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ABSTRACT

We describe a new approach to controlling the deformable mirror in beam projection systems operating in
conditions of strong scintillation. Under the conditions of interest, two-way propagation is required to create
the light used for wavefront sensing. In this situation, the beacon can subtend an angle that is many times
larger than the isoplanatic angle. Our approach uses a nonlinear optimization-based technique to determine
the deformable mirror (DM) figure which optimizes an image sharpness metric. This correction is applied to
the outgoing laser beam with the goal of concentrating most of the laser’s power on a small area of the target.
The optimization algorithm chosen for this purpose is the simultaneous perturbation stochastic approximation
(SPSA). Our results show that using phase-only conjugation with nonlinear optimization of an image sharpness
metric can provide an improvement in encircled energy performance compared to phase-only conjugation with
only linear Hartman wavefront sensor processing.
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1. INTRODUCTION

Many laser projection systems, such as those found in laser weapon systems and laser communication systems,
have the goal of focusing a laser beam on a target through a long atmospheric path. The objective in these
systems is often to concentrate as much power as possible on a small area of the target. In long range air-to-air
laser projection systems, the laser beam must propagate almost horizontally through atmospheric turbulence.
In the absence of atmospheric turbulence, the beam reaching the target would have a high power density and
an almost Airy-disk pattern as predicted by diffraction theory. However, in conditions of strong atmospheric
turbulence, the amplitude and phase of the laser beam are severely distorted as the beam propagates through
the long optical path.1–3 Therefore the beam reaching the target in general has a low power density, and its
intensity pattern is randomly changing and speckled in appearance.4, 5

A laser beacon-based adaptive optics system provides a way to correct for the turbulence-induced phase
distortion.1 In this system, a beacon is created by transmitting one or more low power laser beams from the
laser projection system to the target. Some of the light from the beacon scatters back through the atmosphere
and is captured by the aperture of the laser projection system. Assuming that all the sources of the scattered
light captured by the aperture of the laser projection system emanate from a very small region of the target,
conventional adaptive optics systems can lead to a significant improvement in performance. Ideally, to com-
pensate for weak phase distortions, the conjugate of the phase of the beacon field incident on the aperture is
applied to the outgoing beam. In practice, the phase conjugation is performed by controlling the shape of a
reflective deformable mirror. The deformable mirror is in turn controlled through a set of ‘actuator control’
weights obtained processing either wavefront sensor information,2 image information,6 or both.7, 8 Assuming
weak turbulence, and that the outgoing laser beam propagates through roughly the same optical path as the
scattered light, the beam reaching the target will approach diffraction-limited performance.

Unfortunately, the approach described above works well only in cases where the atmospheric turbulence is
weak and the beacon is a point source. In beam projection systems operating in conditions of strong atmospheric
turbulence, the amplitude and phase of the field incident on the target are severely distorted, and the target
itself is extended. Therefore, the beacon that is created is not a point source, but rather it is a randomly shaped,
extended source. Because the beacon field is scattered by an optically rough surface, the beacon is also spatially
incoherent. Hence, in most cases of practical interest the beacon subtends an angle that is many times larger than
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the isoplanatic angle so that the beacon looks like a collection of several small isoplanatic patch-sized regions.
The scattered light from each one of these regions goes through a slightly different volume of turbulence and
experiences different amplitude and phase distortions. Hence the field incident on the aperture originates from
different isoplanatic patch-sized regions of the beacon, and this total field causes the image and Hartman sensor
data we would measure. The various random point spread functions arising from different parts of the beacon are
super-imposed in both the image and Hartman sensor data. Simply conjugating the phase estimated from the
Hartman sensor and image data, and applying it to the outgoing laser beam is not as effective as finding a means
to isolate and conjugate the phase associated with a small patch on the target. The approach we describe later
in this paper provides a way to reduce the errors related to what we call “beacon anisoplanatism”. In addition to
the anisoplanatism described above, the beacon field experiences strong scintillation because of the long optical
paths through which it propagates. However, the approach described in this paper is a phase conjugation scheme
and does not compensate for amplitude errors. However, we will show that phase-only correction is still very
useful.

Most previous work in this area has involved the use of the entire scattered field incident on the aperture
in order to find the optimum control weights to apply to the deformable mirror. For instance, Roggemann et
al. describe a nonlinear optimization-based technique to determine the deformable mirror figure which jointly
processes Hartman sensor and image data to obtain commands for a deformable mirror.7, 8 We have found that
his approach provides only small improvements in percentage of encircled energy when the beacon is extended,
and is very computationally intensive.

