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Abstract—New algorithms for stochastic approximation under input disturbance are designed.
For the multidimensional case, they are simple in form, generate consistent estimates for un-
known parameters under “almost arbitrary” disturbances, and are easily “incorporated” in the
design of quantum devices for estimating the gradient vector of a function of several variables.

1. INTRODUCTION

In the design of optimization and estimation algorithms, noises and errors in measurements
and properties of models are usually attributed with some useful statistical characteristics, which
are used in demonstrating the validity of the algorithm. For example, noise is often assumed
to be centered. Algorithms based on the ordinary least-squares method are used in engineering
practice for simple averaging of observation data. If noise is assumed to centered without any
valid justification, then such algorithms are unsatisfactory in practice and may even be harmful.
Such is the state of affairs under “opponent’s” counteraction. In particular, if noise is defined by a
deterministic unknown function (opponent suppresses signals) or measurement noise is a dependent
sequence, then averaging of observations does not yield any useful result. Analysis of typical results
in such situations shows that the estimates generated by ordinary algorithms are unsatisfactory,
observation sequences are believed to be degenerated and such problems are usually disregarded.

Another close problem in applying many recurrent estimation algorithms is that observation
sequences do not have adequate variability. For example, the main aim in designing adaptive
controls is to minimize the deviation of the state vector of a system from a given trajectory and
this often results in a degenerate observation sequence. Consequently, identification is complicated
and successful identification requires “diverse” observations.

Our new approach to estimation and optimization under poor conditions (for example, degen-
erate observations) is based on the use of test disturbances. The information in the observation
channel can be “enriched” for solving many problems by introducing a test disturbance with known
statistical properties into the input channels or algorithm. Sometimes the measured random pro-
cess can be used as the test disturbance. In control systems, test actions can be introduced via
the control channel, whereas in other cases, a randomized observation plan (experiment) can be
used as the test action. In studying a renewed system with test disturbance, which is sometimes
simply the old system in a different form, results on convergence and applicability fields of new
algorithms can be obtained through traditional estimation methods. One remarkable characteris-
tic of such algorithms is their convergence under “almost arbitrary” disturbances. An important
constraint on their applicability is that the test disturbance and inherent noise are assumed to be
independent. This constraint in many problems is satisfied. Such is the case if noise is taken to
be an unknown bounded deterministic function or some external random perturbation generated
by some statistical properties of the test disturbance unknown to the opponent counteracting our
investigation.
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210 GRANICHIN

Surprisingly, researchers did not notice for long that in case of noisy observations, search algo-
rithms with sequential (n = 1, 2, . . . ) changes in the estimate θ̂n−1 along some random centered
vector ∆n

θ̂n = θ̂n−1 −∆nyn,

might converge to the true vector of controlled parameters θ∗ under not only “good,” but also
“almost arbitrary” disturbances. This happens if observations yn are taken at some point defined
by the previous estimate θ̂n−1 and vector ∆n, called the simultaneous test disturbance. Such an
algorithm is called the randomized estimation algorithm, because its convergence under “almost
arbitrary” noises is demonstrated through the stochastic (probabilistic) properties of the test dis-
turbance. In the near future, experimenters will radically change their present cautious attitude to
stochastic algorithms and their results. Modern computing devices will be supplanted by quantum
computers, which operator as stochastic systems due to the Heisenberg principle of uncertainty.
By virtue of the possibility of quantum parallelism, randomized-type estimation algorithms will,
most probably, form the underlying principle of future quantum computing devices.

A main feature of the stochastic approximation algorithms designed in paper is that the unknown
maximized function is measured in each step not at the point defined by the previous estimate, but
at its slightly perturbed position. Precisely this “perturbation” plays the part of simultaneous test
disturbance, “enriching” the information arriving at the observation channel. The convergence of
randomized stochastic approximation algorithms under “almost arbitrary” disturbances was first
investigated in [1–4]. In [5], such algorithms are studied, but under “good” disturbances in obser-
vations, and the asymptotic optimality of recurrent algorithms in minimax sense is demonstrated.
A similar algorithm is studied in [6, 7], in which it is shown that the number of iterations required
for attaining the necessary estimation accuracy is not attained, though the number of measure-
ments in the multidimensional case at each step is considerably less compared to the classical
Kiefer–Wolfowitz procedure. In foreign literature, the new algorithm is called the simultaneous
perturbation stochastic approximation. Similar algorithms are investigated in designing adjust-
ment algorithms for neural networks [8, 9]. The consistency of recurrent algorithms under “almost
arbitrary” perturbations are also investigated in [10, 11].

