
DOI 10.1007/s00291-005-0018-z

REGULAR ARTICLE

Abhijit Gosavi . Emrah Ozkaya . Aykut F. Kahraman

Simulation optimization
for revenue management of airlines
with cancellations and overbooking

Published online: 9 December 2005
© Springer-Verlag 2005

Abstract This paper develops a model-free simulation-based optimization model
to solve a seat-allocation problem arising in airlines. The model is designed to
accommodate a number of realistic assumptions for real-world airline systems—in
particular, allowing cancellations of tickets by passengers and overbooking of
planes by carriers. The simulation–optimization model developed here can be used
to solve both single-leg problems and multi-leg or network problems. A model-free
simulation–optimization approach only requires a discrete-event simulator of the
system along with a numerical optimization method such as a gradient-ascent
technique or a meta-heuristic. In this sense, it is relatively “easy” because
alternative models such as dynamic programming or model-based gradient-ascent
usually require more mathematically involved frameworks. Also, existing
simulation-based approaches in the literature, unlike the one presented here, fail
to capture the dynamics of cancellations and overbooking in their models.
Empirical tests conducted with our approach demonstrate that it can produce robust
solutions which provide revenue improvements over heuristics used in the industry,
namely, EMSR (Expected Marginal Seat Revenue) for single-leg problems and
DAVN (Displacement Adjusted Virtual Nesting) for networks.
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1 Introduction

The field of airline revenue management studies maximization of revenues
obtained by selling airline seats. An important problem in this field requires the
development of a revenue-optimal strategy of customer selection. The product
(airline seat) in airlines is said to have a “perishable” nature because its value
becomes zero if it is not sold by the end of the booking horizon, which begins when
the flight is opened for sale and ends when the flight takes off.

Typically, there are significant differences in the preferences (demands) of
customers of an airline company. Some customers, usually business travelers,
demand flexibility in cancellation options and return tickets within a week, while
those traveling for leisure do not have these restrictions and opt for cheaper non-
refundable tickets (with stiff cancellation penalties). Therefore, airline companies
generally offer seats at different fares to utilize differences in passenger ex-
pectations to their own advantage. The number of business travelers is quite small
in proportion, and business tickets are booked at the last minute, thereby making
it important for the company to retain a few seats until the end of the booking
horizon. The question that then arises is: how many seats should be allowed to be
sold at any given fare? If one reserves too many seats for high-revenue passengers,
it is possible that the plane will fly with many empty seats; on the other hand if all
seats are sold at discount fares, one will potentially lose high-revenue passengers.
Thus, an important task is to determine the upper limit, called the booking limit, on
the number of seats to be sold at or allocated to each fare offered.

The above-described “seat-allocation” problem is complicated by uncertainties
in customer behavior and forecasts. Forecasts are generally prepared to estimate the
probability distribution of the number of arrivals in each fare class. Inevitably,
some passengers cancel tickets. Hence, airlines overbook planes in order to
minimize the probability of flying with empty (canceled) seats, which adds to the
complexity of the problem because cancellations are random. Thus seat-allocation
should account for random cancellations and the feature of overbooking. Some
realistic features of actual airline systems include: (1) random customer arrivals for
booking, (2) random cancellations, (3) change in arrival rates with time, and (4)
concurrent (non-sequential order) arrivals of passengers, i.e., arrivals do not follow
any particular order such as low fare classes first etc.

This paper studies the use of a model-freesimulation–optimization model to
solve the seat-allocation problem in a near-optimal manner. There are at least two
reasons that make this approach attractive. Firstly, simulation can easily
accommodate realistic assumptions (such as cancellations and overbooking),
which often render theoretical models intractable. Secondly, model-free simula-
tion–optimization models do not require knowledge of the internal structure of the
stochastic system; all they need is an estimated numerical value of the objective
function at any given point in the solution space, and a discrete-event simulator can
provide these values easily. Actually, much research in recent times has allowed the
efficient combination of simulation with numerical optimization techniques, such
as gradient-ascent or meta-heuristics, which paves the way for generating
implementable solutions. A commonly prescribed method for simulation opti-
mization in continuous spaces is the gradient-ascent approach that uses finite
differences of the revenue function to estimate the gradient. A major difficulty with
this approach is that the number of simulations required per iteration grows
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proportionately with the number of decision variables. Simultaneous perturbation
(SP), which is due to Spall (1992), is a relatively new technique for gradient-ascent.
The remarkable feature of this technique is that its computational burden is not
proportional to the number of decision variables, and despite this, it has been
shown to be convergent under certain conditions. It has been already used in
countless applications (Spall 2003). Although ours is a problem of discrete
optimization, we have used a continuous approximation for solution purposes.
Continuous (fluid) approximations for solving discrete problems are very common
in the literature (see e.g., van Ryzin and Vulcano 2003). In addition to SP, we also
apply simulated annealing (SA) on the problem. SA is a well-known meta-heuristic
for discrete optimization and is known to be convergent only in an asymptotic
sense. But since it has been widely applied in the industry, it will be used as a
standard benchmark method in our computational experiments. Because the
revenue function will be estimated via simulation in this paper, the issue of
simulation-induced noise—that can corrupt the function value—will be analyzed.