In this paper, we describe an approach that is based on a modified version of the laser beacon and phase-
conjugation adaptive optics system. As shown in figure 1, instead of using all the scattered light from the
beacon, we have developed a measurement and processing technique that seeks to use a small portion of the
light emanating from a small patch on the beacon. This patch subtends an angle that is only a few times larger
than the isoplanatic angle and forms the basis for the image sharpness metric. The image sharpness metric used
here was first described by Muller and Buffington et al.9, 10 and was later used by Voronstov, et al.6 This image
sharpness metric is given by

J(α) =
∫
M(x)I(x;α)d2x, (1)

where x is the position vector in the image plane, M(x) is a mask which blocks the light from some regions
of the image plane, I(x) is the image intensity due to the beacon, and αs are the DM actuator commands.
As we mentioned above, the image intensity contains components from several isoplanatic patch-sized regions.
Therefore a spatial filter, in this case the mask, M(x), with a small circular aperture is used as a field stop
to pass only light from a small region of the target to the optimization technique suggested by Eq. (1). If the
diameter of the mask aperture subtends an angle that is a few times larger than the isoplanatic angle, we can
effectively compensate for an almost isoplanatic patch-sized portion of the target by iterating on the elements
of α. The deformable mirror then performs the necessary phase correction to the outgoing high power laser.
Several optimization algorithms such as the BFGS quasi-Newton method11, 12 or the SPSA13 can be used to find
the optimum values of α that maximize the image sharpness metric, J . However, we used the SPSA because of
its convergence speed.

So far the results obtained with this approach have been promising. The results from our simulations show
that deformable mirror control based on the nonlinear optimization of the image sharpness metric, leads to
an improvement in the percentage of encircled energy over previous DM control approaches based on simply
conjugating the phase obtained from wavefront sensors and reconstructors. The simulation results also show
that ideal mask aperture can subtend an angle that is many times larger than the isoplanatic angle. The
simulation results show that in some cases the best angular subtense can be many times the isoplanatic angle.

The rest of the paper is organized as follows. In section 2, we briefly describe the theory behind the beam
projection system and we derive a formula that relates the mask aperture’s diameter to its angular subtense. In
section 3, we describe the computer simulations that were performed and in section 4, we show the results of the
simulations. Section 5, has our conclusions.
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Figure 1. Illustration of the adaptive optical system

2. THEORY

Fig. 1 shows the functional block diagram of the adaptive optical system. The artificial beacon is created by
focusing a laser beam from the projection system on the target. Some of the light from the newly created
extended beacon scatters back through the atmosphere to the aperture of the beam projection system. A lens
in the system aperture focuses the incoming light on to the image plane. Let the field in the system aperture be
given by Us(xs), where xs is a position vector.

Us(xs) =
∫
h(xs,xb)Ub(xb)dxb, (2)

where Ub(xb) is the beacon field and h(xs,xb) is the point spread function. Then the field immediately after the
lens is given by

Usl(xs) = Us(xs) exp
(
−j k

2F
x2

s

)
P (xs), (3)

where P(xs) is the pupil function, F is the focal length of the lens, and k is the wave number. The focal length,
F , is chosen so that in the absence of atmospheric turbulence a collimated beam would be available after the
lens. The image plane field is given by

Ui(xi;α) = �{Us(xs) exp[−jΦdm(xa;α)]}, (4)

where Φdm(xa;α) is the phase correction added to the field by the deformable mirror. The model for the DM
figure is

Φdm(xa) =
N∑

k=1

αkbk(xa), (5)

where bk(xa) is the set of DM influence functions. The image intensity distribution is given by

Ii(xi;α) = |Ui(xi;α)|2. (6)
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The integrated image intensity inside the circular mask was then maximized using the SPSA algorithm. The
objective function to be maximized is the discrete version of Eq. (1)

J(α) =
∑
xi

Ii(xi;α)M(xi), (7)

where xi in this context is a sampled image plane coordinate.

In cases of interest to us, the angular extent of the beacon is many times larger than the isoplanatic angle.
Therefore at the aperture, the beacon looks like a collection of many isoplanatic patch-sized sources. To reduce
the effects of anisoplanatism we have to pick a patch on the beacon that is a few times larger than the isoplanatic
patch and compensate for this patch. We do this by filtering out some of the light from the other isoplanatic
patch-sized sources in the beacon. Fig. 2 shows the relationship between the angular subtense, θmask, and the

F

Dmask

Extended Beacon
Lens
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Figure 2. Illustration of the angular extent of the mask’s aperture

diameter of the mask’s aperture. In the following equations, we show the relationship between the mask diameter
and the angle it subtends in the target plane.

