THE MATHEMATICS OF NOISE-FREE SPSA

László Gerencsér Computer and Automation Institute of the Hungarian Academy of Sciences, 13-17 Kende u., Budapest, 1111, Hungary gerencser@sztaki.hu

Abstract

We consider discrete-time fixed gain stochastic approximation processes that are defined in terms of a random field that is identically zero at some point θ^* . The boundedness of the estimator process is enforced by a resetting mechanism. Under appropriate technical conditions the estimator sequence is shown to converge to θ^* with geometric rate almost surely. This result is in striking contrast to classical stochastic approximation theory where the typical convergence rate is $n^{-1/2}$. For the proof a discrete-time version of the ODE-method is developed and used, and the techniques of [8] are extended. The paper is motivated by the study of simultaneous perturbation stochastic approximation (SPSA) methods applied to noise-free problems and to direct adaptive control, see [13].

1 Introduction

Let $H(n, \theta, \omega)$ be a random field defined over some probability space (Ω, \mathcal{F}, P) for $n \geq 1$ and $\theta \epsilon D \subset \mathbb{R}^p$, where D is a bounded open domain. Assume that for some $\theta^* \epsilon \mathbb{R}^p$ the random field identically vanishes, i.e. we have

$$H(n, \theta^*, \omega) = 0. \tag{1}$$

The problem that we study is to determine θ^* via a stochastic approximation procedure based on observed values of $H(n, \theta, \omega)$.

Noise free SPSA: For a motivation consider the following problem: minimize a function $L(\theta)$ defined for $\theta \in \mathbb{R}^p$, such that it is three-times continuously differentiable with respect to θ , and L(.) has a unique global minimizing value θ^* . Assume that the computation of L(.) is expensive and the gradient of L(.) is not computable at all. To minimize L(.) we estimate the gradient of L(.) denoted by $G(\theta) = L_{\theta}(\theta)$. Following [19] consider random simultaneous perturbations of the components of θ as follows: first take a sequence of independent, identically distributed (i.i.d.) random variables, with time index n, $\Delta_{ni}(\omega)$, i = 1, ..., p defined over some probability space $(\Omega, \mathcal{F}, \mathcal{P})$ satisfying certain weak technical conditions given in [19]. E.g. we may Zsuzsanna Vágó Computer and Automation Institute of the Hungarian Academy of Sciences, 13-17 Kende u., Budapest, 1111, Hungary vago@oplab.sztaki.hu

FrM08-4

take a Bernoulli-sequence with

$$P(\Delta_{ni}(\omega) = +1) = 1/2$$
 $P(\Delta_{ni}(\omega) = -1) = 1/2.$

Let c > 0 be a fixed small positive number. For any $\theta \epsilon \mathbf{R}^p$ we evaluate L(.) at two randomly, but symmetrically chosen points, $\theta + c\Delta_n(\omega)$ and $\theta - c\Delta_n(\omega)$, respectively. Then the *i*-th component of the gradient is estimated as

$$H_{i}(n,\theta,\omega) = \Delta_{ni}^{-1}(\omega) \frac{L(\theta + c\Delta_{n}(\omega)) - L(\theta - c\Delta_{n}(\omega))}{2c}$$

Set $H(n,\theta,\omega) = (H_{1}(n,\theta,\omega), ..., H_{p}(n,\theta,\omega))$ and
 $\Delta_{n}^{-1}(\omega) = \left[\Delta_{n1}^{-1}(\omega), ..., \Delta_{np}^{-1}(\omega)\right]^{T}.$

Using this gradient estimator with a decreasing $c = c_n$, where c_n tends to zero at a rate $1/n^{\gamma}$ with some $\gamma > 0$, a stochastic approximation procedure with decreasing gain $1/n^a$ with some $0 < a \leq 1$, called the simultaneous perturbations stochastic approximation or SPSA method, has been developed in [19]. SPSA methods have been analyzed under various conditions in [3], [9], [17] and [19], and simplified and improved versions have been developed in [20, 21].