Airline networks: An airline network is composed of one or more hubs and spokes.
A leg in a hub-and-spoke network is composed of two cities. When a customer
travels from one city to another via other cities, the itinerary of the customer
contains multiple legs. Consider Fig. 1 which shows a small network of four cities
in the US. Chicago serves as the hub, and cities such as Miami, Denver, and Boston
serve as spokes. Customers flying from one spoke city to another are routed via the
hub. Most companies have one or two major hubs. Thus, Miami–Chicago–Boston
forms one origin–destination itinerary or simply one itinerary. In large networks,
one finds several hundred itineraries, and for each itinerary, multiple fares may be
available; each itinerary–fare combination is often described as a product. The
problem of seat-allocation can be studied either at the leg level (on a leg-by-leg
basis) or at the network level. At the leg level, each fare is referred to as a class,
while in the network, each itinerary–fare combination is referred to as a product. At
the leg level, the problem is one of finding the number of customers to be allowed
for a given fare (class). In a network, the seat-allocation problem is to determine the
number of customers to be accepted for any given product. Complexity in the
network version of the problem arises from the fact that seat-allocation on one leg

Chicago

Miami

Chicago:  Hub
Denver:   Spoke
Boston:   Spoke
Miami  :   Spoke

Denver

Boston

Fig. 1 A schematic showing a network involving four cities
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affects that on one or more of the other legs. As a result, ideally, the airline that
operates in networks must solve the problem in its entirety, i.e., solve the network
version. In recent times, a large number of point-to-point carriers have emerged,
which do not have hubs, but offer direct services from one city to another. For such
carriers, it is sufficient to solve the problem at the leg level.

A literature review and contributions of this work: A sizable chunk of the work in
single-leg revenue management exploits the equation underlying the pioneering
work of Littlewood (1972), which has developed into a very robust solution
technique called EMSR (Expected Marginal Seat Revenue) described in (Belobaba
1989). Displacement Adjusted Virtual Nesting (DAVN), which has its roots in the
work of Glover et al. (1982), is a powerful approach for network models in revenue
management. This model has been modified in subsequent years by several
researchers including Smith and Penn (1988) andWilliamson (1992). The literature
on airline revenue management is quite voluminous. See McGill and van Ryzin
(1999) for a review and Talluri and van Ryzin (2004) for textbook treatment of this
topic, while the history is traced in Boyd and Bilegan (2003). Some important
works in the domain of single-leg control are: Brumelle and McGill (1993);
Chatwin (1998); Curry (1990); Howard (1971); Lee and Hersh (1993); Robinson
(1995); Shlifer and Vardi (1975); Wollmer (1992). Subramaniam et al. (1999)
present a finite-horizon Markov decision process to solve the single-leg problem,
but make some limiting assumptions such as a Poisson rate for cancellations and
equal cancellation probabilities for all classes. van Ryzin and McGill (2000)
present a Robbins–Monro scheme that exploits simulation to solve the problem
with forecasting as an integral part of the solution model; in most models in the
literature, forecasts are assumed to be known. For the single-leg problem, Gosavi et
al. (2002) present an approximate dynamic programming (DP) or reinforcement
learning approach (Bertsekas and Tsitsiklis 1996; Gosavi 2003) that is based on
value iteration and employs function approximation with neural networks for
estimating the value function of DP within a simulator. Gosavi (2004) uses a policy
iteration based algorithm in reinforcement learning for solving the same problem.
Both of the above papers do not require the transition probabilities of the
underlying stochastic dynamic program but work within simulators of airline
systems.

For network control, outside of the pioneering paper of Glover et al. (1982), a
subset of important works includes (Simpson 1989; Smith and Penn 1988; Vinod
1995; Williamson 1992; Wong et al. 1993). Bertsimas and de Boer (2005) use a
combination of gradient-ascent based on finite differences and approximate
dynamic programming to solve the network problem. van Ryzin and Vulcano
(2003) use a fluid approximation of the booking limits to obtain exact expressions
for sub-gradients. The model in their paper exploits the structure of the problem,
and can be viewed to belong to the class of model-based simulation–optimization
algorithms (see Chapter 15 of Spall 2003). Although both of the above papers use
simulation, they are not designed to handle cancellations, which form an integral
part of the booking process. Other approaches include: Experimental designs and
multi-variate adaptive regression splines (Chen et al. 2003) in a DP setting, a
sampling-based approach that combines merits of mathematical programming and
Markov decision processes for a two-leg problem (Cooper and Homem-de-Mello
2004), and an approximate DP algorithm for networks in which cancellations and
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overbookings are permitted (see Bertsimas and Popescu 2003). Karaesmen and van
Ryzin (2004) is a recent paper that develops a cancellation-based model that
exploits two-stage stochastic programs. The work of de Boer et al. (2004) uses a
combination of stochastic programming with simulation to derive booking limits
for a network. Simulation optimization (Bonnans and Shapiro 2000; Gosavi 2003)
is a rapidly growing area of research. The robust response surface method, which is
a classical technique for static simulation-based optimization (Law and Kelton
1999), has made way for techniques that depend on meta-heuristics like tabu search
(Glover 1990), genetic algorithms (Holland 1975), and simulated annealing
(Kirkpatrick et al. 1983).