In this paper, we study a more general formulation of the problem of minimization of mean-risk
functional with measurements of the cost function under “almost arbitrary” perturbations. We
shall demonstrate that sequences of estimates generated by different algorithms converge to the
true value of unknown parameters with probability 1 in the mean-square sense.

2. FORMULATION OF THE PROBLEM AND MAIN ASSUMPTIONS

Let F (w,θ) : Rp × Rr → R1 be a θ-differentiable function and let x1,x2 . . . , be a sequence of
measurement points chosen by the experimenter (observation plan), at which the value

yn = F (wn,xn) + vn

of the function F (wn, ·) is accessible to observation at every instant n = 1, 2, . . . , with additive
disturbances vn, where {wn} is a noncontrollable sequence of random variables (wn ∈ Rp) having,
in general, identical unknown distribution Pw(·) with a finite carrier.

Formulation of the problem. Using the observations y1, y2 . . . , construct a sequence of estimates
{θ̂n} for the unknown vector θ∗ minimizing the function

f(θ) =
∫
Rp
F (w,θ)Pw(dw)

of the type of mean-risk functional.
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RANDOMIZED ALGORITHMS FOR STOCHASTIC APPROXIMATION 211

Usually, minimization of the function f(·) is studied with a simple observation model

yn = f(xn) + vn,

which easily matches within the general scheme. The generalization in the formulation is stipulated
by the need to take account of multiplicative perturbations in observations:

yn = wnf(xn) + vn,

which is contained in the general scheme with the function F (w,x) = wf(x), and the need to
generalize the observation model [12], where

F (w,x) =
1
2

(x− θ∗ −w)T(x− θ∗ −w).

Let us formulate the main assumptions, denoting the Euclidean norm and scalar multiplication
in Rr by ‖ · ‖ and 〈·, ·〉, respectively.

SA.1 The function f(·) is strongly convex, i.e., has a unique minimum in Rr at some point
θ∗ = θ∗(f(·)) and

(x− θ∗,∇f(x)) ≥ µ‖x− θ∗‖2 ∀x ∈ Rr

with some constant µ > 0.
SA.2 The gradient of the function f(·) satisfies the Lipschitz condition

‖∇f(x)−∇f(θ)‖ ≤ A‖x− θ‖ ∀x,θ ∈ Rr

with some constant A > µ.

3. TEST PERTURBATION AND MAIN ALGORITHMS

Let ∆n, n = 1, 2, . . . , be an observed sequence of independent random variables in Rr, called
the simultaneous test perturbation, with distribution function Pn(·).

Let us take a fixed initial vector θ̂0 ∈ Rr and choose two sequences {αn} and {βn} of positive
numbers tending to zero. We design three algorithms for constructing sequences of measurement
points {xn} and estimates {θn}. The first algorithm uses at every step (iteration) one observation xn = θ̂n−1 + βn∆n, yn = F (wn,xn) + vn

θ̂n = θ̂n−1 −
αn
βn
Kn(∆n)yn,

(1)

whereas the second and third algorithms, which are randomized variants of the Kiefer–Wolfowitz
procedure, use two observations x2n = θ̂n−1 + βn∆n, x2n−1 = θ̂n−1 − βn∆n

θ̂n = θ̂n−1 −
αn
2βn
Kn(∆n)(y2n − y2n−1),

(2)

 x2n = θ̂n−1 + βn∆n, x2n−1 = θ̂n−1

θ̂n = θ̂n−1 −
αn
βn
Kn(∆n)(y2n − y2n−1).

