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Simultaneous-Perturbation-Stochastic-Approximation
Algorithm for Parachute Parameter Estimation

Govindarajan Kothandaraman∗ and Mario A. Rotea†

Purdue University, West Lafayette, Indiana 47907-1282

This paper presents an algorithm to estimate unknown parameters of parachute models from flight-test data. The
algorithm is based on the simultaneous-perturbation-stochastic-approximation method to minimize the prediction
error (difference between model output and test data). The algorithm is simple to code and requires only the model
output. Analytical gradients are not necessary. The algorithm is used to estimate aerodynamic and apparent mass
coefficients for an existing parachute model.

Nomenclature
A = apparent mass tensor
B, C , D = points on parachute
Cd = drag coefficient
Cm = moment coefficient
cref = reference length
e0, e1, e2, e3 = quaternions
Fx , Fy , Fz = force along x , y, and z directions
H = cost function
Ixx , Iyy , Izz = moment of inertia about x , y, and z axes
Mx , My , Mz = moment about x , y, and z axes
m = mass
p = roll rate
q = pitch rate
r = yaw rate
Sref = reference area
U = velocity along X direction
u, v, w = velocity along the x , y, and z axes
V = velocity, velocity along Y direction
X , Y , Z = inertial coordinates
x , y, z = body coordinates
α = angle of attack
αT = total angle of attack
β = angle of sideslip
θ = pitch angle
ϑ = unknown parameters
ρ = density of air
φ = roll angle
ψ = yaw angle

Introduction

T HIS paper describes a simple algorithm for parameter esti-
mation that can be used with nonlinear dynamic parachute

models. Model parameters are determined by minimizing the pre-
diction error obtained by comparing model output with test data.
Minimization is accomplished using the simultaneous-perturbation-
stochastic-approximation (SPSA) algorithm developed by Spall.1,2

The SPSA algorithm is an iterative method for optimization, with
randomized search direction, that requires at most three function
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(model) evaluations at each iteration. Hence, execution time per it-
eration does not increase with the number of parameters. The method
can handle nonlinear dynamic models, nonequilibrium transient
test conditions, and data obtained in closed loop. For this reason,
this method is suitable for the estimation of parameters in guided
parachute models.

The present paper has three main sections. The first section de-
scribes the model whose parameters are to be determined. The model
is for a G-12 parachute, and it was developed at the Naval Postgrad-
uate School (NPS).3,4 The second section explains the basic param-
eter estimation approach. This section includes a simple description
of the SPSA algorithm. In the third section we give the numerical
results corresponding to the determination of three aerodynamic co-
efficients, four apparent mass coefficients, and the initial states for
the G-12 parachute model. Conclusions and recommendations for
further work are the end of the paper.

Parachute Model
A six-degrees-of-freedom model of a fully deployed G-12

parachute was developed at NPS.3,4 Figure 1 gives a schematic of
the G-12 parachute. This model assumes the following:

1) The parachute canopy and payload form one rigid system.
2) The aerodynamic forces and moments of the payload are

negligible.
3) The aerodynamic forces act at the center of pressure of the

canopy, which is nothing but the centroid of the air in the canopy.
4) The G-12 system is symmetrical about the axis joining the

canopy centroid to the payload centroid.
5) The parachute is fully deployed.

Equations of Motion
Let m be the total mass of the parachute system. Let u, v, and w be

the components of the ground velocity of the parachute in the body
coordinate system (see Fig. 1). Let p, q, and r be the components of
the angular velocity of the parachute expressed in body coordinates.
Then, the equations of motion of the parachute are as follows.3

Fx = (m + A11)(u̇ − vr) + (m + A33)qw + (J1 + A15)(q̇ + r p)

(1a)

Fy = (m + A11)(v̇ + ur) − (m + A33)pw − (J1 + A15)( ṗ − qr)

(1b)

Fz = (m + A33)ẇ − (m + A11)(uq − vp) − (J1 + A15)(p2 + q2)

(1c)

Mx = (Ixx + A55) ṗ − (J1 + A15)(v̇ − pw + ur)

− (Iyy + A55 − Izz)qr + (A33 − A11)vw (2a)
1229
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Fig. 1 G-12 parachute dimensions (not to scale).

