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Abstract

We consider discrete-time �xed gain stochastic approxi-
mation processes that are de�ned in terms of a random
�eld that is identically zero at some point ��. The
boundedness of the estimator process is enforced by a
resetting mechanism. Under appropriate technical con-
ditions the estimator sequence is shown to converge to
�� with geometric rate almost surely. This result is in
striking contrast to classical stochastic approximation
theory where the typical convergence rate is n�1=2. For
the proof a discrete-time version of the ODE-method
is developed and used, and the techniques of [8] are ex-
tended. The paper is motivated by the study of simul-
taneous perturbation stochastic approximation (SPSA)
methods applied to noise-free problems and to direct
adaptive control, see [13].

1 Introduction

Let H(n; �; !) be a random �eld de�ned over some
probability space (
;F ; P ) for n � 1 and ��D � IRp,
where D is a bounded open domain. Assume that for
some ���IRp the random �eld identically vanishes, i.e.
we have

H(n; ��; !) = 0: (1)

The problem that we study is to determine �� via a
stochastic approximation procedure based on observed
values of H(n; �; !).

Noise free SPSA: For a motivation consider the fol-
lowing problem: minimize a function L(�) de�ned for
��IRp, such that it is three-times continuously di�eren-
tiable with respect to �, and L(:) has a unique global
minimizing value ��. Assume that the computation
of L(:) is expensive and the gradient of L(:) is not
computable at all. To minimize L(:) we estimate the
gradient of L(:) denoted by G(�) = L�(�). Following
[19] consider random simultaneous perturbations of the
components of � as follows: �rst take a sequence of in-
dependent, identically distributed (i.i.d.) random vari-
ables, with time index n, �ni(!); i = 1; :::; p de�ned
over some probability space (
;F ;P) satisfying certain
weak technical conditions given in [19]. E.g. we may
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take a Bernoulli-sequence with

P (�ni(!) = +1) = 1=2 P (�ni(!) = �1) = 1=2:

Let c > 0 be a �xed small positive number. For any
��IRp we evaluate L(:) at two randomly, but symmet-
rically chosen points, � + c�n(!) and � � c�n(!), re-
spectively. Then the i-th component of the gradient is
estimated as

Hi(n; �; !) = ��1ni (!)
L(� + c�n(!))� L(� � c�n(!))

2c
:

Set H(n; �; !) = (H1(n; �; !); :::; Hp(n; �; !)) and

��1n (!) =
�
��1n1 (!); : : : ;�

�1
np (!)

�T
:

Using this gradient estimator with a decreasing c = cn,
where cn tends to zero at a rate 1=n with some  > 0,
a stochastic approximation procedure with decreasing
gain 1=na with some 0 < a � 1, called the simultane-
ous perturbations stochastic approximation or SPSA
method, has been developed in [19]. SPSA methods
have been analyzed under various conditions in [3], [9],
[17] and [19], and simpli�ed and improved versions have
been developed in [20, 21].

In the special case, when L is a positive de�nite
quadratic function we have

H(n; �; !) = ��1n (!)�T
n (!)G(�)

for any size of the perturbation c. Since G(��) = 0, we
have identically

H(n; ��; !) = 0:

For general, non-quadratic cost functions we have to
decrease the size of the perturbation, thus we chose
c = cn; where cn tends to zero. Then the condi-
tion H(n; ��; !) = 0 will be satis�ed asymptotically.
An alternative class of problems where the condition
H(n; ��; !) = 0 is satis�ed exactly is described in [13]
in connection with multivariable direct adaptive con-
troller design.

A survey of previous results: The standard stochastic
approximation procedure for (1) would be

�n+1 = �n +
1

n+ 1
H(n+ 1; �n; !) �0 = �: (2)



Such general stochastic approximation procedures have
been considered e.g. in [1, 2, 5, 18]. The asymptotic
covariance matrix of the estimator process, denoted by
S�, has been determined under various conditions in
[1, 2, 6, 18]. It is easy to see that H(n; ��; !) = 0
implies

S� = lim
n!1

nE(�n � ��)(�n � ��)T = 0; (3)

hence the convergence rate is better than the standard
rate n�1=2. But how much better can it be? A straight-
forward, but tiresome calculation induces us to con-
sider �xed gain stochastic approximation processes of
the form

�n+1 = �n + �H(n+ 1; �n; !) �0 = �: (4)

Fixed gain recursive estimation processes of this gen-
eral form have been widely used in the engineering liter-
ature. An important example is the well-known LMS-
algorithm of adaptive �ltering, the stability properties
of which had been studied in [7, 12, 16], assuming some
form of stationarity. The most complete characteriza-
tion of LMS processes has been given recently in [14].
General classes of algorithms given above has been con-
sidered in [1] and [18]. Assuming that

G(�) = EH(n; �; !): (5)

is independent of n, and that �� is an asymptotic sta-
ble equilibrium point for G has the estimator sequence
�n is related to the solution of the associated ordinary
di�erential equation

_yt = �G(yt) y0 = �:

This method of proof is often called the ODE-method.