(3)
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All these three algorithms use some vector functions (kernels) Kn(·) : Rr → Rr, n = 1, 2, . . . , with
a compact carrier, which, along with distribution functions of the test perturbation Pn(·), satisfy
the conditions ∫

Kn(x)Pn(dx) = 0,
∫
Kn(x)xTPn(dx) = I,

sup
n

∫
‖Kn(x)‖2Pn(dx) <∞, n = 1, 2, . . . , (4)

where I is an r-dimensional unit matrix.
Algorithm (2) was first developed by Kushner and Clark [13] for a uniform distribution and

function Kn(∆n) = ∆n. Algorithm (1) was first designed in [1] for constructing a sequence of
consistent estimates under “almost arbitrary” perturbations in observations, using the same simple
kernel function, but for a more general class of test perturbations. Polyak and Tsybakov [5]
investigated algorithms (1) and (2) with a vector function Kn(·) of sufficiently general type for
uniformly distributed test perturbation under the assumption that the observation perturbations
are independent and centered. Spall [6, 7] studied algorithm (2) for a test perturbation distribution
with finite inverse moments and vector function Kn(·) defined by the rule

Kn
((
x(1), x(2), . . . , x(r)

)T
)

=
(

1
x(1)

,
1
x(2)

, . . . ,
1
x(r)

)T

.

Using this vector Kn(·) and constraints on the distribution of the simultaneous test perturbation,
Chen et al. [10] studied algorithm (3).

4. CONVERGENCE WITH PROBABILITY 1 AND IN THE MEAN-SQUARE SENSE

Instead of algorithm (1), let us study a close algorithm with projection xn = θ̂n−1 + βn∆n, yn = F (wn,xn) + vn

θ̂n = PΘn

(
θ̂n−1 −

αn
βn
Kn(∆n)yn

)
.

(5)

For this algorithm, it is more convenient to prove the consistency of the estimate sequence. In this
algorithm, PΘn , n = 1, 2, . . . , are operators of projection onto some convex closed bounded subsets
Θn ⊂ Rr containing the point θ∗, beginning from some n ≥ 1. If the set Θ containing the point θ∗

is known in advance, then we can take Θn = Θ. Otherwise, the sets {Θn} may extend to infinity.
LetW = supp(Pw(·)) ⊂ Rp be the carrier of the distribution Pw(·) and let Fn−1 be the σ-algebra

of probabilistic events generated by the random variables θ̂0, θ̂1, . . . , θ̂n−1 formed by algorithm (5)
(or (2), or (3)). In applying algorithm (2) or (3), we have

vn = v2n − v2n−1, wn =

(
w2n

w2n−1

)
, dn = 1,

and in constructing estimates by algorithm (5), we have

vn = vn, wn = wn, dn = diam(Θn),

where diam(·) is the Euclidean diameter of the set.

Theorem 1. Let the following conditions hold:
(SA.1) for the function f(θ) = E{F (w,θ)},

AUTOMATION AND REMOTE CONTROL Vol. 63 No. 2 2002
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(SA.2) for the function F (w, ·) ∀w ∈W,
(4) for the functions Kn(·) and Pn(·), n = 1, 2, . . . ,
∀θ ∈ Rr the functions F (·,θ) and ∇θF (·,θ) are uniformly bounded on W,
∀n ≥ 1 the random variables v1, . . . , vn and vectors w1, . . . ,wn−1 do not depend on wn and ∆n,
and the random vector wn does not depend on ∆n, and
E{v 2

n} ≤ σ2
n, n = 1, 2, . . . .

If
∑
n
αn = ∞, αn → 0, βn → 0, and α2

nβ
−2
n (1 + d2

n + σ2
n) → 0 as n → ∞, then the sequence

of estimates {θ̂n} generated by algorithm (5) (or (2), or (3)) converges to the point θ∗ in the
mean-square sense: E{‖θ̂n − θ∗‖2} → 0 as n→∞.

Moreover, if
∑
n
αnβ

2
n <∞ and

∑
n

α2
nβ
−2
n

(
1 + E{v 2

n | Fn−1}
)
<∞

with probability 1, then θ̂n → θ∗ as n→∞ with probability 1.