θmask =
Dmask

F
, (8)

where F is the focal length of the lens and Dmask is the diameter of the mask aperture. Assuming that C2
n is a

constant, Fried’s14 formula for the isoplanatic angle reduces to

θ0 =
[
2.91

3
8
k2C2

nz
8/3

]−3/5

. (9)

The Rytov number, σ2
χ, is given by

0.5631k7/6

∫ z

0

dvC2
n(v)v

5/6 (10)

A comparison between the isoplanatic angle, angular subtense of the mask diameter and the angular subtense
of the beacon were made and the results presented in a table in section 4.
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3. SIMULATION DESCRIPTION

Analytical solutions to the propagation of laser projection systems under conditions of strong atmospheric tur-
bulence are not available. Therefore, we used the Monte Carlo method to simulate several independent optical
propagations. We used the percentage of encircled energy in the ensemble average target intensity and the radial
energy in the ensemble average target intensity as the performance metrics . Each simulation can be broken
down into several parts. The first part is the creation of the extended beacon of wavelength, λ = 980 nm. The
second part is the propagation of the scattered extended beacon wavefronts from the target plane to the aperture
of the laser beam projection system. In the next part we form an image of the field in the system aperture and
then optimize the image sharpness metric described above. Finally, we correct the phase of the outgoing high
power laser beam.

The extended beacon was created by propagating a Gaussian beam to a target at a simulated distance, z,
of 10 km. In our simulations, the target plane was created on a 1024 × 1024 uniform Cartesian grid. In the
simulations, we used a 5-layered atmospheric model. The 5 thin layers were uniformly spaced so that the distance
between each thin layer was ∆z = 2 km. The first layer was placed at a distance of 10 km from the beacon
plane and the last layer was placed in the aperture plane. Each layer (or phase screen) was created using a
phase screen generator.15 In turn the phase screen was created on a 1024 × 1024 Cartesian grid with a sample
spacing of ∆x = 0.568 cm. This sample spacing meets the Nyquist sampling criterion of 1024 > 2λz/∆x2. Each
phase screen had a von Kármán power spectral density, an outer scale, L0 = 10 m, and an inner scale, l0 = 0 m.
We assumed that each phase screen had the same structure constant, C2

n. Furthermore, C2
n was independent of

position and was therefore a constant. The isoplanatic angle, θ0, and the Fried parameter, r0, change depending
on the structure constant.

We used several values of C2
n to simulate the effects of different turbulence strengths on the performance of

our new system. The following values of C2
n were used: 5.7354 x 10−16 m−2/3, C2

n = 9.5591 x 10−16 m−2/3, and
13.383 x 10−16 m−2/3. The Gaussian beam is propagated between any two phase screens using an FFT-based
angular spectrum propagator.16, 17

To simulate scattering from a finite-sized target, the central portion of the field at the target was extracted.
The atmospheric turbulence causes the phase of the scattered field at the target is random. It was then propagated
in the reverse direction back to the laser projection system’s receiver. The propagation was through the same
turbulent volume that the previous Gaussian beam had traversed. The aperture diameter of the laser projection
system was 1.0 meter. The complex field captured by the system aperture was then passed through a centroid
tracking tilt-removal system.

Finally, the tilt-removed complex field was propagated through an ideal lens which was used to form an image
of the incoming wavefront. This far-field image was created by performing a FFT of the field just after the ideal
lens. We used the image sharpness metric as the objective function and maximized it by finding the optimum
set of αs. The optimization algorithm used in this case was the SPSA algorithm citation. We chose to use the
SPSA algorithm because it converged much faster than the BFGS quasi-Newton algorithm. The simulation was
done using a discrete form of the objective function in Eq.(7). The optimum αs are used to drive the deformable
mirror and hence create to optimum phase correction. We used a trial and error method to determine the mask
diameter, Dmask, that produce the best results in terms of encircled energy and radial energy. The values for
θmask, ranged from 1.3479µrad to 74.136µrad.

From Fourier optics,17 the spatial frequency, u, in the image plane is given by

u =
x

λF
, (11)

where x is the position scalar and F is the focal length. Therefore the sample spacing,

du =
dx

λF
. (12)

Also the frequency domain sample spacing in the fast Fourier transform (FFT) is given by

du =
1
Ndx

, (13)
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where N is the number of elements in the FFT. Therefore,

dx

λF
=

1
Ndx

(14)

and
dθmask =

dx

F
, (15)

where θmask is the angular extent of the mask aperture.

dθmask =
λ

Ndx
(16)

θmask =
λDmask

Ndx
, (17)

where Dmask is the diameter of the mask aperture. The angles were calculated using the following equation in
discrete form,

θmask =
λ

N∆x
Dmask. (18)

Finally, the optimum corrected phase is added to the outgoing high power laser beam. This beam propagates
through the same turbulent volume as the scattered light until it reaches the target plane. The intensity at the
target plane is saved so that it can be used in the calculation of the percentage of encircled energy. We performed
20 independent realizations. Then we added the intensities in the target plane for each one of the realizations
and calculated the ensemble average intensity. Next we performed a computation of the percentage of encircled
energy from the ensemble average intensity. We used the percentage of encircled energy to measure the quality
of the target image.