In [8] H(n; �; !) is assumed to be an L-mixing pro-
cess. A key condition in the analysis presented in [8]
is that the essential supremum of the random variable
jH(n; �; !) � G(�)j is suÆciently small for all ��D, to
ensure a priori that �n will stay in a prescribed compact
domain D0 � D. The conclusion is that the Lq-norms
of the tracking error is of the order of magnitude �1=2.

A new feature of the present paper is that the condi-
tion H(n; ��; !) = 0 is imposed, and that assumption
ensuring a priori that �n will stay in a prescribed com-
pact domain D0 � D, is removed. Instead, the condi-
tion �n�D0 is enforced by using a resetting mechanism.
The relaxation of the conditions on the upper bound
of jH(n; �; !)�G(�)j is essential for noise free SPSA.

We have the surprising result that, in spite of the fact
that, predictably, we have frequent resetting, �n does
converge to �� almost surely, and the rate of conver-
gence is geometric. A heuristic argument in favour this
result is that when �n gets close to �� then the e�ect
of the noise is negligible, and also the occurrence of a
44
resetting becomes less likely. The analysis is based on
a discrete-time ODE-method.

In the special case of SPSA methods applied to noise-
free optimization we get �xed gain SPSA methods.
These have been �rst considered in [10] for gen-
eral random �elds, i.e. without the extra condition
H(n; ��; !) = 0. The present paper is a follow-up of
[11].

2 The basic result

The p-dimensional Euclidean-space will be denoted by
IRp. The Euclidean-norm of a vector x will be denoted
by jxj, the operator norm of a matrix A will be denoted
be kAk. Assume �� = 0 and that H(n; �; !) can be
written in the form

H(n; �; !) = A(n; �; !)�

where the p � p matrix-valued random-�eld A(n; �; !)
satis�es the conditions below. Thus we come to con-
sider a quasi-linear random iterative process of the form

�n+1 = �n + �A(n+ 1; �n; !)�n: (6)

If A(n + 1; �n; !) is in fact independent of �, then
(6) is a random linear di�erence equation with state-
independent transition-matrices, the stability of which
has been studied extensively already in [15].

In the conditions below we use the notations given in
the Appendix. De�ne the p�p matrix-valued random-
�eld �A=��, for �; � + h h 6= 0, by

(�A=��)(n; �; �+h; !) = jA(n; �+h; !)�A(n; �; !)j=jhj:

Condition 2.1 The matrix-valued random-�elds A
and �A=�� are de�ned and bounded for n � 1; �; �+
h�D; h 6= 0, where D is a bounded domain:

jjA(n; �; !)jj � K 0; jj(�A=��)(n; �; � + h; !)jj � L0:

A key technical condition that ensures a stochastic av-
eraging e�ect is the following:

Condition 2.2 A and �A=�� are L-mixing uni-
formly in � for ��D and in �; �+h for �; �+h�D; h 6= 0,
respectively, with respect to a pair of families of �-
algebras (Fn;F

+
n ); n � 1.

For the sake of convenience we assume:

Condition 2.3 The mean �eld EH(n; �; !) is inde-
pendent of n, i.e. we can write

G(�) = EH(n; �; !): (7)
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It follows, that B(�) = EA(n; �; !) is also independent
of n. Write

A(n; �; !) = A(n; �; !)� EA(n; �; !):

Condition 2.4 The function G de�ned on D is con-
tinuous and bounded in y together with its �rst and
second partial derivatives, say

jG(y)j � K; k@G(y)=@yk � L k@2G(y)=@y2k � L:
(8)

Domains: We develop a discrete-time version of the
ODE method which can be applied with ease for the
problem considered in this paper. The process �n will
be compared with the discrete-time deterministic pro-
cess (zn) de�ned by

zn+1 = zn + �G(zn); z0 = � = ��D�; (9)

where D� is a compact domain to which the estima-
tor sequence �n will be con�ned by a resetting tech-
nique. Let z(n;m; �) denote the solution of (9) with
initial condition zm = �. De�ne the time-homogeneous
mapping associated with (9) � ! zn(�) = z(n; 0; �).
Let D� � D be a subset of D such that for ��D� we
have zn(�)�D for any n � 0. For any �xed n the
image of D� under zn will be denoted as zn(D�) i.e.
zn(D�) = fz : z = z(n; 0; �); ��D�g: The union of
these sets will be denoted by z(D�), i.e.

z(D�) = fz : z = z(n; 0; �) for some n � 0; ��D�g:

It can be proved that, under suitable technical condi-
tions, z(D�) � Dz � D where Dz is some compact
domain.

