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Abstract. Consider a static multiple-input multiple-output unknown system. Suppose that
the dimension of the output of the system is greater than the one of the input of the sys-
tem. Extended Adaptive Robbins-Monro procedure is appropriate for finding a least-square
approximation input parameter, which minimizes the output error. However, if the system is
large-dimension, a number of observations for the system increases. In this paper, we present
an extended adaptive Robbins-Monro procedure using the simultaneous perturbation. In this
algorithm, the number of measurements of the system does not increase no matter how the

~dimension of the system increases.
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1. INTRODUCTION

We consider a static multiple-input multiple-output
unknown system. Let u, € R* (n-dimensional Eu-
clidean space) and y € ®™ be an input and an output

of the system, respectively. f (u ) represents a system
characteristic;

y =F(u) (1}

Our problem is to find an optimal input w , that satis-
fies the following relation.

r=f(n.) )

Where, 7 € ™ is a desired output of the system.

We can measure the output ¥ under noisy environ-
ment. That is, measurements are corrupted by a certain
observation noise 1% € R™ with zero mean. Therefore,
observed output 2 is as follows;

z =y +9 (3)

If the dimension of the output is equal to the one
of the input, we can apply the usual Robbins-Monro
stochastic approximation. Meanwhile, we would like to
handle more general problem. That is, we considered
the case that the dimension of the output is greater
than the one of the input in this paper.

Then, let us introduce the following squared output

error as an evaluation function J(u ).

Ju) = E{(z -7)"(z -r)}

= W -r)y -r)+E@®T¥) (1)

In this paper, we find the least-square approximation
input w , that minimizes the above evaluation function,
that is, which minimizes the squared error of the out-
put.

The extended adaptive Robbins-Monro stochastic
approximation{ ) proposed by the authors is applicable
to this kind of problems.

1. 1 & PR
u,+1=u,—?Hth?l{%Z(zf +zt‘)}_’r:|

Where,
KK, if det(KTK ) #0
H,= : T (5)
I if det(KTK )=0
ot 1 Z2F-2z7
=K t+1 2 (6)

Where, I denotes an identity matrix. u , is an estima-
tor of w , at the t-th iteration. We add perturbations
*e; to the i-th element of u 4, and make observations

at the points. The observation vectors z = denote the
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observed values at these points. That is,

z ¥ = f(ule:e"cf)-!-#’,i"
(t=1,---,n} (M

¥ ¥ denote the observation noise vectors. e’ de-
notes a fundamental vector whose i-th element is 1 and
the other are all 0. Moreover, the observation matri-
ces Z ¥ of Eq.(6) are defined as follows, as same as
the ordinary adaptive Robbins-Monro (ARM) proce-
dure (Nevel'son et al.(1973a), Nevel’son et al.(1973b),
Maeda et al.(1990a), Maeda. et al.(1990b)).

Z:‘: = (Z ;‘:1!"'12: :L-n)

This algorithm is an extension of the usual ARM proce-
dure. The matrix K , denotes an estimator of f '(u ).
The gain matrix H ['K T is used in order to convert
m dimensional observation vector into n dimensional
vector. Moreover, this matrix improves the asymptotic
convergence rate of the algorithm. In this algorithm, we
use the perturbations to estimate the derivative as with
the usual ARM procedure. Therefore, such a procedure
need additional observations.

On the other hand, a similar extension of the usual
Robbins-Monro procedure was also proposed by one of
the authors (Maeda et al.(1991)).

|
ut+1=u1_?Ktl{21_r} (8)
Where, gain matrix K  is m x n matrix. Moreover,
zi=f(u)+v, (9)

Instead of the estimator of f '(w ), this algorithm
uses a constant mxn gain matrix K ;. However, how to
determine the gain matrix is serious in this algorithm.

Generally, gain matrix is used to improve asymp-
totic convergence rate. On the other hand, since the
dimensions of the input and the output are different in
our problem, the gain matrix should have the another
role. That is, in these algorithms, the gain matrices
are utilized in order to not only improve asymptotic
convergence rate of 1 ; but also convert m dimensional
observed vector into n dimensional vector. We have
to determine the suitable gain matrix so that the gain
matrix converts the obsefved vector properly. The algo-
rithm of Eqs.(5) and (6) is an adaptive Robbins-Monro
type of resolutions. However, this algorithm needs ad-
ditional observations. I the dimension n increases, this
algorithm is not acceptable.

