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DISCRETE STOCHASTIC APPROXIMATION

A

Discrete Stochastic Approximation with Application 
to Resource Allocation

Stacy D. Hill

n optimization problem involves fi nding the best value of an objective function 
or fi gure of merit—the value that optimizes the function. If the set of options is fi nite in 
number, then the problem is discrete. If the value of the objective function is uncertain 
because of measurement noise or some other source of random variation, the problem is 
stochastic. Mathematically, the discrete optimization problem is a nonlinear optimization 
problem involving integer variables, and its solution will require some iterative proce-
dure. This article discusses one such procedure for solving diffi cult optimization problems. 
The procedure is a discrete-variables version of the Simultaneous Perturbation Stochastic 
Approximation algorithm, developed at APL, for solving optimization problems involving 
continuous variables. The discrete-variables algorithm shares some of the computational 
effi ciency of its continuous counterpart.

INTRODUCTION
Discrete optimization problems occur in a wide vari-

ety of practical applications. One important class of 
such problems is the resource allocation problem: There 
is a fi nite quantity of some resource that can be distrib-
uted in discrete amounts to users or to perform a set of 
tasks; the problem is to distribute the resource so as to 
optimize some fi gure of merit or objective function. This 
article discusses a discrete optimization algorithm for 
solving such problems.

The algorithm,1,2 developed in collaboration with 
László Gerencsér (Computer and Automation Res. Inst., 
Hungarian Academy of Sciences, Budapest) and Zsu-
zsanna Vágó (Pázmány Péter Catholic University, Buda-
pest), relies on the method of stochastic approximation 

(SA).3 It is a discrete-variables version of an SA method, 
also developed at APL, called the Simultaneous Pertur-
bation Stochastic Approximation (SPSA) algorithm,4,5 
which is used for solving optimization problems involv-
ing continuous variables. The goal in developing the dis-
crete version of the SPSA, which we will sometimes call 
“discrete SPSA,” was to design an algorithm that, like 
its continuous counterpart, is computationally effi cient 
and solves problems in which the objective function is 
analytically unavailable or diffi cult to compute. Before 
presenting the discrete algorithm, several example prob-
lems are given to illustrate the variety of discrete resource 
allocation problems and the need for discrete SPSA. (For 
other examples, see Ref. 6.)
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The fi rst example is the weapons assignment prob-
lem.7 There are multiple weapons systems that differ 
in number, yield, and accuracy, and there are multiple 
targets that differ in “hardness” and type. The problem 
is to assign weapons to targets in some optimal fash-
ion. The resources are weapons assets, and the tasks 
are the targets to be attacked. The objective func-
tion might refl ect the cost of deploying assets, target 
hardness, and the strategic value of each target; it 
might also refl ect the goal to attack a certain minimum 
number of targets or the requirements to achieve a cer-
tain level of damage and minimize undesired collateral 
damage. 

Another example is the facilities location problem8:  
Facilities (e.g., manufacturing plants, military supply 
bases, schools, warehouses) can be built at a fi xed number 
of locations. There is a cost if the facility is underutilized 
or if it cannot keep up with the demand for its services. 
The problem is to determine the best location and size 
of each facility.

The last example is the problem of scheduling the 
transmission of messages in a radio network.9 A message 
is transmitted over the nodes in a network as a set of 
“frames,” where the total number of frames a message 
requires depends on the length of the message. There 
is a fi xed number of time slots—buffer space—that 
can be allocated to message frames. The problem is to 
allocate buffer space to the nodes to minimize average 
transmission delays or some other quantity such as the 
number of messages that are “blocked” or cannot be 
transmitted.

In each of these examples, the resource can only 
be distributed in discrete amounts, i.e., the amount of 
a resource that can be allocated is an integer value. 
The objective function is some scalar-valued function; 
depending on its interpretation, the optimal value— 
and consequently the optimal allocation—corresponds 
to its minimum or maximum value. For example, if the 
objective function measures a loss such as the cost of 
an allocation, then an optimal allocation minimizes the 
loss. If, on the other hand, the objective function mea-
sures some gain such as profi t or reward, then an opti-
mal allocation is one for which the objective function 
is at a maximum. In what follows, we will assume that 
the objective function is a loss function. This assump-
tion imposes no loss in generality, since a maximization 
problem is easily transformed into one of minimization. 
More precisely, the problem of fi nding the minimum of 
a loss function, L, say, is equivalent to the problem of 
fi nding the maximum value of –L.