The associated continuous-time ODE is de�ned as

_yt = �G(yt); ys = � = z�Dz; s � 0: (10)

The solution of (10) will be denoted by y(t; s; �). The
time-homogeneous ow associated with (10) is de�ned
as the mapping � ! yt(�) = y(t; 0; �). Let Dz be such
that for z�Dz we have yt(z)�D for any t � 0. For any
�xed t the image of Dz under yt will be denoted as
yt(Dz) i.e. yt(Dz) = fy : y = y(t; 0; z); z�Dzg. The
union of these sets will be denoted by y(Dz), i.e.

y(Dz) = fy : y = y(t; 0; z) for some t � 0; z�Dzg:

For any set D0 write

S(D0; ") = f� : j� � zj < " for some z�D0g:

Finally the interior of a compact domain D0 is denoted
by int D0. We will require the following stability con-
dition:
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Condition 2.5 There exist compact domains D� �
Dz � Dy � D and d > 0 such that 0 � intD� and

S(y(D�); d) � Dz and y(Dz) � Dy � D: (11)

Condition 2.6 The ordinary di�erential equation
(10) satis�es the following stability conditions: for any
� = z�Dz and for any " > 0 there exists a T > 0
such that t � s > T implies jy(t; s; �)j � ". Moreover
the Jacobian-matrix Gy(0) has all its eigenvalues in the
open left half plane.

It follows, that for some C0 > 0 and � > 0 we have for
all 0 � s � t; z�Dz

k
@

@z
y(t; s; z)k � C0e

��(t�s): (12)

We can assume that C0 � 1.

Resetting: Let D� be a compact domain such that

0� intD� and S(D�; d
0) � intD� (13)

for some d0 > 0. Assume that � = b�0�D�. At time n
we �rst de�ne a tentative value �n+1� following (4) as

�n+1� = �n + �H(n+ 1; �n; !) (14)

and then we set

�n+1 = �n+1� if �n+1��D�

�n+1 = �0 if �n+1��jD�: (15)

Condition 2.7 It is assumed that for some 0 < r < R
we have

D� � S(0; r) � S(0; R) � D�: (16)

Theorem 2.1 Assume that Conditions 2.1-2.7 are
satis�ed. Let � = �0�D� and assume that C3

0r=R < 1.
Then there exists a  with 0 <  < 1 and a positive
random variable C(!) such that for suÆciently small
� we have

j�N j � C(!)�N :

3 Outline of the proof

First we need two simple lemmas on the discrete ow
de�ned by (9).

Lemma 3.1 Assume that Conditions 2.4, 2.5 and 2.6
are satis�ed. Let yt be the solution of (10) and let zn
be the solution of (9) with y0 = z0�D�. Then if d >
C0�

�1 � �LK then zn will stay in Dz for all n, and
jzn � ynj � C0�

�1 � �LK for all n � 0. In addition
for any �0 < � we have jznj � C0e

�n��0 whenever � is
suÆciently small.
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An interesting property of the discrete ow de�ned by
(9) is that it inherits exponential stability with respect
to initial perturbations if � is suÆciently small.

Lemma 3.2 Assume that Conditions 2.4, 2.5 and 2.6
are satis�ed. Then d > C0�

�1 � �LK implies that zn
will stay in Dz for all n, moreover for any 0 < �0 < �
and n � m we have

jj
@

@�
z(n;m; �)jj � C0e

���0(n�m); (17)

whenever � is suÆciently small.

A local approximation: In what follows the discrete-
time parameter n will be replaced by t and n will stand
for a rescaled discrete time-index. Let T be a �xed
positive integer. Let us subdivide the set of integers
into intervals of length T . Let n be a non-negative
integer and let �(nT ) denote the �rst integer t > nT
for which �t�jD�. In the interval [nT; (n+ 1)T � 1] we
consider the solution of (9) starting from �nT at time
nT . This will be denoted by zt, i.e. zt is de�ned by

zt+1 = zt + �G(zt); znT = �nT :

We can also write zt = z(t; nT; �nT ) for nT � t �
(n + 1)T . The de�nition of zt is non-unique for t =
(n + 1)T , therefore we use the notation z(n+1)T� =
z((n+1)T; nT; �nT ) and z(n+1)T = �(n+1)T . A key step
in the derivation is to get an upper bound for j�t� ztj.

We need the following simple observation: for s � nT
we have

zs = z(s; nT; �nT ) = z(s; nT; �nT )� z(s; nT; 0) =

Z 1

0

@z

@�
(s; nT; ��nT )d� � �nT :

The presence of the multiplicative term j�nT j on the
right hand side is a key feature that ensures conver-
gence with exponential rate. In the lemma below the
de�nition of ��(nT ) will be temporarily changed for the
sake of convenience to denote the value of �t at time
�(nT ) prior to resetting.

