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Abstract—In the centralized heating, ventilating and air-condi-
tioning (HVAC) system, air handling units (AHUs) are traditionally
controlled by single-loop proportional-integral-derivative (PID)
controllers. The control structure is simple, but the performance
is usually not satisfactory. In this paper, we propose a cascade
control strategy for temperature control of AHU. Instead of a fixed
PID controller in the classical cascade control scheme, a neural
network (NN) controller is used in the outer control loop. This
approach not only overcomes the tedious tuning procedure for the
inner and outer loop PID parameters of a classical cascade control
system, but also makes the whole control system be adaptive and
robust. The multilayer NN is trained online by a special training
algorithm—simultaneous perturbation stochastic approximation
(SPSA)-based training algorithm. With the SPSA-based training
algorithm, the weight convergence of the NN and stability of the
control system is guaranteed. The novel cascade control system
has been implemented on an experimental HVAC system. Testing
results demonstrate the effectiveness of the proposed algorithm
over the classical cascade control system.

Index Terms—Air handling units, cascade control, neural net-
works (NNs), simultaneous perturbation stochastic approximation
(SPSA).

I. INTRODUCTION

I N heating, ventilating, and air-conditioning (HVAC) sys-
tems, the function of air handling units (AHU) is to transfer

cooling load from air loop to chilled water loop by forcing air-
flow over the cooling coil and into the space to be conditioned.
The performance of AHU directly influences the performance of
HVAC systems. Traditionally, AHUs are controlled by single-
loop proportional-integral-derivative (PID) type controllers, as
shown in Fig. 1, due to the relatively simple structure [1]. How-
ever, in cases where requirements of the environment for equip-
ments are very high, such as clean rooms (typically, temperature
and humidity specifications require error tolerances of
C and 2% RH, respectively), it would be desirable to integrate
PID controllers into complex control structures to achieve better
performance.

In this paper, we propose a cascade control strategy for
AHU temperature control system. Cascade control algorithms
are constructed by two control loops: an inner loop with fast
dynamic to eliminate input disturbances and an outer loop to
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Fig. 1. Schematic diagram of conventional AHU control system (single control
loop).

regulate output performance [2], [3]. It is particularly useful
when there are significant dynamic differences between the
control and process variables, tight control actions can be
achieved by using an intermediate signal that responds faster
than the original control signal. The cascade temperature
control strategy of AHU can be implemented by selecting the
flow rate of chilled water as an intermediate control signal
that has fast response to the valve position change. Tradition-
ally, the cascade control scheme is constructed as: a P or PI
controller for the inner loop; a PI or PID controller for the
outer loop. However, in most practical cases, such a cascade
control system cannot deal adequately with the robustness
issues [4]. In particular, when the inner loop part of the process
is subject to structural and/or parametric variations, the control
system does not guarantee an acceptable performance. It is
desirable to enhance the performance robustness of the classical
cascade control system and make it adaptive to both the plan
nonlinearity and dynamic change. Furthermore, tuning the
PID controllers requires effective process identification and
controller design rules. For cascade control, it is difficult to
obtain the well-tuned PID parameters for both the outer loop
and the inner loop simultaneously. If retuning of the system
dynamic is needed because of the environment change or aging
effect, the situation may be even worse.

To enhance the robustness performance of AHU and sur-
mount the problems for cascade control system mentioned
above, in this paper, a neural network (NN)-assisted cascade
control system is proposed. Instead of a fixed PI or PID con-
troller, a NN controller is used in the outer control loop.