The contributions of our work, in the perspective of the existing literature, are
(1) for the single-leg and network problems, we provide a model-free simulation-
based optimization approach that can account for a variety of system-related
assumptions, including arbitrary distributions for demand-arrival processes and
cancellations, (2) we introduce in the area of revenue management, the SP
algorithm of Spall (1992), which other than in simulators (as we have done) could
also be exploited in model-based gradient-ascent approaches in revenue manage-
ment (Bertsimas and de Boer 2005; van Ryzin and Vulcano 2003), and (3) we
establish the usefulness of our simulation–optimization approach by analyzing the
effect of simulation-induced noise in our computational experiments.

The rest of this paper is organized as follows. Section 2 presents a simulation–
optimization model along with techniques used for solving the associated problem.
Numerical results are discussed in Section 3. Section 4 concludes this paper.

2 A simulation–optimization approach

Two undesirable events are associated with not setting an upper limit on the
number of seats to be sold at the different fares offered: 1) Passengers who end up
in the plane at takeoff are primarily from the lower-revenue classes, which
translates into loss of potential revenue. This is because lower-revenue passengers
tend to book early and, if no booking limits are imposed, can buy all the seats in the
plane. 2) Clearly, with no booking limits imposed, the number of passengers who
show up for boarding can exceed the capacity of the plane. When this happens,
some passengers have to be bumped, i.e., denied boarding request, although they
have purchased tickets, which leads to loss of goodwill and revenue (arising from
paying for tickets on alternative routes and hotel stays). However, if selling is
discontinued as soon as the number of seats sold equals the capacity of the plane,
some seats are likely to remain empty at takeoff-because of no-shows and last-
minute cancellations.

We now introduce some mathematical notation. Each flight in a simulation
model constitutes of arrivals, cancellations, and the takeoff of the plane. Let Ω
denote the (universal) set of all possible flights. Consider a probability space
ð�;F ;PÞ where F is a sigma-field of subsets of Ω and P denotes a probability
measure on ð�;FÞ . In general, the seat-allocation problem can be described
mathematically as follows. One has to find the values of the booking-limits vector
x={x1, x2, . . . , xn} that maximizes the expected revenue from each flight, i.e., Ep[T
(x,ωi) where n denotes the number of classes (distinct fares) or products, EP stands
for the expectation operator induced by the probability measure P, and T : <n �
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�! < is a scalar-valued function. Here, T(x,ωi) will denote the total (net)
revenue obtained from the ith sample flight, denoted by ωi∈Ω, in which the
booking-limits vector is fixed at x. In order to explain the working mechanism of a
“simulation–optimization” approach, we need to make the problem statement more
precise. A typical stochastic optimization problem is of the form

max
x2�

f ðxÞ � max
x2�

Ep½Tðx; !iÞ� (1)

where θ is a compact subset of <n and x denotes the vector of decision variables.
The random variables will have ω in the notation to distinguish them from other
quantities. Using the distribution P, if N i.i.d random samples, ω1,ω2, . . . ,ωN are
generated, we can develop an approximation of the stochastic optimization
problem in Eq. 1. The approximation is

max
x2�

XN
i¼1

Tðx; !iÞ
N

; (2)

where

f ðxÞ � Ep½Tðx; !iÞ �
XN
i¼1

Tðx; !iÞ
N

¼ fN ðxÞ: (3)

Now, Eq. 2 can be used in simulation-based optimization using a “sufficiently”
large value for N. Although Eq. 2 is only an approximation of the problem in Eq. 1,
it can be shown from the strong law of large numbers that as N→∞, Eqs. 2→1 with

probability 1 (almost surely). Also, we will assume that if limN!1
PN

i¼1 ðTx;!iÞ
N

does not exist, we will maximize lim infN!1
PN

i¼1 ðTx;!iÞ
N .

The problem then is to formulate a procedure to estimate T(.,.). The estimation
can be performed in a simulator provided one formulates a suitable expression for T
(.,.)—a task that we accomplish in the next subsection.

2.1 A simulation model

We ith aggregate sample of flights over all legs will be defined as: !̂i ¼ f!1
i ; !

2
i ;

. . . ; !l
i; . . . ; !

L
i g; where L denotes the number of legs in the network and ωi

l

denotes the lth leg of the ith aggregate sample of flights. Also, we define the
following terms. H: the booking time horizon (in days); n: the number of products;
Mv: penalty incurred by a passenger for cancellation of the vth product; Vv: revenue
associated with the vth product; Bv: penalty incurred by the company for bumping a
passenger of the vth product; Cl: plane’s capacity in the lth leg; ��vðx; !̂iÞ: the
number of passengers admitted for the vth product in the network if the booking-
limits vector is x�lvðx; !l

iÞ: the number of passengers admitted for the vth product in
the lth leg if the booking-limits vector is x (clearly, this quantity will always equal 0
if the vth product does not use the lth leg); �cvðx; !̂iÞ: the number of passengers who
cancelled tickets for the vth product in the network if the booking-limits vector is x;
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cv
l(x, ωi

l): the number of passengers who cancelled tickets for the vth product in the
lth leg if the booking-limits vector is x (clearly this quantity will also be 0 if the vth
product does not use the lth leg).