The second algorithm (8) defeats the problem of the
increase of the observations. However, the condition of
the gain matrix that ensures the convergence is closely
related to the shape of f (-). Therefore, it is generally
difficult to determine the gain matrix exactly, because
f (-} is unknown.

The idea of "simultaneous perturbation” .contrived
by J. C. Spall is useful to solve the above problem

(Spall(1992)). J. C. Spall used the simultaneous per-
turbation to Kiefer-Wolfowitz-type of the stochastic ap-
proximation (Spall(1992)). He also compared the effi-
ciency between an algorithm via the simultaneous per-
turbation and the usual Kiefer-Wolfowitz procedure.
Consequently, he pointed out that the algorithm via
the simultaneous perturbation is superior.

This idea ia also applicable to our extended ARM
procedure of Egs.(5) and (6). Using the simultaneous
perturbation, we can keep the number of observations
constant no matter how n { the dimension of the input
) increases.

2. MAIN ALGORITHM AND CONVERGENCE
THEOREM

We propose an extended ARM procedure using the
simultaneous perturbation. First of all, we define ob-
servation vectors with perturbation vector £ .

flu & ,a)+pE

Then, an observation matrix Z ; is defined as follows:

Z,= (u)
2c‘§‘(.‘o‘) i

Where, zi* and .f,(j ) denote the i-th element of the vec-
tor z £ and the j-th element of the perturbation vector
£ ,, respectively.

Then, main algorithm is as follows:

z; =

(10)

1. . 1 _
u‘+1=ut—?Hth;r {5(2:’+zt)}—7‘]
Where,

_f KTK, if det(KTK )#0
H“{r if det(K 7K, =0 (11)
Ky= K. +—12 (12)

t+l""t+1 i t+1 i

We explain the procedure of our algorithm. First, we
make random perturbation vector £ , € R*. Each com-
ponent of this vector is mutually independent and with
zero-mean. ¢; is a positive deterministic sequence de-
fined in the condition [6].

Second, we make two observations at two points
(u ;% £ 4c). Observation noise 1 I should obey the
condition [5]. Then, we have z ¥. Using these values,
we can construct the observation matrix (10). Instead
of 2n times observations of Eq.(7), we can obtain the
observation matrix Z , by twice observations of f (1)
of Eq.(10). This matrix Z ; is an estimator of f ()
by a difference approximation in a sense. However, a
length of the perturbation of each component for the
difference approximation is different each other and de-
termines randomly. Compared with the usual extended
ARM procedure, only two observations are required to
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estimate f ‘(). Even if the dimension of the input in-
creases, there is no increase of the measurements.

Finally, Eq.(12) calculates an arithmetical mean of
Z ;. Every 2 times observations, u ; and K , are mod-
ified by Eqs.(11) and (12). The notation ¢ represents
this iteration. Therefore, total number of observations
at the t-th iteration is 2t times. '

We assume the following conditions.

Conditions

[1] f(-) is two times continuously differentiable.
Moreover, the dimension n of the input # and the di-
mension m of the output y satisfy the following rela-
tion.

ma2n

(2] For arbitrarily «®,u® u ¢ u? € R, there exist
positive definite matrices M ; and M , such that

Flaw)f'uw®)> My,

Flau®)Tf () (w7 f '(u )
+ FluT ) f wh)TF(ue)
> M, (13)

[3] For an arbitrarily input uw € ®®, there exists a
positive number m; such that

I ()l < my

Where, the matrix norm || - || denotes the Euclidean
norm. [4] For an arbitrarily » € R and ¢, 5, k,

oD )

B Ay | < ™2

Where, &) represents the i-th element of f(u) &)
and u®) denote the j-th and k-th components of the
vector u. [5] E( ') = o ,B(¥ &y ¥T) = v .
Moreover, ti‘ are independent to each observation.
[6] There exist positive numbers C,, C; and € such that

Cit7™* < SCyt™*,1/4<e < 1/2,

[7]&0 (i =1,--+,n) are i.i.d. and symmetrically dis-
tributed about zero. Moreover, there exist positive
numbers zg, x; and z, such that

E(E™) =0, BI() Y < oy,

E(Et(i))_1 < zg, ]ft(t)| < xg with probability 1.