NNs have been increasingly applied to the control of a
nonlinear system and are now finding application in a HVAC
system. Miller and Seem [5] investigated a NN approach to
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the prediction of return time from night setback. The network
in an open-loop control mode was used to predict the startup
time from measured values of the outside temperature and the
initial room temperature. Curtiss et al. [6] applied an adaptive,
NN-based control scheme to a hot water heating coil. The NN,
which is used in the feedback loop, models the dynamic be-
havior of the coil and predicts future process outputs. An RBF
neural network controller was designed to control the heating
coil in [7]. The neural control scheme is capable of compen-
sating for plant nonlinearity and adapting online to degradation
in the plant. However, NN training algorithms are sensitive to
disturbances and may not be able to obtain an optimal per-
formance without guaranteed stability [8]. In the NN-assisted
cascade control system studied in this paper, we use the simul-
taneous perturbation stochastic approximation-based training
algorithm proposed in [9]. With the SPSA-based training
algorithm, the weight convergence of the NN and stability of
the control system is guaranteed. We apply the new cascade
control scheme to the air temperature control of the AHU,
dealing with the chilled water flow rate fluctuation, which is the
main disturbance in a typical chilled water distribution system.
Testing results obtained from both single-loop and cascade
control strategies are presented to demonstrate the performance
of the new control scheme. It shows that, with the proposed
cascade control scheme, the temperature control performance
of AHU is significantly improved for both temperature set-point
tracking and chilled water flow rate disturbances rejection.

II. DESCRIPTION OF AHU CONTROL SYSTEM

The cooling only AHU system is shown in Fig. 1, it con-
sists of cooling coil, air dampers, fans, chilled water pumps, and
valves. The fresh air, depending on the outdoor air damper set-
tings, may be mixed with the air passing through the recircula-
tion air damper. Return air is drawn from the zones by the return
fan and is either exhausted or recirculated, depending on the po-
sition of the mixing box dampers. The temperature and flow rate
of the outdoor and recirculation air streams determine the condi-
tions at the exit of the mixed air plenum. Air exiting the mixed
air plenum pass through the cooling coils. After being condi-
tioned in the coils, the air is distributed to the zones through
the supply air ductwork. The supply air temperature is mea-
sured through the downstream airflow of the supply fan. For the
off-coil temperature control loop, the manipulated variable is the
valve opening position that controls the chilled water supplied
to the cooling coil. The measured process output is the off-coil
downstream temperature of the supply fan. The objective of the
AHU is to maintain the supply air temperature at the set-point
value.

Let and denote the dynamic models of the AHU
process and the fixed PID temperature controller in the single
control loop, respectively, the block diagram of the conventional
temperature control system is shown in Fig. 2. The drawback
of the conventional PID controller is that it has a single de-
gree-of-freedom in tuning. Considering a central HVAC plant,
as shown in Fig. 3, where the main chilled water distribution
pipe may supply chilled water to many AHUs. Therefore, flow
rate change in one AHU branch will affect all other loops.

Fig. 2. Block diagram of AHU’s supply air temperature AHU control system
(single control loop).

Fig. 3. Typical chilled water distribution system.

Fig. 4. Schematic diagram of cascade control for supply air temperature.

When a conventional single-loop temperature control scheme
is used with the output of the temperature controller applied
directly to the control valve, no correction will be made until
its effect reaches the temperature measuring elements. Thus,
there is a considerable lag in correcting flow rate disturbances.

To improve the response of the simple feedback control, with
a cascade control technique using a separate flow rate control
loop, the flow rate controller will correct any change in the
chilled water flow rate. Fig. 4 shows a schematic diagram of
the cascade control system for supply air temperature, while the
control block diagram is shown in Fig. 5, where , , ,
and stand for the temperature controller, chilled water flow
rate controller, AHU process, and valve process, respectively.

III. NN-ASSISTED CASCADE CONTROL SCHEME AND THE

SPSA-BASED TRAINING ALGORITHM

To deal with the system nonlinearity and uncertainty (espe-
cially the dynamic change of the inner loop), instead of the tra-
ditional PI or PID controller, we employ a NN controller for
the outer loop of AHU temperature control. As shown in Fig. 6,
the equivalent outer loop process consists of the inner loop
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Fig. 5. Block diagram of conventional cascade control.

Fig. 6. Block diagram of the outer control loop.