In the special case, when L is a positive definite quadratic function we have

$$H(n,\theta,\omega) = \Delta_n^{-1}(\omega)\Delta_n^T(\omega)G(\theta)$$

for any size of the perturbation c. Since $G(\theta^*) = 0$, we have identically

$$H(n, \theta^*, \omega) = 0.$$

For general, non-quadratic cost functions we have to decrease the size of the perturbation, thus we chose $c = c_n$, where c_n tends to zero. Then the condition $H(n, \theta^*, \omega) = 0$ will be satisfied asymptotically. An alternative class of problems where the condition $H(n, \theta^*, \omega) = 0$ is satisfied exactly is described in [13] in connection with multivariable direct adaptive controller design.

A survey of previous results: The standard stochastic approximation procedure for (1) would be

$$\theta_{n+1} = \theta_n + \frac{1}{n+1}H(n+1,\theta_n,\omega) \qquad \theta_0 = \xi.$$
 (2)

Such general stochastic approximation procedures have been considered e.g. in [1, 2, 5, 18]. The asymptotic covariance matrix of the estimator process, denoted by S^* , has been determined under various conditions in [1, 2, 6, 18]. It is easy to see that $H(n, \theta^*, \omega) = 0$ implies

$$S^* = \lim_{n \to \infty} n \mathbf{E} (\theta_n - \theta^*) (\theta_n - \theta^*)^T = 0, \qquad (3)$$

hence the convergence rate is better than the standard rate $n^{-1/2}$. But how much better can it be? A straightforward, but tiresome calculation induces us to consider fixed gain stochastic approximation processes of the form

$$\theta_{n+1} = \theta_n + \lambda H(n+1, \theta_n, \omega) \qquad \theta_0 = \xi.$$
(4)

Fixed gain recursive estimation processes of this general form have been widely used in the engineering literature. An important example is the well-known LMSalgorithm of adaptive filtering, the stability properties of which had been studied in [7, 12, 16], assuming some form of stationarity. The most complete characterization of LMS processes has been given recently in [14]. General classes of algorithms given above has been considered in [1] and [18]. Assuming that

$$G(\theta) = \mathbf{E}H(n,\theta,\omega). \tag{5}$$

is independent of n, and that θ^* is an asymptotic stable equilibrium point for G has the estimator sequence θ_n is related to the solution of the associated ordinary differential equation

$$\dot{y}_t = \lambda G(y_t) \qquad y_0 = \xi.$$

This method of proof is often called the ODE-method.

In [8] $H(n, \theta, \omega)$ is assumed to be an *L*-mixing process. A key condition in the analysis presented in [8] is that the essential supremum of the random variable $|H(n, \theta, \omega) - G(\theta)|$ is sufficiently small for all $\theta \epsilon D$, to ensure a priori that θ_n will stay in a prescribed compact domain $D_0 \subset D$. The conclusion is that the L_q -norms of the tracking error is of the order of magnitude $\lambda^{1/2}$.

A new feature of the present paper is that the condition $H(n, \theta^*, \omega) = 0$ is imposed, and that assumption ensuring a priori that θ_n will stay in a prescribed compact domain $D_0 \subset D$, is removed. Instead, the condition $\theta_n \epsilon D_0$ is enforced by using a resetting mechanism. The relaxation of the conditions on the upper bound of $|H(n, \theta, \omega) - G(\theta)|$ is essential for noise free SPSA.

We have the surprising result that, in spite of the fact that, predictably, we have frequent resetting, θ_n does converge to θ^* almost surely, and the rate of convergence is geometric. A heuristic argument in favour this result is that when θ_n gets close to θ^* then the effect of the noise is negligible, and also the occurrence of a resetting becomes less likely. The analysis is based on a discrete-time ODE-method.

In the special case of SPSA methods applied to noisefree optimization we get fixed gain SPSA methods. These have been first considered in [10] for general random fields, i.e. without the extra condition $H(n, \theta^*, \omega) = 0$. The present paper is a follow-up of [11].

