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ABSTRACT 

Air traffic delay is a growing and expensive problem. We 
investigated ways to reduce the cost and magnitude of such 
delays by trading gate delays against more expensive air de-
lays.  Air management and planning at this level can be fa-
cilitated by simulation, especially for strategies that alter 
controls on the system.  We used the SIMMOD air traffic 
simulation to model the system.  The objective was to de-
termine a set of control measures that achieve the best sys-
tem performance subject to restrictions on the decision pa-
rameters and selected system output measurements.  
Because observed system performance is “noisy,” the prob-
lem is a constrained stochastic optimization problem with 
nonlinear objective function and nonlinear, stochastic con-
straints, which requires efficient stochastic optimization 
methods for its solution.  Our approach used the simultane-
ous perturbation stochastic approximation (SPSA) algorithm 
with a penalty function to handle the difficult constraints. 

1 INTRODUCTION 

Increased air travel has added growing numbers of travel-
ers and flights to an already congested system.  The result 
is an almost inevitable rise in air traffic delay. 

The costs and causes of air traffic delay have been 
documented in previous studies (see, e.g., Odoni 1987), and 
so have strategies to reduce controllable delays (e.g., Gilbo 
1993, 1997b).  Such strategies fall into two broad catego-
ries—direct and indirect.  Direct strategies are those that re-
duce delay by eliminating  its causes, for example reducing 
congestion at the  destination airport by using larger aircraft 
to reduce the number of flights.  Indirect strategies reduce 
costs by distributing the delay to other parts of the system 
where it is less expensive, such as holding aircraft at the de-
parture gate to avoid holding on the ground or in the air. 

Many of the most effective direct measures are costly 
and require time to implement and, therefore, offer no im-
mediate resolution.  More attractive are incremental strate-
gies that work within the existing system to reduce the ef-
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fects of congestion or the cost of delays, even though these 
measures may produce more modest results. 

Prominent among indirect strategies are control meas-
ures such as gate holding policies, metering aircraft 
through a control point, and vectoring.  These strategies 
reflect control decisions that are typically made at the indi-
vidual flight level, often just hours in advance of execu-
tion, and based on projected traffic flows (Gilbo 1997a). 

Deciding on the control measures to apply to a set of 
flights for any given day is a difficult nonlinear optimization 
problem.  Problems of this type lend themselves to simula-
tion optimization methods to determine the values of system 
parameters that yield optimal performance (L’Ecuyer, 
Giroux, and Glynn 1994).  Earlier studies showed that re-
ductions in the cost of delay can be obtained by using a 
simulation optimization procedure to process delay cost 
measurements (Kleinman, Hill, and Ilenda 1998).  This work 
was conducted in an unconstrained setting.  We extend these 
results by considering the constrained case. 

We present a formulation of the aircraft delay problem 
and explore the effectiveness of using gate holding delays 
to reduce costly delays in the air.  We accomplish this by 
constructing a scaled-down simulation model of air traffic 
control, focusing on the flights between four airports.  We 
add reasonable constraints, and seek an optimal solution.  
Even though the simulation model is a small-scale system, 
the results highlight features of a larger-scale problem. 

The innovative aspect of this work is the manner in 
which the constraints are managed.  As the constraints of  
our problem are not simple, we are led to the use of penalty 
functions.  The second goal of this paper is to examine a 
set of penalty functions for effectiveness (measured by suc-
cess in finding an acceptable solution) and efficiency 
(measured by how quickly such solutions are found). 

This paper is organized into five sections.  In the fol-
lowing section we formulate the problem as a simulation 
optimization.  We use a constrained version of the simulta-
neous perturbation stochastic approximation method 
(SPSA) to solve for an optimal set of parameters for some 
performance measure or loss function of interest.  The spe-
7



Hutchison and Hill 

 
cifics of SPSA are developed in section 3.  In particular, 
we discuss the adaptations of the SPSA algorithm to han-
dle complex constraints.  Section 4 presents some of the 
main results of our analysis.  We end with conclusions and 
some observations on directions for future research. 