One feature of discrete optimization problems that 
makes them potentially diffi cult to solve is the size or 
cardinality of their search spaces, which can be large 
in problems involving a relatively small number of users 
and resources. For example, the number of ways of allo-
cating, say, 20 units of a resource to 30 users exceeds 

1013. More generally, the size of the search space for a 
constrained resource allocation problem consisting of  N 
users and K identical resources (i.e., the resources are 
indistinguishable) exceeds (K + N – 1)!/(N – 1)!K!.10 
Thus, the search space is typically too large to make an 
exhaustive search a feasible approach. 

Adding to the diffi culty of dealing with large search 
spaces is the problem of operating in a “noisy” or sto-
chastic environment. An algorithm for fi nding the 
optimal value requires the ability to evaluate the loss 
function at estimated or candidate solutions. The com-
puted values of the loss will be noisy if the loss func-
tion depends on quantities having uncertain values or 
is corrupted by “measurement” noise. In the weapons 
assignment problem, for example, some uncertainty 
may exist in the location or characteristics of the tar-
gets or in estimates of damage, and hence the loss may 
depend on damage assessments obtained by sensor 
devices that may contain measurement noise. In the 
facilities location problem, the actual use at a location 
may vary unpredictably, as will the gain and loss in 
locating there. In the problem of transmitting messages 
in a radio network, the loss will be random if users can 
request network resources at random instants of time or 
hold them for random lengths of time. Any algorithm 
for fi nding the minimum must be applicable to noisy 
loss functions.

Noisy loss functions and large search spaces present 
two diffi cult challenges to solving discrete optimization 
problems and are the main motivation for the develop-
ment of a discrete version of SPSA.

PROBLEM FORMULATION
The resource allocation problem is easy to state. Con-

sider the case involving a single type of resource. Sup-
pose K units of the resource are to be distributed to p 
users or tasks. An allocation rule assigns a fi xed number 
of the units to each user and therefore determines a 
vector of dimension p—an allocation vector—whose 
components are the quantities of the resource allocated 
to users. If � denotes the allocation vector, then � = 
(�1, ..., �p), where �j is the amount allocated to the jth 
user. Since the amounts allocated are discrete, each �j 
is a non-negative integer, and since the total quantity 
allocated is K, it follows that � jj

p
K=∑ =1 .  The total 

loss associated with the allocation � is L(�) and depends 
on the loss in allocating resources to each of the p users. 
If Lj(�) is the loss associated with the jth user, the total 
loss is L jj

p
( ) ( ).� �= =∑ L

1  The problem, then, is to fi nd 
the allocation that minimizes the total loss, i.e.,
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where �j is a non-negative integer, j = 1, 2, ..., p. In general 
terms, this is a nonlinear integer problem—an optimi-
zation problem with integer variables and a real-valued 
objective function.

An allocation vector � is a feasible solution if it sat-
isfi es the constraints, i.e., the allocations are non-
negative integers and their sum equals K. A feasible 
solution �* is a solution if L(�*) ≤ L(�) for any other 
feasible solution �.

The optimization problem as currently formulated 
is intractable; that is, any algorithm that solves it must 
enumerate a nontrivial part of the set of feasible solu-
tions and is essentially equivalent to an exhaustive 
search. In the language of computational complexity 
theory, the problem is NP-complete. (See Ibaraki and 
Katoh,6 pp. 35–37 and 212–214, for a discussion of com-
putational complexity and how it relates to the resource 
allocation problem.) For this reason, we consider a class 
of objective functions that lead to tractable problems. 
In particular, we consider objective functions that are 
separable and integer convex. The notion of integer 
convexity will be defi ned later. The loss function L is 
separable if

 L Lj
j

p

j( ) ( ) .� �=
=
∑

1

 (2)

This form is a special case of a loss function in which 
the jth user loss depends only on the allocation to the 
jth user.

Algorithms for solving an optimization problem are 
iterative procedures that generate a sequence of esti-
mates that converges to an optimum. These procedures 
are typically recursive, i.e., the “next” estimate depends 
on the previous ones. In the deterministic setting—
problems in which the loss function can be evaluated 
at each � —there are a number of procedures for fi nding 
the minimum.6 For many practical problems, however, 
uncertainty or noise may exist that makes the loss func-
tion diffi cult or impossible to evaluate. 