2 The basic result

The *p*-dimensional Euclidean-space will be denoted by \mathbb{R}^p . The Euclidean-norm of a vector x will be denoted by |x|, the operator norm of a matrix A will be denoted be ||A||. Assume $\theta^* = 0$ and that $H(n, \theta, \omega)$ can be written in the form

$$H(n,\theta,\omega) = A(n,\theta,\omega)\theta$$

where the $p \times p$ matrix-valued random-field $A(n, \theta, \omega)$ satisfies the conditions below. Thus we come to consider a quasi-linear random iterative process of the form

$$\theta_{n+1} = \theta_n + \lambda A(n+1, \theta_n, \omega) \theta_n.$$
(6)

If $A(n + 1, \theta_n, \omega)$ is in fact independent of θ , then (6) is a random linear difference equation with stateindependent transition-matrices, the stability of which has been studied extensively already in [15].

In the conditions below we use the notations given in the Appendix. Define the $p \times p$ matrix-valued random-field $\Delta A/\Delta \theta$, for $\theta, \theta + h$ $h \neq 0$, by

$$(\Delta A/\Delta \theta)(n,\theta,\theta+h,\omega) = |A(n,\theta+h,\omega) - A(n,\theta,\omega)|/|h|$$

Condition 2.1 The matrix-valued random-fields A and $\Delta A/\Delta \theta$ are defined and bounded for $n \ge 1$, θ , $\theta + h\epsilon D$, $h \ne 0$, where D is a bounded domain:

$$||A(n,\theta,\omega)|| \le K', \quad ||(\Delta A/\Delta\theta)(n,\theta,\theta+h,\omega)|| \le L'.$$

A key technical condition that ensures a stochastic averaging effect is the following:

Condition 2.2 A and $\Delta A/\Delta \theta$ are L-mixing uniformly in θ for $\theta \epsilon D$ and in $\theta, \theta + h$ for $\theta, \theta + h \epsilon D$, $h \neq 0$, respectively, with respect to a pair of families of σ algebras $(\mathcal{F}_n, \mathcal{F}_n^+), n \geq 1$.

For the sake of convenience we assume:

Condition 2.3 The mean field $EH(n, \theta, \omega)$ is independent of n, i.e. we can write

$$G(\theta) = \mathbf{E}H(n,\theta,\omega). \tag{7}$$

It follows, that $B(\theta) = \mathbf{E}A(n, \theta, \omega)$ is also independent of *n*. Write

$$\overline{A}(n,\theta,\omega) = A(n,\theta,\omega) - \mathbf{E}A(n,\theta,\omega).$$

Condition 2.4 The function G defined on D is continuous and bounded in y together with its first and second partial derivatives, say

$$|G(y)| \le K, \quad \|\partial G(y)/\partial y\| \le L \quad \|\partial^2 G(y)/\partial y^2\| \le L.$$
(8)

Domains: We develop a discrete-time version of the ODE method which can be applied with ease for the problem considered in this paper. The process θ_n will be compared with the discrete-time deterministic process (z_n) defined by

$$z_{n+1} = z_n + \lambda G(z_n), \quad z_0 = \xi = \theta \epsilon D_\theta, \tag{9}$$

where D_{θ} is a compact domain to which the estimator sequence θ_n will be confined by a resetting technique. Let $z(n, m, \xi)$ denote the solution of (9) with initial condition $z_m = \xi$. Define the time-homogeneous mapping associated with (9) $\xi \to z_n(\xi) = z(n, 0, \xi)$. Let $D_{\theta} \subset D$ be a subset of D such that for $\theta \epsilon D_{\theta}$ we have $z_n(\theta) \epsilon D$ for any $n \ge 0$. For any fixed n the image of D_{θ} under z_n will be denoted as $z_n(D_{\theta})$ i.e. $z_n(D_{\theta}) = \{z : z = z(n, 0, \theta), \ \theta \epsilon D_{\theta}\}$. The union of these sets will be denoted by $z(D_{\theta})$, i.e.

$$z(D_{\theta}) = \{ z : z = z(n, 0, \theta) \text{ for some } n \ge 0, \ \theta \in D_{\theta} \}.$$

It can be proved that, under suitable technical conditions, $z(D_{\theta}) \subset D_z \subset D$ where D_z is some compact domain.