2 PRELIMINARIES 

The air control system is of such complexity that simula-
tion is often the best method to study its performance.  In 
our case we used the SIMMOD simulation program 
(ATAC Corporation 1995) to model the flow of 336 flights 
(departures and arrivals) on a network of four airports.  
Due to the amount of traffic there is considerable delay in 
the system.  We want to determine the effectiveness of a 
set of control measures in reducing delay and its costs.  
SIMMOD is a very flexible discrete event simulation, and 
there was an array of control measures available.  We 
chose gate hold policies because they are easily imple-
mented and have been studied previously.  Gate holds oc-
cur when a flight is delayed in departing the gate.  The de-
cision parameters in our formulation, therefore, are actual 
(versus scheduled) aircraft departure times (or, more cor-
rectly, the delay between the scheduled time and actual de-
parture).  We formulate the problem as a continuous deci-
sion parameter optimization problem. 

2.1 Problem Formulation 

Suppose that pR⊂Θ  and that θ ∈ Θ  is a vector with 
components representing system parameters under control.  
In our case, for example, the components of θ are the de-
parture times for each flight.  Let L(θ) be the performance 
measure or loss function of interest (for example, the ex-
pected cost of total flight delays during a specified period 
of operation).  The exact values of loss are unavailable and 
are estimated by simulation.  Our objective is to optimize 
system performance, i.e. find 
 
 ( )θ

Θ∈θ
Lmin . (1) 

 
subject to relevant constraints on θ, using only the output 
measurements of the simulation.  

The question of relevant constraints is pertinent.  
Unconstrained problems are scarce in practice.  Departure 
times are constrained in that flights may be delayed, but for 
obvious reasons cannot depart early.  The restriction on 
early departures is a hard constraint, in that it represents a 
physical limitation of the system, and parameter values 
outside these constraints are invalid.  Moreover, flights 
should not be delayed too long, leading to soft constraints 
as upper bounds.  We allow parameters to take on values 
violating soft constraints during optimization, though the 
final solution must satisfy them.  In practice, soft con-
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straints are often treated as hard constraints for conven-
ience.  In addition, policy or performance goals can be 
modeled as constraints.  Examples include limiting airway 
capacity, implementation of metering strategies, or targeted 
savings in costs or delays.  These goal-constraints are often 
based on measures of simulation outcomes.  The con-
straints may be highly nonlinear, and generally are implic-
itly defined.  In our problem we consider as one such con-
straint the goal to effect a 20% reduction in air delay 
measured as a system output. 

Constraints such as the latter type are best handled  
with a penalty function, and it is our intent to examine a 
range of penalty functions to investigate comparative ef-
fectiveness and efficiency. 

2.2 Stochastic Approximation 

The decision variables are continuous and the solution space 
may be assumed closed and convex, so the problem lends 
itself to solution with a gradient-based optimization method.  
We consider the standard minimization problem, which, it is 
assumed, is equivalent to finding the root θ* of the equation 
 

 ( ) ( ) 0=
θ∂
θ∂

=θ
Lg .  

 
The form of L(θ) and g(θ) are unknown, and only meas-
urements of L(θ) are available.  In our case SIMMOD is a 
stochastic simulation, so these measurements are noisy 
(and the actual process is stochastic). 
 Our approach to this problem is to use stochastic ap-
proximation (SA).  SA is a class of algorithms used to 
minimize (maximize) a function when there is randomness 
in the optimization process (Andradottir 1998).  First in-
troduced by Robbins and Monro (1951) and Kiefer and 
Wolfowitz (1952), the method has been the subject of con-
siderable research, expanding its applicability and power 
greatly (see, e.g., Fu 1994, L’Ecuyer, Giroux, and Glynn 
1994, Shapiro 1996). 