My = (Iyy + A55)q̇ + (J1 + A15)(u̇ + qw − rv)

+ (Ixx + A55 − Izz)pr − (A33 − A11)uw (2b)

Mz = Izzṙ + (Iyy − Ixx )pq (2c)

where

J1 =
n∑

i = 1

mi zi (3)

n∑

i = 1

mi = m (4)

and zi is the location of the mass center of each of the component
masses mi of the parachute system. The terms A11, A33, A15, and
A55 are the “apparent mass” terms and are added to account for
the acceleration of the fluid around the body. Expressions for the
apparent mass terms were taken from Doherr and Saliaris5 and are
given by

A11 = (π/3)ρR3
p (5a)

A15 = 0.2A11

√
R2

p + 	2
SL (5b)

A33 = 2A11 (5c)

A55 = 0.192R2
p A11 (5d)

where Rp is the radius of the inflated canopy and 	SL is the length
of the suspension lines projected onto the symmetry axis.

The following kinematic equations are used to determine the at-
titude of the parachute:

φ̇ = p + q sin φ tan θ + r cos φ tan θ (6a)

θ̇ = q cos φ − r sin φ (6b)

ψ̇ = q sec θ sin φ + r sec θ cos φ (6c)

Finally, the inertial position of the origin of the body coordinates is
obtained by integrating Eq. (7):

Ẋ = u cos ψ cos θ + v(cos ψ sin θ sin φ − sin ψ cos φ)

+ w(cos ψ sin θ cos φ + sin ψ sin φ) (7a)

Ẏ = u sin ψ cos θ + v(sin ψ sin θ sin φ + cos ψ cos φ)

+ w(sin ψ sin θ cos φ − cos ψ sin φ) (7b)

Ż = − u sin θ + v cos θ sin φ + w cos θ cos φ (7c)

Thus the 12 states can be determined using Eqs. (1) and (2) and
(6) and (7). See the thesis of Junge3 for further details.

Forces and Moments
Before the expressions for the forces and moments are given, cer-

tain definitions will be useful. The velocity of the parachute relative
to the air is denoted by Vair and has components uair, vair, and wair

in the body coordinates given by





uair

vair

wair




 =






u

v

w




 −






uwind

vwind

wwind




 (8)

where uwind, vwind, and wwind are the components of the wind velocity
in body coordinates.

The various flight angles used in the determination of force and
moment coefficients are as follows. The total angle of attack is
defined by

αT = arccos

(
wair√

u2
air + v2

air + w2
air

)
(9)

The angle of attack is given by

α = arctan

(
uair

wair

)
(10)

The sideslip angle is given by

β = arctan

(
vair√

u2
air + w2

air

)
(11)

The net force on the G-12 parachute is a result of the aerodynamic
force and gravity. The aerodynamic force Faero is assumed to act
at the centroid of the canopy C and has components F aero

x , F aero
y ,

and F aero
z along the body axes. These components are given by the

following relation:





F aero
x

F aero
y

F aero
z




 = 1

2
ρ
√

u2
air + v2

air + w2
air SrefCd(αT )






uair

vair

wair




 (12)

The density of air ρ is a function of the altitude, and a standard
atmospheric model was used.6

The drag coefficient Cd depends on the total angle of attack αT ,
and it is shown in Fig. 2. This curve was obtained from the compu-
tations of Mosseev.7

The gravitational force Fgrav acts along the inertial Z direction
and has the components Fgrav

x , Fgrav
y , and Fgrav

z in body coordinates
given by






Fgrav
x

Fgrav
y

Fgrav
z




 =






− sin θ

cos θ sin φ

cos θ cos φ




 mg (13)

The net force in the left-hand side of Eq. (1) is the sum of forces in
Eqs. (12) and (13).

The moments on the parachute are caused by the forces described
earlier as well as the aerodynamic moments. The aerodynamic mo-
ment Maero has components Maero

x , Maero
y , and Maero

z in the body
coordinates given by






Maero
x

Maero
y

Maero
z




 = 1

2
ρ
(
u2

air + v2
air + w2

air

)
Srefcref






Cm(β)
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0




 (14)
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Fig. 2 Drag coefficient: ——, computational-fluid-dynamics (CFD)
analysis7; and – – –, parameter estimation result from fourth section.

