noise-free evaluations of 

L(O) (i.e., e k = 0 ). This study achieved a success rate of 66% 

(see Haataja' s Table 1.3, p. 16) in 50 independent trials of the GA, 
using 300 generations and 9000 L(O) evaluations in each run of 

the GA. Haataja' s definition of a successful solution is a reported 
solution where the norm of the solution minus the correct value, 

0" ,  is less than 0.2, and the value of the loss function at the 

reported solution is within 0.01 of the correct value of zero. We 
examined the performance of basic SPSA (without adding injected 

noise) on this problem, using a k = a/(A + k) a , with 

A = 60, a = 100 and o~ = .602, a slowly decreasing gain sequence 

of a form that has been used in many applications (see Spall 
(1998)). For the gradient approximation (equation (3)), we chose 
each component of A k to be an independent sample from a 

Bernoulli (+1) distribution, and c k = c / k  )', with c =  10 and 

y =.101.  Since we used the exact loss function, the e k noise 

terms were zero. We ran SPSA, allowing 3000 function 
evaluations in each of 50 runs, and starting the algorithm (each 
time) at a point randomly chosen in the domain 
[-200, 400]×[-200, 400]. Haataja's 0 -domain was also 

constrained to lie in a box, but the dimensions of the box were not 
specified. Hence we chose a domain that is a cube centered at the 
global minimum, in which there are many local minima of L(O) 

(as seen in Haataja' s (1999) Figure 1.1). SPSA successfully 
located the global minimum in all 50 runs (100% success rate). 

4.2. Ten-Dimensional Problem 
For a more ambitious test of the global performance of 

SPSA, we applied SPSA to a loss function given in Example 6 of 
Styblinski and Tang (1990), which we will designate for 
convenience as ST90. The loss function is: 

P 2 P 
L(O) = (2p) - 1 Z  ti - 4 p I I  cos(t/) ,  

i=1 i=1 
where p = 10 and 0 = (t 1 ..... tp ) ' .  This function has the global 

minimum value of -40  at the origin, and a large number of local 

minima. As in the two-dimensional study above, we used the 
exact loss function. Our goal is to compare the performance of 
SPSA without injected noise with simulated annealing and with a 
GA. 

For the simulated annealing algorithm, we use the results 
reported in ST90. They used an advanced form of simulated 

annealing called fast simulated annealing (FSA). According to 
ST90, FSA has proven to be much more efficient than classical 
simulated annealing due to using Cauchy (rather than Gaussian) 
sampling and using a fast (inversely linear in time) cooling 
scheme. For more details on FSA, see ST90. The results of their 
application of FSA to the above L(O) are given in Table 1 below 

(FSA values taken from Table 10 of ST90). Table 1 shows the 
results of 10 independent runs of each algorithm. In each case 
(each run of each algorithm), the best value of L(O) found by the 

algorithm is shown. In their study, although FSA was allowed to 
use 50,000 function evaluations for each of the runs, the algorithm 
showed very limited success in locating the global minimum. It 
should be noted that the main purpose of the ST90 paper was to 
examine a relatively new algorithm, stochastic approximation 
combined with convolution smoothing. This algorithm, which 
they call SAS, was much more effective than FSA, yielding results 
between those shown in Table 1 for GA and SPSA. 

For the genetic algorithm (GA), we implemented a GA 
using the popular features of elitism (elite members of the old 
population pass unchanged into the new population), tournament 
selection (tournament size = 2), and real-number encoding (see 
Mitchell (1996), pp. 168, 170, and 157, respectively). After 
considerable experimentation, we found the following settings for 
the GA algorithm to provide the best performance on this problem. 
The population size was 100, the number of elite members (those 
carried forward unchanged) in each generation was 10, the 
crossover rate was 0.8, and mutation was accomplished by adding 
a Gaussian random variable with mean zero and standard deviation 
0.01 to each component of the offspring. The original population 
of 100 (10-dimensional) 0 -vectors was created by uniformly 