The updating algorithm for stochastic approximation 
has the form 

 

 ( )( )kkkkk ga θ−θπ=θ Θ+
ˆˆˆˆ

1  (2) 
 
where ( )θkĝ  is an estimate of the gradient g(θ) at iteration  

k and Θπ  is the projection operator that maps points in pR  
to their nearest neighbors in Θ .  If the problem is uncon-
strained, pR=Θ .  When the constrains are known (i.e., 
not random) and linear, the projection has a simple form.  
The step-size sequence ak is nonnegative, decreasing and 
converges to zero.  The generic iterative form of (2) is 
analogous to the familiar steepest descent algorithm for de-
terministic problems.  The estimate kθ̂  converges to the 
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optimizer *θ , under suitable conditions on the loss func-
tion and its gradient (see, e.g., Kushner and Yin 1997). 

Difficulty arises when the constraints are nonlinear, 
stochastic, or both, in which case Θπ  may be complex.  
Under these conditions, a penalty function may be used to 
transform the problem into an equivalent unconstrained 
problem (or one with much simpler constraints) (Bazaraa, 
Sherali, and Shetty 1993, Fiacco and McCormick 1990). 

Since only noisy measurements of the loss function  
are available, we use stochastic approximation in the 
Kiefer-Wolfowitz setting.  Thus, the gradient estimate is 
obtained from measurements of L(θ) (rather than from 
measurements of g(θ), as in the Robbins-Monro setting).  
A common—and computationally inefficient—method of 
estimating the gradient from loss function measurements is 
the method of finite-differences.  One-sided finite differ-
ences, for example, requires 1+p  function evaluations 
(symmetric finite-differences requires 2p function evalua-
tions).  If p is large and the function evaluations difficult or 
time-consuming, the computational effort could be sub-
stantial, since the estimate must be computed at each itera-
tion in (2).  To address this difficulty, Spall (1987, 1992) 
developed the simultaneous perturbation algorithm, which 
requires only two function evaluations to estimate the gra-
dient at each iteration, regardless of the dimension of θ .  
The major advantage of SPSA is the reduction in computa-
tions required to achieve an optimal solution by reducing 
the number of required simulation experiments. 

3 SIMULTANEOUS PERTURBATION 

The theoretical basis for SPSA was developed by Spall 
(1987, 1992) and expanded in subsequent work (see Fu and 
Hill 1997, Sadegh and Spall 1998, Spall 2000).  The 
method relies on a computationally efficient estimate of the 
gradient of L(θ). 

3.1 Gradient Estimate 

Let ( )θkĝ  denote the simultaneous perturbation estimate 

of g(θ) at iteration k and ˆ
kθ  the estimate of θ*.  Let 

p
k R∈∆  be a random perturbation vector at the k-th itera-

tion.  The components of ∆k are usually taken to be inde-
pendent 1± Bernoulli variables.  (More generally, the 
components of k∆  are independent and independently dis-
tributed random variables that are bounded, symmetrically 
distributed about 0, and whose inverses have finite abso-
lute first moments.)  We take measurements of L(θ) at the 
two values: 

 
 ( ) ( ) ( )±ε+∆±θ=∆±θ kkkkkkk cLcy ˆˆ   
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where ( ) ( )−+ εε kk ,  are measurement error terms. 
The simultaneous perturbation estimate ( )θkĝ  of the 

gradient has j-th component, pj ≤≤1 , 
 

 ( ) ( ) ( ) ( )
kjk

kkkkkk
k

j
k c

cycy
g

∆
∆+θ−∆+θ

=θ
2

ˆˆ
ˆˆ . (5) 

 
Note that, in contrast to finite-difference gradient esti-
mates, only the denominator varies in (5).  Under suitable 
conditions (see Spall 1992 for details), the gradient esti-
mate satisfies 

 
 2ˆ ˆ ˆˆ[ ( ) ] ( ) ( )k k k k kE g g O cθ θ = θ + .  

 
Furthermore, ˆ

kθ  →  θ* almost surely as k → ∞. 