The proof of Theorem 1 is given the Appendix.
The conditions of Theorem 1 hold for the function F (w,x) = wf(x) if the function f(x) satisfies

conditions (SA.1) and (SA.2).
The observation perturbations vn in Theorem 1 can be said to be “almost arbitrary” since they

may also be nonrandom, but independent and bounded or the realization of some stochastic process
with arbitrary dependencies. In particular, to prove the assertions of Theorem 1, there is no need
to assume that vn and Fn−1 are dependent.

The assertions of Theorem 1 do not hold if the perturbations vn depend on the observation
point vn = vn(xn) in a specific manner. If such a dependence holds, for example, due to rounding
errors, then the observation perturbation must be subdivided into two parts vn(xn) = ṽn + ξ(xn)
in solving such a problem. The first part may satisfy the conditions of Theorem 1. If the second
part results from rounding errors, then it, as a rule, has good statistical properties and may not
prevent the convergence of algorithms.

The condition that the observation be independent of the test perturbation can be slackened.
It suffices to assume that the conditional mutual correlation between vn and Kn(∆n) tend to zero
with probability 1 at a rate not less than αnβ

−1
n as n→∞.

Though algorithms (2) and (3) may look alike, algorithm (3) is more suitable for use in real-
time systems if observations contain arbitrary perturbations. For algorithm (2), the condition that
observation perturbation v2n and the test perturbation ∆n be independent is rather restrictive,
because the vector ∆n is used at the previous instant (2n − 1) in the system. In the operation of
algorithm (3), perturbations v2n and the test perturbation vector ∆n simultaneously appear in the
system. Hence they can be regarded as independent.

For `-times continuously differentiable functions F (w, ·), the vector functionKn(·) is constructed
in [5] with the help of Lagrange orthogonal polynomials pm(·), m = 0, 1, . . . , `, using a uniform test
perturbation on an r-dimensional cube [−1/2, 1/2]r as the probabilistic distribution. Moreover, it

is shown that the mean-square convergence rate asymptotically behaves as O
(
n

`
`+1

)
. A similar

result can also be obtained for the general test perturbation distribution studied in this paper.

5. QUANTUM COMPUTER AND GRADIENT VECTOR ESTIMATION

Owing to the simplicity of representation, randomized stochastic approximation algorithms can
be used not only in programmable computing devices, but also permit the incorporation of the
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simultaneous perturbation principle into the design of classical-type electronic devices. A funda-
mental point in demonstrating the convergence of any method in practical application is that the
observation perturbation must be independent of the generated test perturbation, and the compo-
nents of the test perturbation vector must be mutually independent. In realizing the algorithm on a
conventional computer implementing elementary operations in succession, the designed algorithms
are not as effective as theoretical predictions. The very name “simultaneously perturbed” implies
the imperative requirement for practical realization, viz., capable of being implemented in parallel.
Nevertheless, if the vector arguments of a function are large dimensional (hundreds or thousands),
it is not a simple matter to organize parallel computations on conventional computers.

We consider a model of a “hypothetical” quantum computer, which obviously generates not only
a simultaneous test perturbation, but also realizes a fundamental nontrivial concept—measurement
of quantum computation result—since the concept itself underlies the design of the randomized
algorithm in the form of product of the computed value of a function and test perturbation. In
other words, we give an example of the design of a quantum device for estimating the gradient
vector of an unknown function of several variables in one cycle. The epithet “hypothetical” is
purposefully put within quotes, because quantum computer is generally believed to be a machine
of the near future after Shor has read his report at the Berlin Mathematical Congress in 1998 [14].