4. RESULTS

In this section, we present the results of the simulation described in Section 3. In each of the results presented
below, θmask = 47.178 µrad. For each of the figures below, the curve marked NLOPT refers to the results
obtained using nonlinear optimization of the image sharpness metric and the curve marked HWFS refers to the
results obtained using a Hartmann wavefront sensor and reconstructor and the curve marked NOCOMP refers
to the results obtained without compensating for the atmospheric turbulence.

Fig. 3 shows a comparison of the percentage of encircled energy on the target using nonlinear optimization of
the image sharpness metric, using HWFS processing and using no compensation are compared. The turbulence
strength, C2

n = 5.7354 x 10−16 m−2/3 and the Rytov number is 0.1262. The figure shows that for small angles,
θ < 1µrad, the percentage of encircled energy is largest in the NLOPT case followed by the HWFS case and
is smallest in the NOCOMP case. Therefore the NLOPT system concentrates more energy on a small area of
the target than the HWFS and NOCOMP systems. The second performance metric, radial averaged target
intensity, is shown in figure 4. Figures 3 and 4 show that at small angles, controlling the deformable mirror
using nonlinear optimization-based techniques results in an improvement in percentage of encircled energy over
controlling the deformable mirror using parameters obtained from a Hartmann wavefront sensor and reconstructor
or not performing any compensation at all.

Figs. 5 and 6, show comparisons between the 3 systems, NLOPT, HWFS and NOCOMP when the turbulence
strength, C2

n = 9.5591 x 10−16 m−2/3 and the Rytov number is 0.2103. Fig. 5 shows that for small angles,
θ < 1.5µrad, the percentage of encircled energy is largest in the NLOPT case followed by the HWFS case and
is smallest in the NOCOMP case. Even with increased turbulence strength, the NLOPT system concentrates
more energy on a small area of the target than the HWFS and NOCOMP systems. As in the previous figures
above, Fig. 6 shows the radial averaged intensity at the target for the 3 systems. In each case the radial average
energy drops as the we move away from the center of the target. The figure shows that the NLOPT system has
the largest radial energy and most of it is concentrated in a small area close to the center of the target.
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Figure 3. Percentage of ensemble average encircled energy in the target plane for C2
n = 5.7354 x 10−16 m−2/3.
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Figure 5. Percentage of ensemble average encircled energy in the target plane for C2
n = 9.5591 x 10−16 m−2/3.
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Figure 7. Percentage of ensemble average encircled energy in the target plane for C2
n = 13.383 x 10−16 m−2/3.
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The comparisons between the NLOPT, HWFS and NOCOMP systems when the turbulence strength, C2
n =

13.383 x 10−16 m−2/3 and the Rytov number is 0.2944 are shown in Figs. 7 and 8. Figure 7 shows that for
small angles, θ < 2µrad, the percentage of encircled energy is largest in the NLOPT case followed by the HWFS
case and is smallest in the NOCOMP case. However at this level of turbulence, the performance of the NLOPT
system is not significantly better than that of the HWFS system.

Table 1. Comparison of θmask with θ0 for various Rytov numbers, σ2
χ

C2
n(×10−16m−2/3) σ2

χ θmask (µrad) θ0 (µrad) θmask/θ0
5.7354 0.1262 47.178 3.579 13.1818
9.5591 0.2103 47.178 2.6342 17.9032
13.383 0.2944 47.178 2.1527 21.916

Table 1 shows the ratio of θmask to the isoplanatic angle, θ0, for the 3 values of turbulence strength, C2
n, and

Rytov numbers. The table shows that the angular subtense of the mask required to correct for turbulence can
be many times larger than the isoplanatic angle. And as the turbulence strength increases and the isoplanatic
angle decreases, the ratio θmask/θ0 becomes larger.

5. CONCLUSION

A new approach to controlling a deformable mirror in beam projection systems operating in conditions of strong
turbulence was introduced. It has been shown that the nonlinear optimization of an image sharpness metric
can improve the performance of the beam projection system. However, in conditions of strong atmospheric
turbulence, the radius of the mask’s aperture was larger than expected and subtends an angle that could be 22
times larger than the isoplanatic angle.
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