Algorithms for discrete optimization problems 
involving noisy loss functions are limited.10–12 In such 
problems, the loss values must be replaced by estimates, 
which may contain measurement noise. (For exam-
ple, in the facilities location problem, loss depends 
on the difference between the planned capacity and 
that which is required to meet user demand, and will 
therefore be unknown if the actual demand is unpre-
dictable.) The discrete SPSA algorithm, like the SPSA 
algorithm, is a recursive algorithm in which the next 
estimate depends in a very simple way on the estimates 
of the loss function.

Uncertainties that make the loss diffi cult to evaluate 
can be viewed as random variables that infl uence the 
actual loss, and the (total) loss L(�) can be viewed as 
the average or expected value of the actual loss. More 

specifi cally, assume that the uncertain quantities are 
random variables denoted �, and denote the actual loss 
by �(�, �); then

 L(�) = the expected value of �(�, �) .

Similarly, if the actual loss for the jth user is �j(�, �), 
then

 Lj(�) = the expected value of �j(�, �)

and

 � �( , ) ( , ) .� � � �=
=
∑ j
j

p

1

Another way of viewing the actual and expected 
losses is to think of the actual loss as a measurement of 
the expected loss that is corrupted by additive noise. In 
other words, if the measurement noise is �j(�, �) and has 
zero mean, then

 �j(�, �) = Lj(�) + �j(�, �) . (3)

Thus �j(�, �) is a noisy measurement of Lj(�). Likewise, 
the total actual loss, �(�, �), is a noisy measurement of 
L(�), the total expected loss.

Since the loss function is not directly available, the 
optimization algorithm must rely on noisy estimates of 
the loss for fi nding the minimum.

THE OPTIMIZATION ALGORITHM
The discrete SPSA method is an analogue of the 

SPSA algorithm for continuous-variables problems. Let 
us briefl y review the SPSA algorithm to see how it is 
modifi ed to obtain the discrete version.

Continuous-Variables SPSA
In the continuous setting, � is a continuous vector 

parameter, i.e., its components are real numbers. The 
optimization problem is

 minimize L(�) ,
 where �j is a real number, j = 1, 2, ..., p . 

The loss function L is assumed to be a differentiable real-
valued function. Thus, if a point �* minimizes L, then

 ∂
∂

=L( )
.

*�

�
0  (5)

(4)
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Under additional assumptions, the root of this equation 
minimizes L.

As in the discrete optimization problem, the loss 
function is assumed to be unavailable. However, one can 
obtain noisy measurements of the loss,

 y(�) = L(�) + �(�, �) ,

where � is measurement noise and, as before, � denotes 
uncertainty. Since L(�) is unavailable, its gradient, 
∂L/∂�, is also unavailable and must be estimated.

The SPSA algorithm for solving Eq. 5 uses a com-
putationally effi cient estimate of the gradient, which is 
computed in terms of the y(�) values, the noisy observa-
tions of the loss. The algorithm is 

 ˆ ˆ ˆ( ˆ ) .� � �k = k k1 = − a gk  (6)

For k = 1, 2, 3, …, the gain sequence ak is an appropriately 
chosen sequence of positive real numbers, and ˆ( ˆ )g �k  
is an estimate of the gradient g(�) = ∂L(�)/� of the loss 
function evaluated at �̂k  defi ned as follows:

Step 1. Generate a vector �k = (�k1, �k2, ..., �kp), the 
components of which are Bernoulli random vari-
ables taking the values �1 with probability 1/2.

Step 2. Take a positive real number ck, the step size, and 
consider the two perturbations about ˆ :�k

 and 

ˆ = ˆ

ˆ ˆ .

(+)
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k k

k k
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= −−

c

c

k k
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 (Spall,13 pp. 189–190, contains guidelines for 
choosing values for ck and ak.)

Step 3. Evaluate  y at the perturbed values  ˆ ˆ(+) ( )� �k k, −   to 
obtain yk k

(+) ( )(ˆ )= +y �  and yk k
( ) ( )(ˆ ).− −= y �  These 

are measurements of L k( ˆ )(+)�  and L k( ˆ ),( )� −  
respectively.

Step 4. Form the estimate ˆ( ˆ )g �k  by taking
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Under suitable conditions on the loss function, the esti-
mates �̂k  converge to a solution of Eq. 5.

The gradient estimate requires, at each iteration, only 
two measurements of the loss, namely, y yk k

( ) ( )and .+ −  The 
standard method of estimating the gradient from obser-
vations, the method of fi nite differences, requires at least 
p + 1 measurements of the loss. The SPSA is computa-
tionally effi cient compared with an SA algorithm that 
uses fi nite difference, especially if loss measurements 
are time-consuming or costly to obtain. It is this type of 
effi ciency that is sought for the discrete algorithm.