Then, the gross revenue obtained in the ith aggregate sample of the network
from selling seats and from cancellations, with x as the booking-limits vector, can
be expressed as

Gðx; !̂iÞ ¼
Xn
v¼1

��vðx; !̂iÞ � �cvðx; !̂iÞð ÞVv þ
Xn
v¼1

�cvðx; !̂iÞMv:

Also, the number bumped in the lth leg of the ith aggregate sample will be

Klðx; !l
iÞ ¼ max 0;

Xn
v¼1
ð�lvðx; !l

iÞ � clvðx; !l
iÞÞ � Cl

( )" #
:

Let �Kvðx; !̂iÞ denote the number bumped for the vth product in the ith
aggregate sample, which can be determined from the values of K1ðx; !1

i Þ;K2ðx
; !2

i Þ; . . . ;KLðx; !L
i Þ and the simulator. Then, the net network revenue,

associated with the ith sample, can be calculated from:

Tðx; !̂iÞ ¼ Gðx; !̂iÞ �
Xn
v¼1

Bv �K
vðx; !̂iÞ:

In our simulation–optimization approach, a booking-limits vector of x implies
that a customer requesting the ith product is accepted only if the net number
(accepted number minus the cancellations) of customers currently booked for all
products including i and those below i is less than xi. In the single-leg scenario, the
products are ranked by fares, and in the network by their net worth to the network,
which is explained later.

Sample flights can be simulated in a computer program, and thereby one can
compute the function T(.,.) for N sample flights using the definition above. Then
Eq. 3 can be used to estimate the value of the objective function.

We now describe in detail the two techniques that we have used for simulation
optimization.

2.2 Simultaneous perturbation

SP, as mentioned previously, is an efficient steepest-ascent technique that can be
used to solve continuous optimization problems with a large number of decision
variables and a noisy function evaluator, e.g., a simulator. It is particularly suitable
for simulation optimization (Spall 2003). The gradient estimate of SP, unlike
traditional finite differences, requires only two function estimates—that is, two
simulations. This is the primary advantage of this method, and makes it suitable for
our problem in which we have many decision variables. For a problem with n
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decision variables, finite difference approaches on the same problem would take n
times as many simulations per iteration of the steepest-ascent algorithm.

We must note that SP is guaranteed only local convergence unless the function
is concave or unimodal. It is extremely unlikely that the function in our problem
domain is concave (even quasi-concave, van Ryzin and Vulcano 2003). As a result,
in practice, one can start the search at a number of different points and select the
best of the local optima as the solution. The steps, described in detail next, are
written in terms of maximizing the objective-function value.

Step 1. Set k=1 and x1 ¼ fx11; x12; . . . ; x1ng to an arbitrary feasible solution in X ,
the feasible set of the solution space, which as a rule of thumb can be set to {0,1,2,
..., M}, where M is the maximum number of customers that can arrive in the
booking horizon. Denote S ¼ f1; 2; . . . ; ng . Set the step size μ to a small value
μsmall. Set μmin to a small value such as 0.001.

Step 2. A random value for each J(i) is generated by simulation, where i 2 S , from
the Bernoulli distribution whose two equally likely values are 1 and −1. Thus J(i) is
either 1 or −1 with the same probability. We set d=1/kwwhere kw denotes k raised to
the power w, and w is fixed to a value in (0,1), e.g., 0.5. Then the perturbation
parameter, hi for every i 2 S is computed as follows: hi=J(i)d.

Step 3. Let f denote the noisy function value obtained from a simulator. Thus f
denotes the estimate obtained in Eq. 3 using N samples from the simulator.
Calculate F+ and F− using the following:

Fþ ¼ f ðxk1 þ h1; x
k
2 þ h2; . . . ; x

k
n þ hnÞ;

F� ¼ f ðxk1 � h1; x
k
2 � h2; . . . ; x

k
n � hnÞ:

Step 4. For each i in S , first obtain the derivative estimate and then update xi
k via

steppest descent:

@f ðxÞ
@xi
jx¼xk ’ Fþ � F�

2hi
; xkþ1i  �X xki þ �

@f ðxÞ
@xi

� ����
x¼xk

�
;

where �X ½:� denotes the projection operator onto the feasible set X .

Step 5. Increment k by 1, and set: � �small

k : If μ<μmin, stop. Otherwise, return to
Step 2.