P/PI controller , the inner loop valve process , and the
AHU process (refer to Fig. 5).

A. NN-Assisted Cascade Control Scheme

Fig. 7 shows the structure of the NN-assisted cascade control
system. It can be seen that, the outer control loop comprises
a fixed proportional feedback controller and a NN controller
that is trained to approximate the inverse dynamics of the plant.
With as the time index, the dynamic of the outer control loop
can be represented as a single-input–single-output form as the
following:

(1)

where is the output, is the control input, and is the rela-
tive degree of the system. Particularly, for the outer loop of AHU
temperature control studied in this paper, is the supply air tem-
perature, and is the set-point value of chilled water flow rate in
the inner control loop. is the unknown dynamic nonlinear
function, and denotes a bounded overall noise signal of the
control system. are integers and .

The set-point tracking error is

(2)

where is the command input. Define the control signal as

(3)

where is estimate of the nonlinear function by the NN
to be defined later, and denotes the proportional gain of the
fixed controller. We have the control signal at time step as

(4)

Note that the equation above shows that the control system be-
comes noncausal when . However, for the proposed con-
troller design, this issue can be typically addressed by intro-
ducing a linear observer with the extra observation of the dif-
ference signals

(5)

where is the sampling time, and is the differential signal
of output . In the cases when is not measurable, it can be
approximated by the output signal.

For example

The estimation error vector of the NN can be presented as

(6)

The NN control structure is shown in Fig. 7 with ,
, and . Note that, for the NN training, the estima-

tion error may not be directly measurable, so we should use
the tracking error to generate it based on the closed-loop rela-
tionship via (1)–(3) and (6)

(7)

The output of a three-layered NN can be presented as

where the input vector of the NN is

(8)
with . is the weight vector of the
output layer, is the numbers of neurons in the hidden layers
of the network, is the adjustable weight matrix
of the hidden layer, and is the nonlinear activation
function vector

(9)

where is the nonlinear activation function

(10)

where is the so-called gain parameter of the threshold
function.

B. SPSA-Based Training for NN

The SPSA algorithm proposed by Spall [10], [11] is a nu-
merically efficient stochastic optimization algorithm. Unlike the
conventional gradient-based optimization methods, which eval-
uate the gradient of the objective function by perturbing each de-
cision variable separately (as in the standard two-sided finite dif-
ference approximation), the SPSA formalism approximates the
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Fig. 7. Structure of the NN-assisted cascade control scheme (with m = 2, m = 0, d = 2).

gradient by perturbing all the variables simultaneously. The op-
timization objective underlying the SPSA is defined as: finding
the optimal decision variable vector , such that it simultane-
ously minimizes the objective function . The SPSA imple-
mentation is iterative that begins with a randomly initialized
solution vector. The basic SPSA formalism stipulates that the
objective function to be minimized should be differentiable. For
the minimum point , the gradient of the objective function

attains zero magnitude. That is

(11)

The estimate of the decision variable vector is updated itera-
tively as

(12)

where is the learning rate and is the approximation
of the gradient function with

(13)
and where is the measurement disturbance, as defined in [10].
In the above equation, is a random directional vector
that is used to stimulate the weight vector simultaneously, and

is a sequence of positive number satisfying certain reg-
ularity conditions [10], [11]. The random vector is gener-
ated via Monte Carlo according to conditions specified in [10]
or [11]. If the th element of is denoted as , then the se-
quence of is defined as

(14)

Implementation of SPSA may be easier than other stochastic
optimization methods (such as forms of the genetic algorithm),
since there are fewer algorithm coefficients that need to be
specified, and there are some published guidelines providing
insight into how to pick the coefficients in practical applica-
tions [12]. When applying the SPSA to the three-layer NN

training, we define the overall estimate decision vector as
with , where

and . Then, the output of a
three-layer NN can be presented as

(15)

