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Abstract- A direct adaptive simultaneous
perturbation stochastic approximation (SPSA)
control system with a diagonal recurrent neural
network (DRNN) as controller was examined by
simulation. Different hidden number DRNN's
were used in SPSA system to study the
relationship between the performance and neural
network architecture and parameters. Results
were compared with those of SPSA using forward
neural network (FNN) controller. Study shows
that direct adaptive SPSA control system with
DRNN has simpler architecture, smaller size of
parameter vector and faster convergence rate.
The system has steady-state error and is sensitive
to SPSA coefficients and termination condition.
For real-time trajectory control purpose, further
improvement of direct adaptive SPSA approach is
required.

INTRODUCTION

Nonlinear adaptive control system design is a
challenge in control theory. When one deals with an
unknown and/or uncertain nonlinear system, in
general, one may use neural networks to identify
and/or control the system. To perform neural
network control, one needs to train (in general, off-
line) an inverse neural network (INN) as controller.
It is difficult to train the INN since the system is
unknown. An ideal scheme is direct adaptive neural
network control system. Spall® explored a neural
network based simultaneous perturbation stochastic
approximation (SPSA) approach to estimate the
gradient of the performance function of an unknown
nonlinear system. Direct adaptive SPSA approach
does not require any prior knowledge of the unknown
system and does not need a separated training phase.
SPSA direct adaptive control system will converge to
an optimal neural network parameter set, if it exists.
Original SPSA approach use a forward neural
network (FNN) as controller. The parameter vector
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size is generally large, for example, an N;,ZO,IO,I

network has 280 elements in the parameter vector.
Its increased computational cost results in a slow
performance measure period (i.e., sampling period),
which is very important for a real-time control
application.

As is wellknown, recurrent neural network
(RNN) has some advantages over FNN such as faster
convergence, more accurate mapping ability etc., but
it is difficult to apply the gradient-descent method to
update the neural network weights in RNN. Ku et all
23] proposed the DRNN schema that captures the
dynamic behavior of a system and since it is not full
connected, training is expected to be much faster
than RNN. DRNN with time delay has RNN
behavior but simple connections and it is easy to
apply gradient-descent method. Therefore, in this
experimental study, a diagonal recurrent neural
network (DRNN) is first time used in SPSA control
system. Several different number of hidden nodes
cases were simulated to examine SPSA approach.
The results were compared with those of FNN SPSA
scheme.

BACKGROUND

Consider the problem of finding a root 6* of the
gradient equation

aL(6)
o)== =g 1
8(6) % ¢
for some differentiable loss function ( or call it

energy function, cost function) L:R? — R'.
There are many methods for finding 6*. In the case
where L is observed in the presence of noise, a
stochastic approximation algorithm of the generic
Kiefer-Wolfowitz/Blum type is appropriate. It is
based on finite difference methods which require 2p
(noisy) measurements of L. at each iteration. The

estimated § at the (k+1)™ iteration is



Bin =0i-a, g, (61) ®
where the gain sequence { q, } satisfies certain
conditions and g, (.)is the estimated gradient at the
k™ iteration.
In SPSA method, the ¢, (.) is estimated by the
"simultaneous perturbation " method: let A, € R?

be a vector of p mutually independent mean-zero
random variables { A, ,A,,,...A,, } satisfying

certain conditions [, furthermore, let {A, } be a

mutually  independent sequence with A,
independent of (30,51,...5,,. We make two
measurements
YO = L@x+c,A, )+ e Ga)
yo = L(ek—c A)+eD (3.b)

where g{”and g{’ represent measurement

noise terms that satisfy
E(€’ -€|f,,A,)=0 as. Vk

S =1{60,61,..60:} C)
Then the estimation of g(.) at k™ iteration is

(+) )
Y — Ve

g(0x) = I ®)

The name "simultaneous perturbation" as applied
to this method arises from the fact that all elements
of the g , vector are being varied simultaneously. If
there is little change in several successive iterations,
the algorithm terminated and the last iteration g, is
the optimum 6*, Note that this estimate needs only
two measurements instead of 2p in the usual finite
difference approximation.

Spall has shown that under certain conditions

the bias in g, () as estimation of g(.) goes to 0 as

k —ecand 4, converges almost surely (a.s.) to
0+*> The basic steps for implementing the SPSA
are in [9].

EMPIRICAL STUDIES

Spall™™! proposed two kind adaptive control
system with SPSA algorithm: direct adaptive control
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(DA) and self-turning adaptive control (STA). When
virtually nothing is known about the plant the DA
approach is appropriate but STA requires that some
prior information exists about the plant.