3.2 Penalty Functions 

An approach to constrained stochastic optimization is dis-
cussed in Wang and Spall (1999), Sadegh (1997).  They 
showed SPSA converges almost surely for explicit con-
straints using projection.  More difficult constraints can be 
handled by penalty function, transforming the problem into 
one that is unconstrained or mildly constrained.  Pflug 
(1981) showed that stochastic approximation using penalty 
functions converges almost surely, and Wang and Spall 
(1999) have extended this result to SPSA. 

We handle the constraints for this problem in several 
ways.  The non-negativity constraint is managed by recog-
nizing that departure times are translation invariant, that is, 
scaling the departure times by an additive constant does 
not affect the outcomes.  Consequently we remove the non-
negativity constraints, solve the problem, and then translate 
the departure times to ensure no flight departs earlier than 
its originally scheduled time. 

Removing the non-negativity constraints demanded 
we address the soft upper bounds on gate hold delays 
somewhat differently.  We treated these as hard con-
straints, but with respect to the minimum and maximum 
hold times, ( ) ( ) Dkk ≤θ−θ minmax .  We handled these 
inequalities with projection. 

We placed goal-defining constraints (e.g., achieve a 
20% reduction in air delay time) in a penalty function.  
Following the method of Wang and Spall (1999), we use a 
class of penalty functions defined by  

 

 1( ) max( ,0)P x x β=
β

  

 
where 1 ≤ β ≤ 2.  At β = 1, this is the absolute value func-
tion and quadratic at β = 2.  We investigated a collection of 
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penalty functions by varying beta in the range 1 ≤  β ≤  2.  
Previous work on problems with better-behaved constraints 
showed that penalty functions with β > 1 quickly diverged, 
these penalty functions being sensitive to noise.  The case 
for β = 2 is particularly unstable while β = 1 is stable and 
always converges (Wang and Spall 1999).  We want to in-
vestigate values for β > 1, below which the method is gen-
erally stable. 

According to standard procedure, we modify the con-
strained optimization in (1) by adding a penalty term to ob-
tain the more mildly constrained problem below 

 
 ( ) ( )θ+θ

Θ∈θ
PrL kmin .  

 
The penalty weights rk are nonnegative and rk → ∞.  The 
SPSA algorithm takes on the form 

 
 ( )1

ˆˆ ˆ ˆ ˆˆ ( ) ( )k k k k k k k k ka g a r h+ Θθ = π θ − θ − θ . 

 
Here ˆ ˆ( )k kh θ  is an estimate for the gradient of the penalty 
function.  When the penalty function is analytic, this term 
may be replaced by ˆ( )kP∇ θ . 

In our formulation we used a loss function based on 
the weighted delay throughout the system, with separate 
weights for delay at the gate, on the ground, and in the air 
(see Kleinman, Hill, and Ilenda 1998) and with the con-
straints as described. 

4 MAIN RESULT 

We obtained a solution that satisfied the constraints and 
resulted in a reduction of the air delay for the described 
problem.  A table of critical values is given below.  In each 
case we were able to satisfy the penalty constraint while 
meeting the hard constraints on gate hold times.  In the re-
vised problem the algorithm found a solution that resulted 
in greater gate hold times, and the bounding constraints on 
some of the gate holds were tight. 

The decrease in the loss function was slight for all 
tested penalty functions and not statistically significant.  
We discuss the reasons for this observation.  Unlike other 
constrained optimizations, penalty optimizations are exte-
rior point methods (Fiacco and McCormick 1990).  Conse-
quently, the initial point, θ0, lies outside the feasible re-
gion.  The penalty term causes the loss function to increase 
sharply until sufficient reductions in air delay occur to off-
set (or eliminate) this term.  At that point θk is inside or 
very near the feasible region, and we have the problem in 
(1) with the penalty constraint satisfied, usually tightly.  
This occurred at about iteration 75 for our problem.  The 
remaining iterations attempt to minimize L(θ).  Our inter-
pretation is that 300 iterations were not sufficient to gain 
102
convergence.  It is an interesting research problem to de-
termine whether the algorithm would profit from redefin-
ing the step size ak when this switch occurs, and what this 
new sequence should be. 