It should be noted that, for multilayer NNs, it might not be pos-
sible to update all the estimated parameters with a single gra-
dient approximation function (13) to meet the stability require-
ment. Therefore, the estimate parameter vectors and are
updated separately in the SPSA algorithm using different gra-
dient approximation functions as in the standard backpropaga-
tion training algorithm. The SPSA-based training algorithm for
the output and hidden layer of the multilayer NN can be further
rewritten as follows:

For output layer weights update

(16)

For hidden layer weights update

(17)

where

with ,

Remark: The derivation of the two weight update rules
(16)–(17) is given in [9]. The reader should refer to this refer-
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Fig. 8. Measurement and control apparatus of HVAC pilot system.

ence for more details. Theorems 1 and 2 and their proof in [9]
show that the introduction of the normalization factor, and

, guarantees input–output stability of the closed outer control
loop, as well as the convergence of the neural weights based
on the conic sector theory, a smaller learning rate and larger
number of neurons may increase the stability of the control
system. It is also shown in [9] that the parameter does not
affect the system’s stability.

The SPSA-based online training algorithm can be summa-
rized as follows (refer to Fig. 7).

Step 1) Form the new input vector of the NN defined
in (8).

Step 2) Calculate the NN output by using the input
state and the existing or initial weights of the
network in the first iteration.

Step 3) The control input is calculated based on (3).
Step 4) The new measurement of the system dynamics is

taken and the measurable tracking error signal
is fed through a fixed filter to produce the implicit
training error signal of the network according to
(7).

Step 5) The tracking error is used directly to train the
NN and calculates the new weights and by
using learning law in (16) and (17) for the output
and hidden layers, respectively, of the next iteration.

Step 6) Go back to Step 1) to continue the iteration.

IV. REAL-TIME EXPERIMENTS AND RESULTS

A. Experiment Setup

The test is conducted on a pilot centralized HVAC system,
as shown in Fig. 8, where 1, 2, 3, and 4 indicate the compo-
nents of computer controller, HVAC pilot plant, signal process
board, and signal transmission cable, respectively. The system
has three chillers, three zones with three AHUs, three cooling
towers, and flexible partitions with up to 12 rooms. All motors
(fans, pumps, and compressors) are controller by VSDs. The
system is made very flexible to configure these three units to

Fig. 9. AHU control system.

form different HVAC schemes. The cooling coils for the system
are two rows with the dimension of 25 cm 25 cm 8 cm, as
shown in Fig. 9. Here, 1, 2, 3, 4, and 5 indicate the location of
cooling coil, off-coil temperature sensor, chilled water control
valve, chilled water pump, and supply air fan, respectively.

B. Experiment 1

In the experiment, both off-coil temperature and chilled water
flow rate are measured. The actuator is the chilled water control
valve controlled by step motor. The chilled water temperature is
controlled at around 8 C and supply air pressure is controlled
to be constant by keeping the supply fan running at a constant
speed. In order to compare the performances of single-loop con-
trol with cascade control, the overall process model of the AHU
system is identified as and
a single-loop PID controller based on Chien–Hrones–Reswick
(CHR) tuning rule [13] is then designed and implemented with
minor adjustments to obtain the best response. The PID parame-
ters achieved are , , and . For the
cascade control strategy, the classical structure is designed first
with fixed PI controller for inner loop and fixed PID controller
for outer loop. The existing technique for tuning the classical
cascade controllers is in two steps: first, the inner loop con-
troller is tuned, subsequently, the inner loop controller is com-
missioned and the outer loop controller is tuned to complete the
tuning process. Following the CHR tuning rule, with a further
trial-and-error method, the optimal parameters for the real-time
experiments are obtained. The PI controller of the inner loop:

; The PID controller of the outer
loop: , , and , respec-
tively. For a fair comparison, the same PI controller is used in
the inner loop for the NN-assisted cascade control scheme. A
three-layer NN is used in the outer control loop with 12 hidden
layer neurons, all the initial weight values are chosen to be
zero, the gain parameter in (4) is given as . For the
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Fig. 10. Speed of chilled water pump.