When the function is evaluated in Step 3, one must round off each element of
the vector x to the nearest integer. We need to discuss the effect of simulation-
induced noise on the objective function value. Fortunately, the simulator has a
regenerative structure in which a new i.i.d. sample is generated whenever the flight
takes off. Also, the objective function in Eq. 3 is the expected net revenue in one
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flight, and the problem is one of a finite horizon. As a result, the question of
computing profits on a unit–time basis, which can lead to an additional bias (see the
excellent discussion of Spall 2003, pp. 374–379), does not arise. In fact, the
estimator fN ðxÞ is an unbiased estimator of f (x) provided i.i.d samples are gener-
ated for T(.), which we ensure in our simulator.

The SP algorithm is guaranteed to converge under a number of conditions that
we enumerate below. The conditions related to the step-size can be easily met in
our computational experiments. In fact the step-size rules that we stated in our
algorithm description obey these conditions. But the conditions related to the
function gradients, e.g., differentiability and concavity, are difficult to verify. Spall
himself notes in his book (see Spall 2003, p. 161) that verifying the convergence
conditions when the gradient is computed numerically is an “abstract ideal” and
that the conditions “may not be verifiable for the very reason” one is forced to use
numerical gradient differences. Fu and Hill (1997) state: “In practice, it may be
difficult to verify the conditions on the objective function, since simulation is
applied to those systems for which analytical properties are not readily available.”
Some of these conditions could be verified only when expressions for gradients
could be derived—in which case these expressions could be directly used in the
optimization—making a numerical evaluation of the gradients unnecessary. The
objective function considered in this paper has a black-box nature—especially
when realistic assumptions are made for the system, and this is precisely why we
pursue a simulation-based approach.

The conditions and the result that we state next are based on work in Fu and Hill
(1997), which applies in our setting, i.e., constrained optimization in a compact
subset.
Step-size and variable–parameter conditions:Let μk denote the step-size in the
kth iteration of the algorithm. Then:

P1
k¼1 �k ¼ 1: For every i, the sequence of

random variables J(i) are mutually independent with mean 0, have bounded second
moments, and E½j1=JðiÞj� is uniformly bounded.If ek(i) denotes the noise in the
gradient due to the use of SP, and ek ¼ ½ekð1Þ; ekð2Þ; . . . ; ekðnÞT, then

P1
k¼1 E½eTk

ek ��2
k <1 almost surely.

Objective function conditions: The function f (x) is differentiable for each xi and
and is either concave or unimodal.

Theorem 1 For the SP algorithm, if the conditions enumerated above are true, if xk
denotes the solution in the kth iteration, and if x* denotes the optimal solution,
limk!1 xk ¼ x with probability 1.

2.3 Simulated annealing

As mentioned above, we have also used a standard meta-heuristic, namely,
Simulated Annealing (SA), in our computational experiments. This is a widely
used meta-heuristic that can generate high-quality solutions in problems of
combinatorial optimization. It is often claimed that it can escape local optima (see
Lundy and Mees 1986) for a convergence analysis. In what follows, we present a
quick description of the steps we used for computational experiments.

Simulation optimization for revenue management of airlines 29



Steps. Start at an arbitrary feasible solution, denoted by xcurrent. Let xbest denote
the best solution obtained so far, which is initialized to xcurrent. Set ψ, the so-called
temperature, to a high value. The algorithm is run for a number of phases. Set �Pmax,
the maximum number of phases, to a large number. Each phase, in the algorithm,
consists of I iterations. Within a phase, the temperature is not changed. The values
of �Pmax and I are set according to the time available on the computer. In the
algorithm, f(x) will denote the objective function value associated with the vector x.
Set neighbor search parameter, κ, to a suitable value.

Step 1. Set �P , the phase number, to 1.

Step 2. Randomly select a neighbor of xcurrent as follows.
To select a neighbor, generate a random number u(i) for i=1,2, . . . , n from the

uniform distribution U(0,1). For each i=1, 2, . . . , n, do the following: If u(i)<0.5,
xnewðiÞ  xcurrentðiÞ þ �;otherwise xnewðiÞ  xcurrentðiÞ � �: If any xnew(i) exceeds
the upper limit of the feasible value of booking limits or falls below 0, it is
projected back into the feasible set X (similar to the procedure of SP). In our
experiments, κ was set at 3.

Step 3. If f ðxnewÞ > f ðxbestÞ then set: xbest  xnew:
Let � ¼ f ðxcurrentÞ � f ðxnewÞ . If � � 0 , set xcurrent  xnew:
Otherwise, that is, if � > 0 , generate a random number �u from U(0,1).
If �u � expð��= Þ , set: xcurrent  xnew:

Step 4. Steps 2 and 3 constitute an iteration of the algorithm. Repeat Steps 2 and 3
for I iterations and then reduce the temperature as follows:   �Gð Þ; where
�Gð Þ is a decreasing function of  , e.g.,    � 10 or    =2 . Then
increment �P by 1. If �P < �Pmax , return to Step 2. Otherwise stop and return xbest as
the solution.

The effect of simulation noise in evaluating the function cannot be ignored.
This effect can be analyzed, mathematically, via a result in Gosavi (2002). The
result states that by selecting a sufficiently large number of samples it is possible to
ensure that the algorithm that uses noisy function values mimics the algorithm that
uses exact function values.