As in [14], let us describe the mathematical model of a quantum computer that computes by a
specific circuit. We use, whenever possible, the generalizations of concepts describing the model of a
conventional computer. A conventional computer handles bits, which take value from the set {0, 1}.
It is based on a finite ensemble of circuits that can be applied to a set of bits. A quantum computer
handles q-bits (quantum bits)—a quantum system of two states (a microscopic system describing,
for example, an excited ion or polarized photon, or the spin of atomic kernel). The behavioral
characteristics of this quantum system, such as interference, superposition, stochasticity, etc., can
be described exactly only through the rules of quantum mechanics [15]. Mathematically, a q-bit
takes its values from a complex projective (Hilbert) space C2. Quantum states are invariant to
multiplication by a scalar. Let |0〉, |1〉 be the base of this space. We assume that a quantum
computer, like a conventional computer, is equipped with a discrete set of basic components, called
the quantum circuits. Every quantum circuit is essentially a unitary transformation, which acts
on a fixed number of q-bits. One of the fundamental principles of quantum mechanics asserts that
the joint quantum state space of a system consisting of ` two-state systems is the tensor product
of their component state spaces. Thus, the quantum state space of a system of ` q-bits is the
projective Hilbert space C2l . The set of base vectors of this state space can be parametrized by bit
rows of length `: |b1b2 . . . bl〉. Let us assume that classical data, a row i of length k, k ≤ `, is fed
to the input of a quantum computer. In quantum computation, ` q-bits initially exist in the state
|i00 . . . 0〉. An executable circuit is constructed from a finite number of quantum circuits acting
on these q-bits. At the end of computation, the quantum computer passes to some state—a unit
vector in the space C2l . This state can be represented as

W =
∑
s

ψ(s) | s〉,

where summation with respect to s is taken over all binary rows of length `, ψ(s) ∈ C,
∑
s
|ψ(s)|2 = 1.

Here ψ(s) is called the probabilistic amplitude and W , the superposition of the base vectors |s〉. The
Heisenberg uncertainty principle asserts that the state of a quantum system cannot be predicted
exactly. Nevertheless, there are several possibilities of measuring all q-bits (or a subset of q-bits).
The state space of our quantum system is Hilbertian and the concept of state measurement is
equivalent to the scalar product in this Hilbert space with some given vector V:

〈V,W〉.
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The projection of each of q-bits on the base {|0〉, |1〉} is usually used in measurement. The result
of this measurement is the computation result.

Let us examine the segment of the randomized stochastic approximation algorithm (3) (or (1),
or (2)), that is used in computing the approximate value of the gradient vector ĝ(x) function
f(·) : Rr → R at some point x ∈ Rr. Let the numbers in our quantum computer be expressed
through p binary digits and ` = p × r (in modern computers, p = 16, 32, 64). In the algorithm,
let Kn(x) = x, β = 2−j , 0 ≤ j < p, and let the simultaneous test perturbation fed to the input
of the algorithm be defined by a Bernoulli distribution. For any number u ∈ R, let su denote

its binary representation in the form of a bit array su = b
(1)
u . . . b

(p)
u . Assume that there exists a

quantum circuit that computes the value of the function f(x). More exactly, there exists a unitary

transformation Uf : C2l → C2l that for any x =
(
x(1), . . . , x(r)

)T
∈ Rr, associates the base element

|sx(1) . . . sx(r)〉 =
∣∣∣b(1)

x(1) . . . b
(p)

x(1) . . . b
(1)

x(r) . . . b
(p)

x(r)

〉
with another base element∣∣∣sf(x)00 . . . 0

〉
=
∣∣∣b(1)
f(x) . . . b

(p)
f(x)00 . . . 0〉 = Uf |sx(1) . . . sx(r)

〉
.

Let the hypothetical quantum computer contain, at least, four ` q-bit registers: an input register
I for transforming conventional data into quantum data, two working registers W1 and W2 for
manipulating quantum data, and an output register ∆ for storing the quantum value, projection
onto which is the computation result in conventional form (measurement). The design of a quantum
circuit for estimating the gradient vector of the function f(·) requires a few standard quantum
(unitary) transformations that are applicable to register data. We assume that the transformation
result is stored in the same register to which the transformation is applied.

Addition/Subtraction U±X of a vector with (from) another vector stored in the register X.
Rotation of the first q-bits UR1,p+1,...,(r−1)p+1

converts the state of q-bits 1, p + 1, . . . , (r − 1)p + 1

into
1√
2
|0〉+

1√
2
|1〉.

Shift by j q-bits USj displaces the state vector by j q-bits, adding new bits |0〉.
The gradient vector of a function f(·) at a point x can be estimated by the following algorithm.
1. Zero the states of all registers I,W1,W2,∆.
2. Feed a bit array sx to the input I and transform the register ∆:

∆ := UR1,p+1,...,(r−1)p+1
∆.

3. Compute the value of the functions f(x) and f(x + 2−j∆)

W1 := UfU+IW1,

W2 := UfU+IUSjU+∆W2.