Fig. 3 Moment coefficient from CFD analysis.7

where the variation of Cm with angle of attack α or sideslip β is given
in Fig. 3. This variation was also obtained from the computations
of Mosseev.7

As mentioned earlier, the moment caused by the aerodynamic
forces (assumed to act at the canopy centroid, point C) and weight
(acting at the mass center, point D) also need to be accounted for
in the final moment that is to be applied to the equations of motion.
This moment, denoted MF , is given by

MF = RCB × Faero + RDB × Fgrav (15)

where the moment arm RCB is the distance between the canopy
centroid (point C) and the origin of the body frame (point B) and
RDB is the distance between the center of mass (point D) of the
system and the origin (see Fig. 1). For more details, the reader is
referred to the thesis of Junge.3

The objective of this paper is to improve the parachute model
using parameter estimation. In the next section, the Cd and the Cm

curves will be modified, and the parameters that modify these curves
will be estimated. Also, the apparent mass terms in Eq. (5) will be
modified, and parameters modifying these terms will be estimated.
Finally, the initial conditions of the states will also be estimated.

Parameter Estimation
Once the model structure and the test data are known, the next

step is to estimate the parameters of the system. This is done by

assuming an initial value of the parameters and then optimizing
them so as to minimize the error between the measurements and the
model predictions. In this work, a code using standard MATLAB®

commands, implementing the SPSA algorithm1,8 for constrained
optimization, was developed.

The model given in the preceding section was modified to reduce
the model errors. The modifications are as follows. The aerodynamic
force term is determined by Eq. (12), where the value of the drag
coefficient is determined using a look-up table corresponding to
Fig. 2. Let this function be denoted by C∗

d (·). Consider the following
modification to the drag coefficient:

Cd(·) = ϑ1 + ϑ2C∗
d (·) (16)

where ϑ1 is an offset and ϑ2 is a scale factor, which need to be
determined to reduce the model error.

Similarly, consider the moment term. The aerodynamic moment
is given by Eq. (14), where the value of the moment coefficient is
given by Fig. 3. Let this function be denoted by C∗

m(·). Consider the
following modification to the moment coefficient:

Cm(·) = ϑ3C∗
m(·) (17)

Note that the physics of the problem does not allow for a nonzero
Cm at zero angle of attack, which explains the absence of an offset
term for the moment coefficient.

Scale factors ϑ4, ϑ5, ϑ6, and ϑ7 were incorporated in the apparent
mass terms in Eq. (5) as well, which resulted in

A11 = ϑ4(π/3)ρR3
p (18a)

A15 = 0.2ϑ5 A11

√
R2

p + 	2
SL (18b)

A33 = 2ϑ6 A11 (18c)

A55 = 0.192ϑ7 R2
p A11 (18d)

The initial conditions of the 12 states were also estimated to get
a better fit of the data to the model. This gives an additional 12
unknowns, ϑ8, . . . , ϑ19.

Thus the vector of unknowns ϑ is given by

ϑ =
{

ϑ1, ϑ2, ϑ3︸ ︷︷ ︸
Aerodynamic parameters

, ϑ4, . . . , ϑ7︸ ︷︷ ︸
Apparent mass terms

, ϑ8, . . . , ϑ19︸ ︷︷ ︸
Initial conditions

}T

(19)

Method of Parameter Estimation
The prediction error method (PEM) was used to estimate the

parameters ϑ in Eq. (19). PEM estimates these parameters by mini-
mizing the difference between the experimental data and the model
output.

PEM works by minimizing a cost function. There are many cost
functions that can be chosen. Let the measured output vector at time
instant k be denoted by y(k), and let the predicted output vector
at time k using parameters ϑ be denoted by ŷ(k; ϑ). Define the
prediction error as

e(k; ϑ) = y(k) − ŷ(k; ϑ) (20)

A common cost function is the quadratic function given by

H(ϑ) =
N∑

k = 1

eT (k; ϑ)Pe(k; ϑ) (21)

where N is the total number of time samples and P is a weighting
matrix. The matrix P was chosen to be diagonal, and the values of the
diagonal elements were chosen so that all the components of e(k; ϑ)
were normalized and nondimensionalized. This was achieved by
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choosing the diagonal elements to be the inverse of the square of
the infinity norm of the measured outputs, that is,

P(i, j) =






0, if i �= j
1

‖yi‖2∞
, if i = j

(22)

where yi is the i th measurement vector. Once this value of P is
determined, it can be adjusted to give different weights to different
output channels.