Theorem 2 With probability 1, the version of the SA algorithm that uses
simulation-based estimates of the function can be made to mimic the version that
uses exact function values.

3 Computational results

We begin this section with a description of the EMSR-b heuristic which is used in
single-leg and also in network problems. Thereafter, we present computational
results with the single-leg and network problem. In the single-leg problems, we use
the Poisson distribution for modeling the arrival process. In the network problems,
we have used non-homogeneous Poisson processes to model the arrival of
customers for booking. We note that our simulation-based approach is independent
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of the nature of the arrival processes and that these choices were dictated by the
need to show that our approach works well with both homogeneous and non-
homogeneous Poisson processes. The discrete-event simulator for the single-leg
case and the network was coded in C using the approach outlined in Law and
Kelton (1999) (see Chapter 2).

3.1 EMSR-b

We note that in our notation: V1 < V2 < � � � < Vn . Let Yi denote the random
demand for the ith product in the entire time horizon H. Then, �Yi ¼

Pn
j¼i Yj

denotes the sum of the demands of all classes above i and including i. Then, we
define the aggregate revenue for the ith class to be the weighted mean revenue of all
classes above i and including i as follows: �Vi ¼

Pn
j¼i VjE½Yj�=

Pn
j¼i E½Yj�: Then

Littlewood’s equation of EMSR-b can be given as: Vi ¼ �Viþ1Pr �Yiþ1 > Siþ1
� �

for
i ¼ 1; 2; . . . ; n� 1; where Si, the protection level, denotes the number of seats to
protect for fare classes i,i+1, . . . , n. There is no protection level for the lowest class
1. Then, if C denotes the capacity of the plane, the booking limit for the ith class is
defined to be: BLi ¼ maxfC � Siþ1; 0gfori ¼ 1; 2; . . . ; n� 1: The booking limit
for the highest class n is the capacity of the plane. If the mean cancellation
probability is known to be q, then cancellations can be accounted for in
Littlewood’s equation by replacing C in the above equation by C/(1−q) as
suggested in Belobaba (1989). Here (1−q) is the so-called correction factor. For
solving Littlewood’s equation, one requires the distribution of each random
variable �Yi .

3.2 Single-leg problems

In Table 1, Pr1(.) and Pr2(.) denote two patterns for arrival probabilities, CP1(.) and
CP2(.) denote two patterns for cancellation probabilities, NP(.) denotes a pattern for
no-show probabilities, V(.) denotes a pattern used for the revenue per passenger
(fare), and M(.) denotes the cancellation penalty per passenger.

C1=100 and C2=200 denote two patterns for the capacity of the plane, and �1(.)
and �2(.) represent two arrival patterns, where �i(l) denotes the Poisson rate of
arrival in the lth time zone when the ith pattern is used. The arrival rate in the vth
class in the lth time zone is equal to Prm(v)λm(l), where v 2 f1; 2; . . . ; 10g;m 2
f1; 2g , and l 2 f1; 2; 3g . Also, the bumping cost is 700, while �1ð1Þ ¼ 0:8;
�1ð2Þ ¼ 1:0; �1ð3Þ ¼ 2; �2ð1Þ ¼ 1:5; �2ð2Þ ¼ 2:2; and �2ð3Þ ¼ 3:5: Table 2

In Table 3, we present the 95% confidence intervals of the average revenue per
flight obtained from simulating the admission policies prescribed by each of the
three methods: EMSR-b (van Ryzin and McGill 2000) (corrected with an
overbooking factor), SA, and SP. For EMSR-b calculations, the mean of the arrival
rates of the Poisson processes in the three time zones is used as the mean arrival rate
of a single Poisson process, and the latter is approximated by the normal
distribution to solve Littlewood’s equation. We do not find any overlap with the
results from EMSR-b, in any of the eight systems studied, and this implies that
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EMSR-b has been outperformed—at least in a statistical sense. In Table 3, the parameter IMMt

for methodM denotes the percentage improvement of methodMt over the heuristic (EMSR-b
in this case), and is defined as follows:

IMMt ¼
�RMt � �RHEURISTIC

�RHEURISTIC
� 100; (4)

where �RMt denotes the average revenue obtained from applying method Mt on the
problem.

3.3 Network problems

For the network problem, we simulated the entire network in the same computer
program. Then the simulator was connected to an optimizer—also in the same
computer program. The simulator for the entire network, obviously, requires more
time for function evaluation in comparison to that written for a single leg. However,
we found that optimization can be performed easily, even on small computers
available in a university setting, within 15 min for a network with 24 legs. With
more powerful super-computers, optimization should take an even smaller amount
of time. To generate the best results in a given amount of time, we used a sequential