Fig. 11. Supply air temperature control performance of AHU in Experiment 1 (single loop PID control).

Fig. 12. Supply air temperature control performance of AHU in Experiment 1 (cascade control with PI inner loop controller and PID outer loop controller).

SPSA training algorithm, following the guideline given in [12],
let , here we choose and in the
experiment.

Figs. 10–13 show the different response of single-loop control
and cascade control for the case of temperature set-point change
and chilled water flow rate fluctuation. The test is carried out as
follows.

1) Stabilize the off-coil temperature at 18 C.

2) Reset the off-coil temperature to 19 C, while keeping the
chilled water flow rate stable at time s.

3) For the same temperature set point, increase chilled water
flow rate by increasing the chilled water pump speed at

s.
4) Keep set point unchanged and decrease the chilled water

flow rate by decreasing the chilled water pump speed at
s.



626 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 54, NO. 1, FEBRUARY 2007

Fig. 13. Supply air temperature control performance of AHU in Experiment 1 (cascade control with PI inner loop controller and NN outer loop controller).

Fig. 14. Supply air temperature control performance of AHU in Experiment 2 (cascade control with PI inner loop controller and PID outer loop controller).

TABLE I
PERFORMANCE COMPARISON IN EXPERIMENT 1

5) Reset the off-coil temperature to 20 C, while keeping the
chilled water flow rate stable at time s.

The results are also summarized in Table I. It shows clearly
that the proposed NN-assisted cascade control system improves
temperature control performance of AHU in terms of the set-
point tracking and disturbance rejection ability. Compared with
the classical cascade control structure, by introducing the NN
to compensate the systems nonlinearity, the proposed control
system maintains a better performance at different operating
points.

TABLE II
PERFORMANCE COMPARISON IN EXPERIMENT 2

C. Experiment 2

For the HVAC control system, in practice, an originally well-
tuned PID controller, after long-term running, because of the
aging effect and system components degradation, the control
performance of the controller will be greatly affected. In the
second experiment, we continue to compare the performance
between the classical cascade control and the NN-assisted cas-
cade control scheme. The integral gain of the well-tuned PI
controller in the inner control loop is decreased to 0.4 (i.e.,

) to simulate the control performance degradation due
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Fig. 15. Supply air temperature control performance of AHU in Experiment 2 (cascade control with PI inner loop controller and NN outer loop controller).

to the aging effect of long working hours, while other parame-
ters of these two cascade control systems and test steps remain
the same with the first experiment.

The experiment results are shown in the Figs. 14 and 15, and
summarized in Table II. Comparing them with the results in the
first experiment, for the NN-assisted cascade control system,
the control performance change is little in terms of the set-
point tracking and disturbance rejection ability, while the per-
formance of the classical cascade controller is degraded a lot be-
cause of the inner loop PI controller’s parameter change, which
means, by integrating with the NN trained by the SPSA-based
algorithm, the inner loop PI controller’s performance degrada-
tion for aging effect can be compensated to a certain degree.
This experiment also shows that, even the inner loop fixed con-
troller is not tuned to its optimal value, the NN-assisted cascade
control system can still give a satisfactory performance because
of its adaptiveness.

V. CONCLUSION

In this paper, the cascade control strategy for temperature
control of AHU is introduced to deal with the chilled water
flow rate fluctuation, which is the main disturbance in a typ-
ical chilled water distribution system and causes the deteriora-
tion of the temperature control performance of AHU, Moreover,
we propose a NN controller for the outer control loop to en-
hance the adaptive ability and robustness of the entire control
loop. The NN is trained online with the SPSA-based training al-
gorithm with the guarantee of convergence and stability. Real-
time experiment results demonstrate the performance of the new
cascade control scheme. The temperature control performance
of AHU is significantly improved compared with the classical
PID control system both for temperature set-point tracking and
chilled water flow rate disturbances rejection.
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