Optimization
A vector of optimal parameters ϑ̂ is obtained by solving the fol-

lowing problem:

ϑ̂ = arg min
ϑ

H(ϑ)

subject to ϑmin ≤ ϑ ≤ ϑmax (23)

where the inequality constraint is component-wise and the cost func-
tion H(ϑ) is given in Eq. (21).

Most optimization methods use the gradient and possibly the
Hessian of the cost function H to arrive at a local minimum. The ac-
curacy and efficiency of these methods depends on how the gradient
and/or the Hessian are obtained. In this work, we selected the SPSA
method for optimization.1 This method is an iterative method that re-
fines the optimization variables at each iteration using a numerically
computed estimation for the gradient. In our application, SPSA is an
attractive choice for the following reasons. Analytical gradients are
not required, and only a fixed number of cost functions evaluations
(three in our case) is required to estimate the gradient and update the
optimization variables. The calculation of the estimated gradient is
based on a randomized algorithm.

Spall1,2 describes the SPSA algorithm, gives the theoretical and
numerical properties of the algorithm, and proves its convergence in
a stochastic sense.9 Sadegh8 and Wang and Spall10 describe how the
SPSA can be used for constrained optimization as well. The rest of
this section is devoted to a brief explanation of the SPSA algorithm,
which according to Spall1 has the following property: “One properly
chosen simultaneous random change in all the variables in a problem
provides as much information for optimization as a full set of one-at-
a-time changes of each variable.” It is this property that makes SPSA
attractive in our application. Roughly, this property allows SPSA
to estimate the gradient of the cost function H with two function
evaluations regardless of the number of optimization variables.

The basic SPSA algorithm we implemented is as follows:
1) Initialization and coefficient selection: Set counter index k = 1.

Pick initial guess for ϑ and nonnegative coefficients a, c, A, α, and
γ . Define the SPSA gain sequences ak = a/(A + k)α and ck = c/kγ .

2) Generation of the simultaneous perturbation vector: Let
�k1 . . . �kn denote the n scalar components of the random perturba-
tion vector �k . Generate �ki from a ±1 Bernoulli distribution with
probability 1

2 for each ±1 outcome.
3) Cost function evaluations: Obtain two measurements of the

cost function H(·) based on the simultaneous perturbation around
the current ϑ̂k . That is, evaluate H(ϑ̂k + ck�k) and H(ϑ̂k − ck�k)
with the ck and �k from steps 1 and 2.

4) Gradient approximation: Generate the simultaneous perturba-
tion approximation to the unknown gradient g(ϑ̂k) as follows:

ĝk(ϑ̂k) = H(ϑ̂k + ck�k) − H(ϑ̂k − ck�k)

2ck





�−1
k1

�−1
k2
...

�−1
kn




(24)

where �ki is the i th component of the vector �k .
5) Updating the parameter estimates: Use

ϑ̂k + 1 = ϑ̂k − ak ĝk(ϑ̂k) (25)

to update ϑ̂k to a new value ϑ̂k + 1. If ϑ̂k + 1 falls outside the range of
allowable values for ϑ , then project the updated ϑ̂k + 1 to the nearest
boundary value, and reassign this projected value as ϑ̂k + 1 (Ref. 10).
Mathematically we have, for every i = 1, . . . , n, the following:

ϑ̂k + 1,i =






ϑ̂k + 1,i if ϑmin
i ≤ ϑ̂k + 1,i ≤ ϑmax

i

ϑmin
i if ϑ̂k + 1,i < ϑmin

i

ϑmax
i if ϑ̂k + 1,i > ϑmax

i (26)

If the basic update indicated in Eqs. (25) and (26) produces a higher
value of the cost function than the previous one, then the update is
blocked, and we set ϑ̂k + 1 = ϑ̂k .

6) Iteration or termination: Terminate the algorithm if there is little
change in several iterates or if the maximum number of allowable
iterations has been reached. Otherwise, return to step 2 with k + 1
replacing k.