Discrete Parameter SPSA

A Special Case
The discrete algorithm is similar to the continu-

ous algorithm; however, in the discrete setting there 
is no derivative. Under suitable conditions, differences 
between the loss function at different points behave 
like derivatives in the continuous-variables setting. One 
condition that guarantees this behavior is a convex-
ity condition for functions of a discrete argument6,14,15 

and leads to a discrete-variables analogue of the SPSA 
algorithm.

Before exploring the notion of discrete convexity, it 
may be helpful to review convexity in the continuous 
setting. Geometrically, a function is convex if, at each 
point on its graph, there is a line which passes through 
that point which lies on or below the graph. Any such 
line is called a line of support. For example, in Fig. 1, the 
solid curve (blue) is the graph of a convex function and 
the dashed line (red) is a line of support.

The integer convexity condition is not too diffi cult 
to describe in the one-dimensional case, where the loss 
function is a function of a single integer variable. In this 
instance, the loss function is said to be integer convex or 
simply convex if, for each integer �,

 L
L L

( )
( ) ( )

.�
� �≤ + + −1 1

2
 (8)

This condition is similar to mid-point convexity for 
functions of a real argument, where mid-point convexity 
and convexity are equivalent. An equivalent form of the 
previous inequality is

 L(�) � L(� � 1) � L(� 	 1) � L(�) . (9)

It is this last inequality that motivates the use of differ-
ences as a replacement for derivatives. 

To see the similarity between differences and gradi-
ents, we need the following fact about integer convex 
functions. Let �L(�) = L(�) � L(� � 1). A point �* mini-
mizes an integer convex function L if

 �L(�*) � 0 � �L(�* 	 1) . (10)
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Figure 2 illustrates this property and also the connec-
tion between �L(�) and the loss function. The blue dots, 
which are connected by the solid line, plot the values of 
the loss function, and the red dots, which are connected 
by the dashed line, plot the values of �L(�). The mini-
mum of the function occurs at �* = 4.

If we think of differences �L(�), with  � being an 
integer, as the discrete analogue of a gradient, then this 
last inequality implies that to fi nd the minimum of L, 
we need only look for the point at which the gradients  
�L(�) and �L(� 	 1) are “close” to zero, or, equivalently, 
the point at which their average (�L(� 	 1) 	 �L(�))/2 
is close to zero. 

Observe that

 
� �L L L L( + ) ( ) ( + ) ( )

.
� � � �1

2
1

2
1+ = − −

 (11)

So the problem of minimizing L reduces to the problem 
of fi nding the point at which the discrete “gradient,”

 g
L L

( )
( + ) ( )

�
� �= − −1

2
1

, (12)

is zero or close to zero.
The quantity g(�) behaves very much like a gradient. 

To see this, we need to extend the loss function to a 
function of a continuous variable. Consider the func-
tion L( )�  obtained by linearly interpolating L between  
� � 1 and �, � = 1, 2, 3, .... The extension L( )�  is defi ned 
for each real number �. This function is a continuous 
convex function, but is not everywhere differentiable. 
Furthermore, if the step size c is small enough, where 
c > 0, then

 

L L
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if � is an integer and

 
L L

c
L L

( + . ) ( . )
([ ]+ ) ([ ])

� �
� �

c c1 1
2

1
− − = −  (14)

if � is not an integer, where [�] denotes the integer part 
of �. In either instance, denote the difference by g(�), 
so that

 g( )� =
⎧
⎨
⎪

⎩⎪
 (15)

Then g(�) behaves, in some sense, like a gradient for 
extended function L( ).�  In fact, g is a subgradient and 
serves as a gradient in the optimization of functions that 
are not necessarily differentiable.

An estimate of the subgradient is  

 ˆ( )
( ) ( )

,g
y c y c

c
�

� �= + − −� �

�2
 (16)

where y( )�  is the (piecewise linear) extension of y(�), 
and � is a Bernoulli random variable taking the values 
�1 with equal probability. This estimate is a simultane-
ous perterbation estimate of the subgradient.2

The foregoing suggests an SA algorithm that is anal-
ogous to the continuous version (Eq. 6):

 ˆ ˆ ˆ([ ˆ ]), ˆ an integer .� � � �k + k k1 1= − =a gk  (17)

1
2

1 1( ( ) ( )), an integerL L� � �+ − − =

L([ ] ) ([ ]), otherwise.� �+ −1 L

Figure 1. Continuous convex function.
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If the algorithm is stopped at iteration n, the estimate of 
the optimizing value is [ ˆ ].�n  Note that this algorithm is 
similar to the discrete SA algorithm in Ref. 16.