The associated continuous-time ODE is defined as

$$\dot{y}_t = \lambda G(y_t), \qquad y_s = \xi = z \epsilon D_z, \qquad s \ge 0.$$
 (10)

The solution of (10) will be denoted by $y(t, s, \xi)$. The time-homogeneous flow associated with (10) is defined as the mapping $\xi \to y_t(\xi) = y(t, 0, \xi)$. Let D_z be such that for $z \epsilon D_z$ we have $y_t(z) \epsilon D$ for any $t \ge 0$. For any fixed t the image of D_z under y_t will be denoted as $y_t(D_z)$ i.e. $y_t(D_z) = \{y : y = y(t, 0, z), z \epsilon D_z\}$. The union of these sets will be denoted by $y(D_z)$, i.e.

$$y(D_z) = \{ y : y = y(t, 0, z) \text{ for some } t \ge 0, \ z \in D_z \}.$$

For any set D_0 write

$$S(D_0,\varepsilon) = \{\theta : |\theta - z| < \varepsilon \text{ for some } z \in D_0\}$$

Finally the interior of a compact domain D_0 is denoted by int D_0 . We will require the following stability condition: **Condition 2.5** There exist compact domains $D_{\theta} \subset D_z \subset D_y \subset D$ and d > 0 such that $0 \in \operatorname{int} D_{\theta}$ and

$$S(y(D_{\theta}), d) \subset D_z$$
 and $y(D_z) \subset D_y \subset D$. (11)

Condition 2.6 The ordinary differential equation (10) satisfies the following stability conditions: for any $\xi = z \epsilon D_z$ and for any $\varepsilon > 0$ there exists a T > 0 such that t - s > T implies $|y(t, s, \xi)| \le \varepsilon$. Moreover the Jacobian-matrix $G_y(0)$ has all its eigenvalues in the open left half plane.

It follows, that for some $C_0 > 0$ and $\alpha > 0$ we have for all $0 \le s \le t$, $z \in D_z$

$$\left\|\frac{\partial}{\partial z}y(t,s,z)\right\| \le C_0 e^{-\alpha(t-s)}.$$
 (12)

We can assume that $C_0 \geq 1$.

Resetting: Let D_{ξ} be a compact domain such that

$$0\epsilon \operatorname{int} D_{\xi} \quad \text{and} \quad S(D_{\xi}, d') \subset \operatorname{int} D_{\theta}$$
(13)

for some d' > 0. Assume that $\xi = \hat{\theta}_0 \epsilon D_{\xi}$. At time *n* we first define a tentative value θ_{n+1-} following (4) as

$$\theta_{n+1-} = \theta_n + \lambda H(n+1, \theta_n, \omega) \tag{14}$$

and then we set

$$\theta_{n+1} = \theta_{n+1-} \quad \text{if} \quad \theta_{n+1-\epsilon} D_{\theta} \\ \theta_{n+1} = \theta_0 \quad \text{if} \quad \theta_{n+1-\epsilon} D_{\theta}.$$
 (15)

Condition 2.7 It is assumed that for some 0 < r < R we have

$$D_{\xi} \subset S(0, r) \subset S(0, R) \subset D_{\theta}.$$
 (16)

Theorem 2.1 Assume that Conditions 2.1-2.7 are satisfied. Let $\xi = \theta_0 \epsilon D_{\xi}$ and assume that $C_0^3 r/R < 1$. Then there exists a γ with $0 < \gamma < 1$ and a positive random variable $C(\omega)$ such that for sufficiently small λ we have

$$|\theta_N| \le C(\omega) \gamma^{\lambda N}.$$

3 Outline of the proof

First we need two simple lemmas on the discrete flow defined by (9).