Lemma 3.3 For any T we have

sup
nT�t�(n+1)T^�(nT )

j�t � ztj � c���nj�nT j (18)

where ��n is de�ned in terms of H as follows:

��n = sup
nT�t�(n+1)T

�"D�

k
t�1X
s=nT

�A(s+ 1; z(s; nT; �); !)k (19)

and c� = C0(1 + �L)T .
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Remark: Lemma 2.2 of [8] implies that the process (��n)
is L-mixing with respect to (FnT ;F

+
nT ). In particular,

choosing T = [(��)�1] + 1 we get for any 2 < q < 1
and r > p

Mq(�
�) � Cq�

1=2; (20)

where Cq is independent of �.

In the lemma below we use the following notation: if a
resetting takes place at time nT then �nT denotes the
value of �t at time nT prior to resetting.

Now if no resetting takes place over several periods then
the repeated application of (18) leads to the following
result:

Lemma 3.4 Let T = [(��)�1]+1 and assume that no
resetting takes place for 0 � t � nT with some positive
integer n. Then we have

j�nT j � C0j�0j � �
n
k=1(� + C0c

���k�1)

with 0 < � < 1, where the latter is independent of �.

The starting points and the endpoints of the above in-
terval can be replaced by arbitrary, possible random
time-moments.

For small � the averaging e�ect is ensured by taking
large T . Note that � is independent of �, but ��k�1 =

OM (�1=2) can be made very small.

If a resetting does take place in (nT; (n + 1)T ], then
the following multiplicative inequality can be derived,
that will replace (18) in the analysis:

j�(n+1)T j �
r

R
(C0 + 2c���n)

2j�nT j: (21)

The proof the Theorem 2.1 can now be completed by
applying fairly straightforward estimations for random
products.

4 Simulation results

Consider a quadratic function L(�) = 1
2�

TA�, with
some symmetric positive de�nite A. Then H(k; �) =
��1k �T

kG(�): But G(�) = A�, hence we get the follow-
ing recursion for �k:

�k+1 = (I � ���1k �T
kA)�k: (22)

Applying Oseledec's multiplicative ergodic theorem we
can easily get the claim of Theorem 2.1. Consider now
non-quadratic problems of the form

L(�) =
1

2
�TA(�)�
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with
A(�) = A+ u(�)u(�)T

where u(�) = D� with some �xed matrix D.

We have tested the �xed gain SPSA method (4) for
randomly generated problems of dimension 20, where
the elements ofD were chosen uniformly in the range of
[0; cp]. In each experiment we had N = 500 iterations.

The top Lyapunov-exponent is approximated by

1

N
log j�N � ��j:

In Figures 1. and 2. the approximate top Lyapunov
exponent is plotted against the step-size � for three, in-
creasingly non-quadratic problems for plain SPSA and
second order SPSA proposed in [21].

5 Conclusion

Stochastic approximation processes based on vanish-
ing random �elds with a resetting mechanism converge
with geometric rate almost surely. The result is in strik-
ing contrast to classical stochastic approximation the-
ory where the typical convergence rate is n�1=2. The
paper is motivated by the study of simultaneous per-
turbation stochastic approximation (SPSA) methods
applied to noise-free problems.

An open problem is the following: The condition
C3
0r=R < 1 becomes r=R < 1 if C0 = 1. This is equiv-

alent to saying of (12) that for some � > 0 we have for
all 0 � s � t; z�Dz

k
@

@z
y(t; s; z)k � e��(t�s): (23)

An interesting problem is to �nd useful suÆcient con-
ditions under which (23) will be satis�ed for non-linear
systems with some Euclidean norm.

6 Appendix

In this section the basic concepts of the theory of L-
mixing processes developed in [4] will be presented. Let
a probability space (
;F ; P ) be given, let D � IRp be
an open domain and let (xn(�)): 
� ZZ�D ! IRn be
parameter-dependent stochastic process. We say that
(xn(�)) is M -bounded if for all 1 � q <1

Mq(x) = sup
n�0
��D

E1=qjxn(�)j
q <1:

We shall use the same terminology if � or t degenerate
into a single point.
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Let (Fn); n � 0 be a family of monotone increasing �-
algebras, and (F+

n ); n � 0 be a monotone decreasing
family of �-algebras. We assume that for all n � 0;Fn
and F+

n are independent. For n � 0 we set F+
n =

F+
0 . A stochastic process (xn(�)); n � 0 is L-mixing

with respect to (Fn;F
+
n ) uniformly in � if it is (Fn)-

measurable, M -bounded and if we set for 1 � q <1

q(�; x) = q(�) = sup
n��
��D

E1=qjxn(�)� E(xn(�)jF
+
n�� )j

q

where � is a positive integer then

�q = �q(x) =
1X
�=1

q(�) <1:
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