Figure 1 shows the block diagrams of DA
scheme which was employed in our study. An
unknown nonlinear plant,

y(k+1)=08xsinQy(k))+ 12 x u(k),
was used for our study. The desired plant output is
sinusoidal. FNN and DRNN neural network
controllers were employed for comparison purposes.
In both cases, tanh(.) function was employed as
sigmoidal function and each iteration involved three
measurements (samplings).

Leamning
Algorithm

Figure 1. Block diagram for DA control system

In the FNN case, the neural network controller
(NNC) is Rj,,,,,and the size of the parameter

vector @ is p = 280. Based on the FNN algorithm, it
needs 250 multiplications, 280 additions and 30
sigmoidal  function  calculations for each
measurement.

Simulation results show that it takes longer to
simulate each measurement and the plant output
convergence is slower. Figure 2 shows a simulation
result for first 2000 measurements. The termination
condition is || A8 || < 0.01 and the successive iteration
number is 100,

In DRNN case, the NNC is 83

the parameter vector g is p=25 with biases. It
needs 20 multiplications, 20 additions and 35
sigmoidal  function calculations for each
measurement. Figure 3 shows a simulation result of
the DRNN case with the same termination condition
as the FNN case. At 1500 measurements the system
satisfied the termination condition and the SPSA was
terminated. Figure 4 and Figure 5 show final results
of FNN and DRNN case after the SPSA algorithm,
respectively. Note that in both cases there are steady
state errors and it seems DRNN has a larger
identification error.

2505 the size of
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Figure 2. System output during SPSA procedure
witha R3 5,0, FNN as NNC
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Figure 3. System output during SPSA procedure
witha X} 5, DRNN as NNC

DISCUSSION

Different configurations of DRNN (x?

2,7,1°?
84 91) were investigated. The results were not

significantly different, therefore, the simplest one
was chosen.

Since FNN and DRNN have different net
architecture with different parameters, it is difficult
to compare the convergence speed directly, but
considering the computational cost for each
measurement, one can see that DRNN converges
faster than FNN.

The choice of the gain sequences a, =a(k+1)™
and ¢, =c(k+1)” are critical to the performance of
SPSA. Spall® pointed out that o 0.602 and 7y
0.101 are practically effective values and a and ¢
should be determined by experiments. In general,
starting at a value of one and decreasing or
increasing this value if, respectively, the algorithm
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Figure 4. System output after SPSA procedure
witha 83 0,0, FNN as NNC
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Fig. 5. System output after SPSA procedure

witha R} ;; DRNN as NNC

seems to be behaving erratically or too conservatively.
As a rule-of-thumb, with the Bernoulli =1
distribution for the elements of A, it is found that ¢
can be set at a level approximately equal to the
standard deviation of the measurement noise in y(6).
Our study proved these conclusions are true in
DRNN case.

4, should be close to the optimal 6* to ensure
6, doesnot get stuck in a local minimum of L !
. Chin ® discussed a technique by which SPSA can
be used as a global optimizer for arbitrary initial
conditions. An appropriate ¢ , will lead to better and
faster results.

When the network parameters change by a
given tolerance for several consecutive iterations,
one can terminate the SPSA algorithm and use the
fixed neural network as controller. Our study shows
that the termination condition is critical to the final
performance of the system from the control
engineering point of view. In general, after SPSA



the system has steady-state error and it is
termination condition dependent. One needs to
determine what is the optimal number of iterations
for terminating the SPSA.

During SPSA procedure, the system is in direct
adaptive control but not after SPSA. When system
parameters or structure changes (the common case
in adaptive control problem) or the desired output
changes, the SPSA should be turned on again to
perform adaptive control function. In practical
application, one must determine the condition to turn
on or off the SPSA algorithm if necessary.

Our simulation shows that the neural network
based SPSA algorithm is good for a smooth trajectory
signal but not for rapidly changing trajectory signal
(e.g., a random signal) or a constant signal. It would
limit its application in some particular cases.

CONCLUSION

SPSA approach has good direct adaptive control
scheme in the sense of statistical modeling and
control. Therefore, it can be applied to unknown
nonlinear systems in the presence of noise. The
system is stable and converges to an optimal state
under certain conditions of SPSA coefficients. Our
study showed that for trajectory control problem, in
general, SPSA has some steady state error, and it is
parameter (o, Y, a, and c) senmsitive. A good
performance after SPSA also depends on the
termination condition and the desired trajectory
signal.

These implies that a good performance SPSA
design is case dependent and requires trial and error
method to find the optimal performance coefficients.
To improve direct adaptive SPSA control system for
real-time trajectory control purpose is our next study
topic.
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