The choice of various parameters of the algorithm plays an im-
portant role in the convergence of the algorithm. Spall2 suggests that
α = 0.602 and γ = 0.101 are practically effective and theoretically
valid choices. Hence these values were used in this paper as well.
The value of A is chosen to be about 10% of the maximum iterations
allowed. The maximum number of iterations was chosen to be 100,
and hence A was chosen to be 10. Spall2 recommends that if the
measurements are (almost) error free, c can be chosen as a small
positive number. In this case it was chosen to be c = 0.01. Spall2 ex-
plains that the value of a should be chosen such that the a/(A + 1)α

times the magnitude of elements of ĝ0(ϑ̂0) is approximately equal
to the smallest of the desired change in magnitudes among the ele-
ments of ϑ in early iterations. For the problem at hand a = 1 gave
good results. This value of a was chosen to increase the likelihood
that the components of ϑ during the iterations remain within the
allowed bounds, namely, ϑ i

min to ϑ i
max. In case one or more of the

components of ϑ̂k + ck�k or ϑ̂k − ck�k was outside the allowed
limits, the corresponding perturbed parameter was projected to the
nearest boundary to compute the estimate of the gradient.

The proposed algorithm uses three cost function computations in
each iteration. Thus, the number of cost function evaluations per
iteration does not depend on the number of variables, which makes
this method very attractive for optimization problems with several
variables or with computationally costly function evaluations. This
is in contrast to the numerical computation of gradients by finite
differences where the number of cost function evaluations increases
linearly with the number of variables to be optimized.

Results
This section gives the results of parameter estimation where all

12 initial conditions and seven model parameters are determined
[see Eq. (19)]. These parameters are estimated using SPSA. Forty
cases were run to determine a simple statistics for the cost function
H and the estimated parameters. It is important to run many cases
because the results can then be used, as will be seen later, in a
statistical study to decide if the parameter estimation is successful.
Essentially, the distribution of the cost function H over all of the
cases considered can be used to assess if the algorithm “converges,”
whereas the distributions of the estimated parameters can be used
to determine if the parameters are actually “identifiable” from the
given test data.

The initial guesses for the aerodynamic and apparent mass param-
eters ϑ1, . . . , ϑ7 were chosen randomly from a uniform distribution
between the maximum and minimum values allowed for these pa-
rameters. The following bounds were used for the nondimensional
parameters:

0.4 ≤ ϑ1 ≤ 1, 0 ≤ ϑ2 ≤ 1.5, 0.5 ≤ ϑ3 ≤ 2

0 ≤ ϑ4 ≤ 3, 0 ≤ ϑ5 ≤ 3, 0 ≤ ϑ6 ≤ 3, 0 ≤ ϑ7 ≤ 3

(27)

The initial guesses for the initial conditions of the position and
velocity states, that is, X , Y , Z , u, v, and w are taken to be the
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Fig. 4 Wind profile, X component.

Fig. 5 Wind profile, Y component.

actual measured values for those states. The other states, namely, p,
q, r , φ, θ , and ψ were chosen randomly from a uniform distribution.
The following bounds were used:

−5 deg ≤ φ ≤ 35 deg, − 20 deg ≤ θ ≤ 20 deg

60 deg ≤ ψ ≤ 90 deg, |p| ≤ 5 rad/s

|q| ≤ 5 rad/s, |r | ≤ 5 rad/s (28)

The flight-test data used for parameter estimation are as follows.
The wind input used is taken from Junge’s thesis,3 which was ob-
tained by dropping a windsonde 1 h prior to the G-12 test drop. The
XY wind velocity components are shown in Figs. 4 and 5. Also
measured were the inertial position and velocity of the parachute at
the mass center of the payload (point A). These inertial variables
are shown as the solid lines in Figs. 6 and 7. The inertial position
and velocity are obtained from onboard global positioning system
in an actual flight test.

Figure 8 shows the histogram of the prediction error as measured
by the cost function H in Eq. (21) before SPSA was run on each
case. Note that the values of the cost function range between 9 and
490 with more than 75% of the cases being above 50. Figure 9
shows the histogram of the prediction error as measured by the
cost function H in Eq. (21) after running SPSA. Over 90% of the
cases attained a cost function value less than 10, and all (100%)
the cases were below 50. Only two cases have a relatively higher cost

Fig. 6 Inertial position.

Fig. 7 Inertial velocity.

function value (above 20), indicating that for these cases SPSA did
not converge to a global minimum. Those cases should be removed
from further consideration as they are “outliers” that result from a
local (and not global) optimization. A comparison of Figs. 8 and
9 clearly leads to the conclusion that the optimization procedure
was successful. SPSA has considerably reduced both the average
values of the cost function H and the dispersion in cost function
values. Further analysis of the statistics of the estimated parameters
is warranted by these results.