Lemma 3.1 Assume that Conditions 2.4, 2.5 and 2.6 are satisfied. Let y_t be the solution of (10) and let z_n be the solution of (9) with $y_0 = z_0 \epsilon D_{\theta}$. Then if $d > C_0 \alpha^{-1} \cdot \lambda LK$ then z_n will stay in D_z for all n, and $|z_n - y_n| \leq C_0 \alpha^{-1} \cdot \lambda LK$ for all $n \geq 0$. In addition for any $\alpha' < \alpha$ we have $|z_n| \leq C_0 e^{-n\lambda \alpha'}$ whenever λ is sufficiently small.

An interesting property of the discrete flow defined by (9) is that it inherits exponential stability with respect to initial perturbations if λ is sufficiently small.

Lemma 3.2 Assume that Conditions 2.4, 2.5 and 2.6 are satisfied. Then $d > C_0 \alpha^{-1} \cdot \lambda LK$ implies that z_n will stay in D_z for all n, moreover for any $0 < \alpha' < \alpha$ and $n \ge m$ we have

$$\left|\left|\frac{\partial}{\partial\xi}z(n,m,\xi)\right|\right| \le C_0 e^{-\lambda\alpha'(n-m)},\tag{17}$$

whenever λ is sufficiently small.

A local approximation: In what follows the discretetime parameter n will be replaced by t and n will stand for a rescaled discrete time-index. Let T be a fixed positive integer. Let us subdivide the set of integers into intervals of length T. Let n be a non-negative integer and let $\tau(nT)$ denote the first integer t > nTfor which $\theta_t \notin D_{\theta}$. In the interval [nT, (n+1)T - 1] we consider the solution of (9) starting from θ_{nT} at time nT. This will be denoted by \overline{z}_t , i.e. \overline{z}_t is defined by

$$\overline{z}_{t+1} = \overline{z}_t + \lambda G(\overline{z}_t), \qquad \overline{z}_{nT} = \theta_{nT}$$

We can also write $\overline{z}_t = z(t, nT, \theta_{nT})$ for $nT \leq t \leq (n+1)T$. The definition of \overline{z}_t is non-unique for t = (n+1)T, therefore we use the notation $\overline{z}_{(n+1)T-} = z((n+1)T, nT, \theta_{nT})$ and $\overline{z}_{(n+1)T} = \theta_{(n+1)T}$. A key step in the derivation is to get an upper bound for $|\theta_t - \overline{z}_t|$.

We need the following simple observation: for $s \ge nT$ we have

$$\overline{z}_s = z(s, nT, \theta_{nT}) = z(s, nT, \theta_{nT}) - z(s, nT, 0) = \int_0^1 \frac{\partial z}{\partial \xi}(s, nT, \lambda \theta_{nT}) d\lambda \cdot \theta_{nT}.$$

The presence of the multiplicative term $|\theta_{nT}|$ on the right hand side is a key feature that ensures convergence with exponential rate. In the lemma below the definition of $\theta_{\tau(nT)}$ will be temporarily changed for the sake of convenience to denote the value of θ_t at time $\tau(nT)$ prior to resetting.

Lemma 3.3 For any T we have

$$\sup_{nT \le t \le (n+1)T \land \tau(nT)} |\theta_t - \overline{z}_t| \le c^* \eta_n^* |\theta_{nT}|$$
(18)

where η_n^* is defined in terms of \overline{H} as follows:

$$\eta_n^* = \sup_{nT \le t \le (n+1)T \atop \theta \in D_{\theta}} \|\sum_{s=nT}^{t-1} \lambda \overline{A}(s+1, z(s, nT, \theta), \omega)\|$$
(19)

and $c^* = C_0 (1 + \lambda L)^T$.