randomly generating points in the 10-dimensional hypercube 
centered at the origin, with edges of length 6 (so, all components 
had absolute value less than or equal to 3 radians). We constrained 
all component values in subsequent generations to be less than or 
equal to 4.5 in absolute value. This worked a bit better than 
constraining them to be less than 3, since, with the tighter 
constraints, the GA got stuck at the constraint boundary and could 
not reach local minima that were just over the boundary. All runs 
of the GA algorithm reported here used 50,000 evaluations of the 
loss function. The results of the 10 independent runs of GA are 
shown in Table 1. Although the algorithm did reasonably well in 
getting close to the minimum loss value of-40,  it only found the 
global minimum in one of the 10 runs (run #8). In the other nine 
cases, a few (typically two or four) of the components were 
trapped in a local minimum (around +pi  radians), while the rest of 
the components (approximately) achieved the correct value of 
zero. Note that the nature of the loss function is such that the 
value of L(O) is very close to an integer (e.g.,-39.0 or-38.0) 

when an even number (e.g., 2 or 4) of components of 0 are near 

+ pi radians. 
We examined the performance of basic SPSA (without 

adding injected noise), using the algorithm parameters defined in 
Subsection 4.1 with A - 60, a - 1, ot - . 6 0 2 ,  c = 2 ,  and 

2/ - .  101. We started 0 at t i = 3 radians, i - 1 ..... p ,  resulting in 

an initial loss function value of -31 .  This choice of starting point 

was at the outer boundary of the domain in which we chose initial 
values for the GA algorithm, and we did not constrain the search 
space for SPSA as we did for GA (the initialization and search 
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space for FSA were not reported in ST90). We ran 10 Monte 
Carlo trials (i.e., randomly varying the choices of A k ). The 

results are tabulated in Table 1. The results of these numerical 
studies show a strong performance of the basic SPSA algorithm in 
difficult global optimization problems. 

Table 1. Best Loss Function Value in Each of 10 Independent 
Runs of Three Algorithms 

Run SPSA GA FSA 
1 --40.0 -38.0 -24.9 
2 -40.0 -39.0 15.5 
3 -40.0 -39.0 -29.0 
4 -40.0 -38.0 -32.1 
5 -40.0 -37.0 -30.2 
6 -40.0 -39.0 -30.1 
7 -40.0 -38.0 -27.9 
8 -40.0 -40.0 -20.9 
9 -40.0 -38.0 -28.5 
10 -40.0 -39.0 -34.6 

Average Value -40.0 -38.5 -27.4 
Number of Function 2,500 50,000 50,000 

Evaluations 

5. SUMMARY 
SPSA is an efficient gradient-free SA algorithm that has 

performed well on a variety of complex optimization problems. 
We showed in Section 2 that, as with some standard SA 
algorithms, adding injected noise to the basic SPSA algorithm can 
result in a global optimizer. More significantly, in Section 3, we 
showed that, under certain conditions, the basic SPSA recursion 
can achieve global convergence without the need for injected 
noise. The use of basic SPSA as a global optimizer can ease the 
implementation of the global optimizer (no need to tune the 
injected noise) and result in a significantly faster rate of 
convergence (no extra noise corrupting the algorithm in the 
vicinity of the solution). In the numerical studies, we found 
significantly better performance of SPSA as a global optimizer 
than for the popular simulated annealing and genetic algorithm 
methods, which are often recommended for global optimization. 
In particular, in the case of a 10-dimensional optimization 
parameter ( 0 ), the fast simulated annealing and genetic 
algorithms generally failed to find the global solution. 

APPENDIX (LEMMAS RELATED TO THEOREM 2 AND 
PROOF OF THEOREM 2) 

In this Appendix, we designate Kushner (1987) as K87, 
and Kushner and Yin (1997) as KY97. Here we are working with 
the basic SPSA algorithm as defined in equation (4): 

/gk+l =/gk -ak~gk(Ok). 
We first establish an important preliminary result that is needed in 
order to apply the results from K87 and KY97 in the proof of 
Theorem 2. 
Lemma 1. The ordinary differential equation (eq. (6) above), 

b: g(o), 
is the "limit mean ODE" for algorithm (4). 

Proof: Examining the definition of limit mean ODE given in 
KY97, pp. 174 & 138, it is clear that we need to prove that 

1 E m + n - 1  m k=n [g(O)+ek(Ok)+bk(Ok)]----> g(O) w.p. 1 as 

m,n ~ oo. Since Spall (1992) has shown that bk(Ok) --~ 0 w.p. 

1, we can conclude using Cesaro summability that the contribution 

ofthe bk(Ok) terms to the limit is zero w.p. 1. For the ek(Ok) 

terms, we have by definition that E[e k (Ok)] = 0" hence, by the 

law of large numbers, the contribution of the ek(O k ) terms to the 

limit is also zero. Q.E.D. 
Our next Lemma relates to Note 2 in Section 3. 