Table 3 Results obtained from EMSR-b, SP, and SA. IM is defined in Eq. 4

System EMSR-b (LL, UL) SP (LL, UL) IMSP % SA (LL, UL) IMSA %

1 (22,140, 22,349) (22,595, 22,899) 2.26 (22,546, 22,806) 1.94
2 (23,040, 23,326) (23,899, 24,214) 3.77 (23,737, 23,996) 2.95
3 (22,768, 22,959) (23,325, 23,611) 2.64 (23,378, 23,625) 2.79
4 (21,701, 21,870) (22,209, 22,409) 2.40 (22,158, 22,560) 2.63
5 (44,629, 44,937) (45,177, 45,643) 1.40 (45,101, 45,521) 1.18
6 (46,816, 47,142) (47,529, 48,087) 1.76 (47,502, 47,957) 1.60
7 (45,691, 46,002) (46,537, 46,896) 1.90 (46,561, 47,031) 2.07
8 (42,752, 42,992) (44,324, 44,771) 3.91 (44,142, 44,648) 3.55

UL and LL denote the upper and lower confidence interval limits, respectively, on the average
revenue in dollars per flight using a 95% confidence level

Table 2 The patterns used for each
system studied

System Patterns

1 Pr1, CP1, C1, and λ1(.)
2 Pr2, CP1, C1, and λ1(.)
3 Pr2, CP2, C1, and λ1(.)
4 Pr1, CP2, C1, and λ1(.)
5 Pr1, CP1, C2, and λ2(.)
6 Pr2, CP1,C2, and λ2(.)
7 Pr2, CP2, C2, and λ2(.)
8 Pr1, CP2, C2, and λ2(.)
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combination of SP and SA in the optimization process. SP was used first because it
quickly produced a good solution. The best solution produced by SP was used as a
starting solution for SA. The solution produced by a related linear program (LP),
which we will describe below, was used as one of the starting solutions for the SP.

We next describe the DAVN-EMSR-b approach in some detail. This will serve
as a benchmark heuristic for our simulation–optimization procedure.

DAVN-EMSR-b: Let E½Yj� denote the expected demand and Vj the revenue for
the jth product. Then the following linear program is solved:

Maximize
Xn
j¼1

Vjzj; such that 0 � zj � E½Yj�; j ¼ 1; 2 . . . ; n; (5)

and
X
j2Al

zj � Cl; l ¼ 1; 2; . . . ; L; (6)

where Al denotes the set of fare classes that use leg l, and Cl denotes the capacity
of the plane on the lth leg. The value of zj could be used as booking limit for
product j, and will be used as the starting solution for SA. But a more sophisticated
approach that exploits EMSR-b on every leg from the dual prices of the above LP
can be employed. This approach is called DAVN-EMSR-b. The displacement
adjusted revenue (or virtual revenue) for the jth product that uses leg l, i.e.,DAREj

l,
is computed using:

DAREl
j ¼ Vj �

X
i 6¼l;

Bi; where j 2 Ai; i 2 f1; 2; . . . ; Lg and l 2 f1; 2; . . . ; Lg;

and Bi denotes the dual prices associated with the ith capacity constraint Eq. 6 in
the linear program Eq. 5. Then DAREj

l is treated as the virtual revenue of the
product j on leg l. If there are too many DARE values in a given leg, similar DARE
values are clustered (van Ryzin and Vulcano 2003) to produce a manageable
number of aggregate classes. Now that the (virtual) revenue of each product on
each leg is available, EMSR-b can employed on each leg separately. For this, on
every leg, products that are relevant have to be re-ordered according to their DARE
values; the higher the DARE value, the higher the class. This leads to the
generation of separate booking limits for each product-leg combination. The

Table 4 Description of various legs in the
network

Plane (leg) Origin Destination Capacity

1 A X 100
2 X A 100
3 A Y 100
4 Y A 100
5 A Z 100
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booking limit for product j on leg l will be represented as BLj
l. A customer

requesting a given product is accepted only if the conditions with respect to all the
booking limits are satisfied, i.e., if at time t in the booking horizon, �j(t) denotes the
number of seats sold for product j, then a product j is accepted if �j(t)<BLj

l for
every leg l used by product j. Otherwise that customer is rejected. It could happen
that a customer meets the above condition for one leg but not for some other leg;
but if the conditions for all legs are not met, the customer is rejected.

We now describe a network of four cities (see Fig. 1) that we used for
computational purposes. The hub will be denoted by A and the three other cities by
X,Y, and Z. Some of the network data are supplied in Tables 4, 5, and 6. Some other
data are as follows: the arrival process, which is non-homogeneous Poisson, is

Table 5 The meanings of the symbols are as follows

Product (i, j) Itinerary (Pr(i), Pr( j)) (CP(i ), CP( j))

(1,13) A→X (0.056,0.014) (0.025,0.3)
(2,14) X→A (0.064,0.016) (0.025,0.3)
(3,15) A→Y (0.048,0.012) (0.025,0.3)
(4,16) Y→A (0.056,0.014) (0.05,0.3)
(5,17) A→Z (0.064,0.016) (0.05,0.3)
(6,18) Z→A (0.048,0.012) (0.075,0.3)
(7,19) X→Y via A (0.08,0.020) (0.125,0.3)
(8,20) Y→X via A (0.096,0.024) (0.2,0.3)
(9,21) X→Z via A (0.08,0.020) (0.2,0.3)
(10,22) Z→X via A (0.072,0.018) (0.225,0.3)
(11,23) Y→Z via A (0.08,0.02) (0.2,0.3)
(12,24) Z→Y via A (0.056,0.014) (0.2,0.3)