The results reported in Table 1, Figure 1, and Figure 2 
are averaged over 30 Monte Carlo trials.  The results of Fig-
ure 3 are from a more modest run of 15 Monte Carlo trials. 
 
Table 1: Results from Original Problem (300 Iterations, 
30 Monte Carlo Trials) 

 
 

Case 

Loss 
Function 

Total Air 
Delay 

Total Gate 
Delay 

Maximum 
Gate Hold 

Initial 50.81 4520 0 0 
Final (β=1) 49.93 3880 1718 16.3 
Final (β=2) 49.88 3851 1862 17.2 

 
It is apparent from Figure 1 that even with 30 Monte 

Carlo trials, the averaged loss function is still quite noisy.  
Empirical testing showed that for this simulation model, 
Monte Carlo trial counts greater than 100 are required be-
fore sufficient smoothing is obtained.  This may be caused 
by the constraints and the compact nature of the problem.  
In many cases it will be prohibitive to obtain such a high 
number of trials. 
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Figure 1: Trace of the Averaged Loss Function by 
Iteration for β = 1. 

 
 The results of a quadratic penalty function are shown 
in Figure 2.  The trace of the loss function is similar to that 
in Figure 1.  Statistically, the final result for β = 1 is not 
significantly different from the result for β = 2, meaning 
that no advantages were observed for one penalty function 
over another, though we expect that increasing the number 
of Monte Carlo trials and the number of iterations will al-
low stronger conclusions to be drawn. 
 Figure 3 shows the relative performance of the various 
penalty functions on air delay.  No attempt has been made 
to distinguish these on the graph as there are no significant 
differences between them.  The heavy bar represents the 
penalty constraint (20% reduction in total system air delay 
time).  It is apparent that this goal is satisfied in about 75  
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Figure 2: Trace of the Averaged Loss Function by 
Iteration for β = 2 
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Figure 3: Effect of Penalty Function on Air Delay 
 

iterations of the SPSA algorithm for all penalty functions 
studied.  As mentioned, the results are averaged over 15 
Monte Carlo trials, and even when this smoothing is ap-
plied, there is sufficient remnant noise that we see no dis-
cernable or statistical differences between the penalty func-
tions over the set of betas chosen. 
 There are several reasons why this could be true.  First, 
the problem may be too noisy to allow such distinctions.  
Penalty terms are notoriously sensitive to noise (Fiacco and 
McCormick 1990) and in this problem the noise was fairly 
high with loss function values of about 50 and a standard 
deviation of 2.78 for the error.  If differences do, indeed, ex-
ist, they may be discernable with a higher number of Monte 
Carlo trials.  This suggests an area for future work. 

5 CONCLUSIONS 

Our study suggests the viability of SPSA for solving high 
dimensional constrained optimization problems efficiently.  
For the problem at hand, we were able to reduce air delays 
to a stated goal, while minimizing costs or delays else-
where in the system subject to simple constraints.  It is per-
haps significant that we obtained a solution at all.  It is not 
possible in the general case to guarantee a priori that the 
solution space is not empty. 
1021
 We looked at minimizing the total cost of delay using 
a weighted loss function comprising gate delays, ground 
delays, and air delays.  We were able to demonstrate that 
penalty functions are a useful way to perform simulation 
optimization in the presence of constraints that are nonlin-
ear, implicit, and noisy.  Unfortunately we were not able to 
discern differences in the relative efficiency of the various 
penalty functions studied.  The lack of a discernable differ-
ence may be attributed to the extremely noisy nature of the 
simulation. 
 These results suggest several interesting avenues for 
further research.  A more systematic examination of these 
and other classes of penalty functions would be useful to 
identify conditions that argue for one penalty function over 
another. 
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