The conditions {1]~[3] are related to the characteris-
tic of the unknown system. The condition [2] restricts
the shape of the function f (). When the system is a
single-input single-output system and the sign of f’(u)
does not change with respect to u, this condition hold.
The condition [5] prescribes the properties of the obser-
vation noise. The condition [6] relates to a magnitude
of the perturbation. ¢, must tends to 0 faster than

t=1/* and slower than t~1/2, The conditions [1]~[6]
except [4] are the same as the ones of the usual ex-
tended ARM procedure (Maeda et al.(1992)). On the
other hand, the conditions [4] and [7] that relate to the
simultaneous perturbation are the same conditions that
the reference (Spalt{(1992)) uses. These conditions are
required to cancel an error of an approximation by the
simultaneous perturbation.

Under these conditions, we can obtain the following
theorem.

Theorem 2.1 If the condition [1]~[7] hold. Then, (11)
and (12) have the following properties with probability
1.

u‘—"u.,.
Kt_’f'(uv)l

H—f'(u)Tf'(x.) (—o0)

The first assertion is the main result that ensures the
convergence of w ; to u ,. The second and the third
assertions of K ; and H  are required to improve the
convergence rate of u , and to determine the proper
conversion matrix.

The process of the proof is similar to the one of
the proof of the theorem in the reference (Maeda et
al.(1992)) and (Nevel’son et al.(1973b)). However, we
use the simultaneous perturbation as against that the
usual extended ARM procedure uses the finite differ-
ence approximation. We must take this difference into
account.

In order to demonstrate the convergence of u ; to
© ., the gain matrix H ['K T used in (5) should be
positive definite and bounded. On the other hand, we
should guarantee the convergence of u ; to 4 , in order
to prove the convergence of K ; to f ‘(u,). These two
convergences depend on each other. The detail of the
proof is omitted to save the space.

3. NUMERICAL SIMULATION

In this section, we consider a simple multiple-input
multiple-output static system to compare an efficiency
of the algorithm proposed here and the usual extended
ARM algorithm. As described before, this algorithm
has an advantage especially in the case that the dimen-
sion of the system is higher. In this point of view, we
handle the following simple 10 inputs 11 output linear
system.
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Where, v € R, z |4 € R Thus, D is 11 x 10
matrix. That is, '

u(l) + '\‘.1(2)
1)
u(®

+ 1 (15)
(19
We set up a desired value of the output as follows:

r=(0120-.-0)7 (16)

Then, we obtain the evaluation function from Eq.(4).

Ju) = (2P +u@)2 4 (0 _1)?
+(11(2) _ 2)2
DY oy (02
+E(v" ) a7

From 3J/8u = 0, we know the following least-square
input parameters:

uE”:O, 23 = 1, =0, 219 = ¢

1 1

Initial value 1 = (5.0 --- 5.0)¥. Moreover,

5.0 ) O

5.0

0 oo
The observation noise 4 is a uniform random niumber
[-0.1 0.1] with zero mean. The perturbation is also

a uniform random number [-1.0 1.0] with zero mean,
but we remove {~0.1 0.1] to ensure the condition {7].

K 1 = (18)

Sequence ¢ ig $—9-3333,
2
Uy —u
1000 Il - O Proposed
procedure
x X Usual ARM

1 )(_x sual

0o o OOQ: XX procedure

10 %XYQ?
3

1 _ééx

0.1 '

10 100 10000

The number of measurenients

TFig. 1. Simulation results,

Figure 1 shows a simulation result by the proposed al-
gorithm (11) and (12) and by the usual extended ARM
procedure. On average of ten trials, this figure shows an
outcome by numerical simulations. In this figure, the
horizontal axis denotes the number of measurements of
the system. The vertical axis denotes the squared error
flw ¢ =2 2

The convergence rate of the algorithm proposed here
is faster than the one of the usval extended ARM pro-
cedure. As we described before, the advantage of this
algorithm is outstanding as a system is larger.

4. CONCLUSION

In this paper, we proposed an extended ARM algo-
rithm via the simultaneous perturbation. Qur algo-
rithm is applicable to the case that the dimension of the
output is greater than the one of the input. This algo-
rithm recursively estimates the least-square approxima-
tion input parameter. Moreover, even if the dimension
of the system increases, there is no need to increase the
number of measurements,

The author provided applications of ARM-like pro-
cedure to few area (Maeda et al.(1990a), Maeda et

~al.(1990b), Maeda et al.(1990c)). The algorithm pro-

posed here is also applicable to these fields.
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