Lemma 2. Under assumptions J1, J3(a), and J9, the sequence 

{ek(O k)} is a 1~ k -martingale difference. 

k 
Proof: It is sufficient to show that M k - Ei=lek(Ok)  is a 

martingale. Assumption J9 satisfies the first requirement (see 

KY97, p.68) of the martingale definition, that EIMk] < oo. For 

the main requirement, we have for any k: 

E(Mk+I IMk ..... M1) = E[ek+l(Ok+l)+Mk [Mk ..... M1] 

= M k +E[ek+l (t~k+l)lMk ..... M1 ] 

= Mk + E{[gk+l (0k+l) - E(gk+l (0k+l) [0k+l )][Mk } = 

M k +Eok+]" E{[~,k+l(Ok+l)-E(~,k+l(Ok+l)lOk+l)]lMk,Ok+l} 

= M k +E~k+lE(gk+l(Ok+l)[Mk,Ok+l)- 

Et~k+ 1E[E(~k+ 1 (0k+l)l Mk,  6Jk+l }] = M k ,  

where EOk+l̂  denotes expectation conditional on ~Jk+l , and all 

equalities concerning conditional expectations are w.p. 1. Q.E.D. 
A key step in the proof of our main result (Theorem 2 

below) is establishing the following "large deviation" result 
(Lemma 3). Let B x be a set of continuous functions on [0,T] 

taking values in ® and with initial value x .  Let B 0 denote the 

interior of B x , and B x denote the closure. 

Lemma 3. Under assumptions J4, J5, J6, and J10, we have 

- inf S(T,0) < l iminflogP n {O n(o)e Bx} 

___ lim suplogP n {O n(o)e Bx} <_- inf S(T,O), (9) 
n O~Bx 

where pn denotes the probability under the condition that 

O n(O) = x .  

Proof: This result is adapted from Theorem 10.4 in KY97, p. 181. 
Note that our assumption J 10 is a modified form of their 
assumptions (A10.5) and (A10.6), using "equals" signs rather than 
inequalities. The two-sided inequality in (9) follows from J10 by 
an argument analogous to the proof of KY87's Theorem 10.1 (p. 
178), which uses an "equality" assumption ((A10.4), p. 174) to 
arrive at a two-sided large deviation result analogous to (9) above. 
Q.E.D. 
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We restate our main theorem: 

Theorem 2: Under hypotheses J1 through J12, t} k converges in 

probability to the set of global minima of L(O). 

Proof: This result follows from a discussion in K87. Theorem 2 
of K87, (p. 177) describes probabilities involving expected times 
for the SA algorithm (system (1.1) of K87) to transition from one 
K i to another. The SA algorithm he uses can be written in our 

notation as 0k+l =t}k -ak[g(Ok)+~k] ,  where (k is i.i.d. 

Gaussian (injected) noise. The K87 Theorem 2 uses the i.i.d. 
Gaussian assumption only to arrive at a large deviation result 
exactly analogous to our Lemma 3. The subsequent results in K87 
are based on this large deviation result. Recall that the SPSA 
algorithm without injected noise can be written in the form 

t}k+ 1 = O k -ak[g(Ok)+ (~] .  Since we have established Lemma 

3 for SPSA, the results of K87 hold for the SPSA algorithm with 

its "effective" noise {(~ } replacing the {(k } sequence used in 

K87. In particular, K87's discussion (pp. 178, 179) of his 
Theorem 2 is applicable to our Theorem 2 context (SPSA without 
injected noise), which corresponds to K87's "potential case." Note 
that our formulation corresponds to the K87 setup where 

b(x,~) = b(x) in his notation, which, by the comment in K87, p. 

179, means that his discussion is applicable to his system (1.1) and 
hence to our setup. In his discussion on p. 179, K87 indicates that 
the difference between the measure of X n (which corresponds to 

our t~ k ) and the invariant measure (which we have denoted ~r/) 

converges asymptotically ( n,k --~ 0% rl --> 0 ) to the zero measure 

weakly. This means that, in the limit as k --~ ,,~, O k is equivalent 

to rc in the same sense as in Theorem 2 of Gelfand and Mitter 
(1991), and the desired convergence in probability follows as in 
Theorem 1 above. Q.E.D. 
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