Pr (i): Probability that an arriving passenger requests the ith product, and CP(i): Probability of
cancellation for the ith product

Table 6 The table enumerates a number of fare structures for the network problem

Product FS1 FS2 FS3 FS4 FS5
(i, j) (Vi, Vj) (Vi, Vj) (Vi, Vj) (Vi, Vj) (Vi, Vj)

(1,13) (350,700) (250,500) (350,500) (250,400) (125,250)
(2,14) (375,750) (275,550) (375,525) (275,425) (175,350)
(3,15) (400,800) (300,600) (400,550) (300,450) (200,400)
(4,16) (430,860) (330,660) (430,585) (330,480) (230,460)
(5,17) (450,900) (350,700) (450,600) (350,500) (250,500)
(6,18) (500, 1,000) (400,800) (500,650) (400,550) (300,600)
(7,19) (600, 1,200) (500, 1,000) (600,750) (500,650) (350,700)
(8,20) (610, 1,220) (510, 1,020) (610,760) (510,660) (375,750)
(9,21) (620, 1,240) (520, 1,040) (620,770) (520,670) (380,760)
(10,22) (630, 1,260) (530, 1,060) (630,780) (530,680) (390,780)
(11,23) (640, 1,280) (540, 1,080) (640,790) (540,690) (395,790)
(12,24) (650, 1,300) (550, 1,100) (650,800) (550,700) (400,800)

FSk denotes the kth fare structure
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described by (a=9, b=0.03) per day, the booking horizon is 100 days long, the
penalty of cancellation to the customer is 80 dollars and the penalty to the airline
for bumping a passenger is 500 dollars.

For the arrival pattern, we use a non-homogeneous Poisson process, whose
intensity function for the time horizon of length H is defined as a+bt, where t
denotes the time. We assume concurrent arrivals of all classes and products since
this is the most general of assumptions. We must point out that since we use
simulation, any arrival distribution can be used just easily. The parameters a and b
for the ith product equal Pr(i)a and Pr(i)b, respectively, such that each product has
its own independent non-homogeneous Poisson process (Ross 2003). For
simulating the non-homogeneous process, we used the method described as
“Method 1” in Kao (1997, p. 59).

For EMSR-b calculations, the integrated intensity function of the non-
homogeneous Poisson process,m(t), was calculated so that one could use a Poisson
approximation (see Kao 1997, p. 57); the Poisson process could be further
approximated in a convenient fashion by the normal distribution to solve
Littlewood’s equation. For our function, the integrated intensity function turns out
to be m(t)=at+0.5 bt2 from which the mean demand in the time horizon of length H
becomes aH+0.5 bH2. This is used as the mean (and also the variance) of an
equivalent Poisson distribution, which, as stated above, can be approximated easily
(and accurately) by the normal distribution. For the simulation–optimization
approach, the products are ranked using DAVN values, i.e., by their net worth,
which was calculated as Wj ¼

P
l2Lj DAVN

l
j , where Lj denotes the set of legs

needed for product j. The higher the value of W for a product, the higher its rank.
For the SP–SA combination, the booking limits derived from the LP are used as

a starting solution. Fare structures defined in Table 6 are used to define the five
networks studied here. Table 7 shows the actual revenues obtained from DAVN-
EMSR-b and the SP-SA combination. As is clear, the SP-SA combination is clearly
superior to DAVN-EMSR-b. We must add that in some cases, SA did not improve
at all upon the solution of SP, and hence the solution from the combination is
essentially that of SP. In our experiments with SP, we used w=0.5 and μsmall=0.01.

4 Conclusions

This paper presented an integrated simulation-based approach that can be applied
to solve a complex seat-allocation problem in the airline industry. The model

Table 7 RMt denotes the expected revenue in dollars per flight when method Mt is used

Fare structure RDAVN�EMSR�b RSP�SA IMSP–SA LP*

1 283,739.03 299,723.34 5.63 337,136
2 227,289.78 258,984.27 13.94 268,803
3 203,190.75 229,602.85 12.99 258,269
4 168,539.17 190,217.56 12.86 208,596
5 144,905.63 156,285.29 7.85 188,706.5

LP* denotes the solution of Eq. 5, which forms an upper bound on the network revenues
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developed accommodated most real-life considerations, including cancellations
and overbooking, which are ignored in many models in the literature. Two efficient
optimization techniques were combined with the simulation model. Computational
results showed that our simulation–optimization approach can outperform both
EMSR-b for single-leg problems and DAVN-EMSR-b for network problems. The
single-leg results are from the MS thesis of (Ozkaya 2002). A further improvement
over this approach could be realized by simulating each leg on a separate processor
in a parallel-processing environment. Future research will be directed towards
minimizing the run time by using parallelization techniques.
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