The General Algorithm
Assume that the loss function is separable and 

convex, i.e.,

 L Lj j
j

( ) ( ) ,� �=
=
∑

1

p
 (18)

where each Lj is an integer convex function. Simi-
lar to Inequality 10, the point �* minimizes this loss 
function if 

 � �L L j pj j( ) ( ), , , .� �j j
* *≤ ≤ + =0 1 1 K  (19)

Unlike the one-dimensional case, this condition is suf-
fi cient but not necessary for a minimum. (Cassandras et 
al.10 give suffi cient conditions for a minimum.)

Let �L(�) = (�L1(�1), ..., �Lp(�p)). If we view �L(�) and 
�L(� 	 1) as gradients of L, then the minimum occurs 
at a point where their average (�L(� 	 1) 	 �L(�))/2 is 
close to zero. Let

 g( )=�
� �� �L L( ) ( )

.
+ +1

2
 

Again, the problem of minimizing the loss reduces to 
fi nding a point at which g is zero or close to zero.

Since L is separable, g satisfi es the following identity:

 g( )=�
� � � �L L L Lp p p p1 1 1 11 1
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1 1( ) ( )
, ,

( ) ( )+ − − + − −
K

22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.

 
  (20)

This form of g and the discussion in the last section 
suggest the following simple “gradient” estimate simi-
lar to the estimate in SPSA. Let �k = (�k1, �k2, ..., �kp), 
where the components of �k are independent Bernoulli 
random variables taking the values �1. Then
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This estimate satisfi es an important property: it is an 
unbiased estimate of the subgradient.

The subgradient estimate in Eq. 21 leads to an algo-
rithm similar to the one in Eq. 17: 

 ˆ ˆ ˆ([ ˆ ]) .� � �k + k k1 = − a gk  (22)

The initial value is ˆ ( ˆ , ˆ , , ˆ ),� � � �1 11 12 1= K p  where each �̂1j  
is an integer, j = 1, …, p, and [�] is the vector obtained by 
taking the integer part of each component of �. To solve 
the resource allocation problem, this algorithm requires 
a slight modifi cation that ensures that each iterate is a 
feasible solution. An easy way to guarantee this is by a 
projection—if an iterate lands outside the feasible solu-
tion set, project it onto the feasible solution set before 
generating the next iterate.

The steps to implement the discrete algorithm are 
similar to those for the continuous one:

Step 1. Generate a vector �k = (�k1, �k2, ..., �kp), the com-
ponents of which are Bernoulli random variables 
taking the values �1 with probability 1/2.

Step 2. Form the value [ ˆ ],�k  the vector with integer 
components.

Step 3. Consider the two perturbations about [ ˆ ] :�k

 and 
[ ˆ ] [ ˆ ]

[ ˆ ] [ ˆ ] .

( )

( )

� �

� �

k k k

k k k

+

−

= +

= −

�

�

 

Step 4. Evaluate y at the perturbed values [ ˆ ]( )�k
±  to 

obtain y yk k
( ) ( )( ˆ )+ += �  and y yk k

( ) ( )( ˆ )− −= �  (mea-
surements of L k( ˆ )( )� +  and L k( ˆ ),( )� −  respec-
tively) and form the estimate of ˆ( ˆ ).g k�

Step 5. Update the algorithm according to Eq. 22.

DISCUSSION 
The performance of the algorithm is an important 

practical issue. Its numerical performance has been stud-
ied previously.1,17 It has also been compared (see Ref. 18) 
with the method of simulated annealing,11 an algorithm 
that applies to functions of a discrete argument. Numer-
ical studies provide insight into specifi c applications and 
performance in special problems when compared with 
existing algorithms. However, numerical studies do not 
prove convergence, which is a requirement of any algo-
rithm. Convergence is a theoretical property and must 
be established by a proof of convergence, as has been 
done for the continuous algorithm.4,19 

With respect to convergence, there are two impor-
tant questions: Does the algorithm converge? How fast 
does it converge? The discrete SPSA algorithm (Eq. 
22) converges under some restrictions on the loss func-
tion.2 The latter question about the rate of convergence 
remains open and is currently under investigation.
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