4. Compute the difference W2 := U−W1W2.
5. Sequentially (i = 1, 2, . . . , r) measure the components of result

ĝ (i)(x) = 〈∆,W2〉, W2 := USpW2.

Computation result is determined by the formula for estimating the gradient vector of f(·):

∇f(x) ≈ ∆
f(x + β∆)− f(x)

β
.
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6. CONCLUSIONS

Unlike deterministic methods, stochastic optimization considerably widens the range of practical
problems for which an exact optimal solution can be found. Stochastic optimization algorithms are
effective for information network analysis, optimization via modeling, image processing, pattern
recognition, neural network learning, and adaptive control. The role of stochastic optimization is
expected to grow with the complication of modern systems in the same way as population growth
and depletion of natural resources stimulate the use of more intensive technologies in those areas
where they were not required earlier. The trend of modern development of computation techniques
heralds that traditional deterministic algorithms will be supplanted by stochastic algorithms, be-
cause there already exist pilot quantum computers based on stochastic principles.

APPENDIX

Proof of Theorem 1. Let us consider algorithm (5). Theorem 1 for algorithms (2) and (3)
are proved almost along similar lines and can be demonstrated by analogy. For sufficiently large n
under which θ∗ = θ∗(f(·)) ∈ Θn, using projection properties we easily obtain∥∥∥θ̂n − θ∗∥∥∥2

≤
∥∥∥∥θ̂n−1 − θ∗ −

αn
βn
Kn(∆n)yn

∥∥∥∥2

.

Now applying the operation of conditional expectation for the σ-algebra Fn−1, we obtain

E
{∥∥∥θ̂n − θ∗∥∥∥2

|Fn−1

}
≤
∥∥∥θ̂n−1 − θ∗

∥∥∥2
− 2

αn
βn

〈
θ̂n−1 − θ∗,E{Kn(∆n)yn | Fn−1}

〉
+
α2
n

β2
n

E
{
y2
n ‖Kn(∆n)‖2 |Fn−1

}
. (6)

By virtue of the mean value theorem, condition (SA.2) for the function F (·, ·) yields

|F (w,x)− F (w,θ∗)| ≤ 1
2
∇θF (w,θ∗)2 +

(
A+

1
2

)
‖x− θ∗‖2, x ∈ Rr.

Since the function F (·,θ) is uniformly bounded, using the notation

ν1 = sup
w∈W

(
|F (w,θ∗)|+ 1

2
∇θF (w,θ∗)2

)
,

we find that

F (w, θ̂n−1 + βnx)2 ≤ (ν1 + (2A+ 1)
(
‖θ̂n−1 − θ∗‖2 + ‖βnx‖2)

)2

uniformly for w ∈W. By condition (4), we have

E
{
v2
n‖Kn(∆n)‖2|Fn−1

}
≤ sup

x
Kn(x)2ξ2

n.

Since the vector functionsKn(·) are bounded and their carriers are compact, the last two inequalities
for the last term in the right side of (6) yield

E
{
‖yn‖2‖Kn(∆n)‖2|Fn−1

}
≤ 2E

{
v2
n‖Kn(∆n)‖2|Fn−1

}
+2
∫∫

F
(
w, θ̂n−1 + βnx

)2
‖Kn(x)‖2Pn(dx)Pw(dw)

≤ C1 + C2

(
(d2
n + 1)

∥∥∥θ̂n−1 − θ∗
∥∥∥2

+ β2
n

)
+ C3ξ

2
n.
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Here and in what follows, Ci, i = 1, 2, . . . , are positive constants.
Now let us consider

β−1
n E {ynKn(∆n)|Fn−1} = β−1

n

∫∫
F
(
w, θ̂n−1 + βnx

)
Kn(x)Pn(dx)Pw(dw)

+β−1
n E{vnKn(∆n)|Fn−1}. (7)

For the second term in the last relation, since vn and ∆n are independent, from (4) we obtain

E{vnKn(∆n) | Fn−1} = E{vn | Fn−1}
∫
Kn(x)Pn(dx) = 0.

Since the function ∇θF (·,θ) is uniformly bounded, we have∫
Rp
∇θF (w,x)Pw(dw) = ∇f(x).