Table 1 gives the results of parameter estimation for the aerody-
namic and apparent mass parameters, ϑ1, . . . , ϑ7. Simple statistics,
computed after removing the outliers, are shown for each parameter.
Also shown are the statistics of the initial guesses for these parame-
ters, which are calculated by taking the mean, median, and standard
deviation over the 40 samples generated for each parameter. The
parameter estimation is successful when it reduces the initial uncer-
tainty in the parameters; that is, when the standard deviation (STD)
is reduced by the algorithm. This is the case for the Cd offset ϑ1

and Cd scale factor ϑ2, where the standard deviation of the SPSA
estimates is smaller than that of the initial guesses. On the other
hand, the standard deviation of the Cm coefficient and the apparent
mass scale factors did not decrease. This could be because the cost
function did not take into account the states corresponding to the
rotational motion, namely, p, q, r, φ, θ , and ψ because these mea-
surements were not available. That is, the moment coefficient scale
factor and the apparent mass terms do not seem to be identifiable
from the available trajectory data.
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Table 1 Results of parameter estimation

Initial guess Estimate (using SPSA)

Parameter Mean Median STD Mean Median STD Identifiable?

Cd offset 0.7267 0.6916 0.1795 0.6249 0.6743 0.0893 Yes (STD down 50%)
Cd scale factor 0.5718 0.5293 0.4373 0.0978 0.0270 0.1244 Yes (STD down 72%)
Cm scale factor 1.2745 1.2542 0.4214 1.2702 1.2548 0.4234 No
A11 scale factor 1.5360 1.7042 0.7553 1.5047 1.4718 0.7943 No
A15 scale factor 1.5910 1.6353 0.8996 1.5091 1.4677 0.8690 No
A33 scale factor 1.5833 1.6369 0.6903 1.5871 1.5594 0.7169 No
A55 scale factor 1.6331 1.8531 0.8751 1.6793 1.7241 0.9011 No

Fig. 8 Initial cost function distribution.

Fig. 9 Final cost function distribution.

A single model can now be constructed using the median values
of the estimated parameters from Table 1. Median values after SPSA
were selected for both identifiable and nonidentifiable parameters.
The drag coefficient Cd(·) obtained after parameter estimation is
shown in Fig. 2. Figures 6 and 7 give the measured and simulated
position and velocity data of the system using the median parameter
values given in Table 1. The initial conditions used in the simu-
lation are given in Table 2. All of the initial condition values are
the median values of the estimates after running the SPSA algo-
rithm. Figures 10 and 11 give the trajectory of the parachute on the
X − Y (ground) plane and in three-dimensional space, respectively.
Figures 12 and 13 give the state estimation errors. The position er-
rors fall within two parachute lengths at all times (one parachute
length = 98.46 ft = 30 m).

Table 2 Results of parameter
estimation—initial conditions

Intital condition Value

X position, ft 1209.0
Y position, ft −606.7
Z position, ft −8213.0
X velocity, ft/s −21.73
Y velocity, ft/s 3.471
Z velocity, ft/s 32.85
φ, deg 18.80
θ , deg −2.36
ψ , deg 81.76
p, rad/s 0.139
q, rad/s −0.024
r , rad/s 0.110

Fig. 10 Parachute trajectory in the horizontal plane.

Fig. 11 Parachute trajectory.



KOTHANDARAMAN AND ROTEA 1235

Fig. 12 Inertial position errors.

Fig. 13 Inertial velocity errors.

Conclusions
An algorithm was developed to estimate the parameters of

parachute dynamic models. The algorithm is based on the con-
strained SPSA method, which is capable of optimizing any number
of parameters in reasonable time. This is because the number of cost
function evaluations needed to estimate the gradient is independent
of the number of parameters to be optimized.

The algorithm was applied to the model of a G-12 parachute
developed at the Naval Postgraduate School. The match between
the estimated and measured position has been good, and the error
was always less than two parachute lengths. However, it is clear that
the parameters associated with rotational motion (e.g., Cm) could
not be estimated. In principle, this could be because of a lack of
measurements of body rates or Euler angles.

The apparent mass coefficients are also not identifiable from the
available test data. From the force and moment equations one can
deduce that the apparent mass coefficients would be identifiable only
if the accelerations are high enough so that the effect of the apparent
mass is visible in the measured states. This was not the case in this
particular test.
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