Using the last relation and condition (4), let us express the first term in (7) as

β−1
n

∫∫
F (w, θ̂n−1 + βnx)Kn(x)Pn(dx)Pw(dw) = ∇f(θ̂n−1)

+
∫ (

β−1
n

∫
F (w, θ̂n−1 + βnx)Kn(x)Pn(dx) −∇θF (w, θ̂n−1)

)
Pw(dw)

= ∇f(θ̂n−1) +
∫∫
Kn(x)xT

1∫
0

(∇θF (w, θ̂n−1 + tβnx)−∇θF (w, θ̂n−1))dtPn(dx)Pw(dw).

Since conditions (SA.2) hold for any function F (w, ·) and condition (4) holds for Kn(·), for the
absolute value of the second term in the last equality we have

∣∣∣∣∫∫ Kn(x)xT

1∫
0

(
∇θF (w, θ̂n−1 + tβnx)−∇θF (w, θ̂n−1)

)
dtPn(dx)Pw(dw)

∣∣∣∣
≤
∫∫
‖Kn(x)‖ ‖x‖A‖βnx‖Pn(dx)Pw(dw) ≤ C4βn.

Consequently, for the second term in the right side of inequality (6) we obtain

−2
αn
βn

〈
θ̂n−1 − θ∗,E{Kn(∆n)yn | Fn−1}

〉
≤ −2αn

〈
θ̂n−1 − θ∗,∇f(θ̂n−1)

〉
+ 2C4αnβn

∥∥∥θ̂n−1 − θ∗
∥∥∥ .

Substituting the expressions for the second and third terms in the right side into (6), we find that

E
{∥∥∥θ̂n − θ∗∥∥∥2

| Fn−1

}
≤
∥∥∥θ̂n−1 − θ∗

∥∥∥2

−2αn
〈
θ̂n−1 − θ∗,∇f(θ̂n−1)

〉
+ 2C4αnβn

∥∥∥θ̂n−1 − θ∗
∥∥∥

+
α2
n

β2
n

(
C1 + C2

(
(d2
n + 1)

∥∥∥θ̂n−1 − θ∗
∥∥∥2

+ β2
n

)
+ C3ξ

2
n

)
.

Since condition (SA.1) holds for the function f(·) and the inequality

∥∥∥θ̂n−1 − θ∗
∥∥∥ ≤ ε−1βn + εβ−1

n ‖θ̂n−1 − θ∗‖2
2
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holds for any ε > 0, we obtain

E
{∥∥∥θ̂n − θ∗∥∥∥2 ∣∣Fn−1

}
≤
∥∥∥θ̂n−1 − θ∗

∥∥∥2 (
1− (2µ− εC4)αn + C2α

2
nβ
−2
n (d2

n + 1)
)

+ε−1C4αnβ
2
n +

α2
n

β2
n

(
C1 + C2β

2
n + C3ξ

2
n

)
.

Choosing a small ε such that εC4 < µ, a sufficiently large n, and applying the conditions of
Theorem 1 for number sequences, let us transform the last inequality to the form

E
{∥∥∥θ̂n − θ∗∥∥∥2 ∣∣Fn−1

}
≤
∥∥∥θ̂n−1 − θ∗

∥∥∥2
(1− C5αn) + C6

(
αnβ

2
n + α2

nβ
−2
n (1 + ξ2

n)
)
.

Hence, by the conditions of Theorem 1, all conditions of the Robbins–Siegmund Lemma [16] that
are necessary for the convergence of θ̂n → θ∗ as n → ∞ with probability 1 are satisfied. To
prove the conditions of Theorem 1 for mean-square convergence, let us examine the unconditional
mathematical expectation of both sides of the last inequality

E
{∥∥∥θ̂n − θ∗∥∥∥2

}
≤ E

{∥∥∥θ̂n−1 − θ∗
∥∥∥2
}

(1−C5αn) +C6

(
αnβ

2
n + α2

nβ
−2
n (1 + σ2

n)
)
.

The mean-square convergence of the sequence {θ̂n} to the point θ∗ is implied by Lemma 5 of [17].
This completes the proof of Theorem 1.
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