Remark: Lemma 2.2 of [8] implies that the process (η_n^*) is *L*-mixing with respect to $(\mathcal{F}_{nT}, \mathcal{F}_{nT}^+)$. In particular, choosing $T = [(\lambda \alpha)^{-1}] + 1$ we get for any $2 < q < \infty$ and r > p

$$M_q(\eta^*) \le C_q \lambda^{1/2}, \tag{20}$$

where C_q is independent of λ .

In the lemma below we use the following notation: if a resetting takes place at time nT then θ_{nT} denotes the value of θ_t at time nT prior to resetting.

Now if no resetting takes place over several periods then the repeated application of (18) leads to the following result:

Lemma 3.4 Let $T = [(\lambda \alpha)^{-1}] + 1$ and assume that no resetting takes place for $0 \le t \le nT$ with some positive integer n. Then we have

$$|\theta_{nT}| \le C_0 |\theta_0| \cdot \prod_{k=1}^n (\beta + C_0 c^* \eta_{k-1}^*)$$

with $0 < \beta < 1$, where the latter is independent of λ .

The starting points and the endpoints of the above interval can be replaced by arbitrary, possible random time-moments.

For small λ the averaging effect is ensured by taking large T. Note that β is independent of λ , but $\eta_{k-1}^* = O_M(\lambda^{1/2})$ can be made very small.

If a resetting does take place in (nT, (n + 1)T], then the following multiplicative inequality can be derived, that will replace (18) in the analysis:

$$|\theta_{(n+1)T}| \le \frac{r}{R} (C_0 + 2c^* \eta_n^*)^2 |\theta_{nT}|.$$
 (21)

The proof the Theorem 2.1 can now be completed by applying fairly straightforward estimations for random products.

4 Simulation results

Consider a quadratic function $L(\theta) = \frac{1}{2}\theta^T A\theta$, with some symmetric positive definite A. Then $H(k, \theta) = \Delta_k^{-1} \Delta_k^T G(\theta)$. But $G(\theta) = A\theta$, hence we get the following recursion for θ_k :

$$\theta_{k+1} = (I - \lambda \Delta_k^{-1} \Delta_k^T A) \theta_k.$$
(22)

Applying Oseledec's multiplicative ergodic theorem we can easily get the claim of Theorem 2.1. Consider now non-quadratic problems of the form

$$L(\theta) = \frac{1}{2}\theta^T A(\theta)\theta$$

 with

$$A(\theta) = A + u(\theta)u(\theta)^T$$

where $u(\theta) = D\theta$ with some fixed matrix D.

We have tested the fixed gain SPSA method (4) for randomly generated problems of dimension 20, where the elements of D were chosen uniformly in the range of $[0, c_p]$. In each experiment we had N = 500 iterations.

The top Lyapunov-exponent is approximated by

$$\frac{1}{N}\log|\theta_N-\theta^*|.$$

In Figures 1. and 2. the approximate top Lyapunov exponent is plotted against the step-size λ for three, increasingly non-quadratic problems for plain SPSA and second order SPSA proposed in [21].

5 Conclusion

Stochastic approximation processes based on vanishing random fields with a resetting mechanism converge with geometric rate almost surely. The result is in striking contrast to classical stochastic approximation theory where the typical convergence rate is $n^{-1/2}$. The paper is motivated by the study of simultaneous perturbation stochastic approximation (SPSA) methods applied to noise-free problems.

An open problem is the following: The condition $C_0^3 r/R < 1$ becomes r/R < 1 if $C_0 = 1$. This is equivalent to saying of (12) that for some $\alpha > 0$ we have for all $0 \le s \le t$, $z \in D_z$

$$\left\|\frac{\partial}{\partial z}y(t,s,z)\right\| \le e^{-\alpha(t-s)}.$$
(23)

An interesting problem is to find useful sufficient conditions under which (23) will be satisfied for non-linear systems with some Euclidean norm.

6 Appendix

In this section the basic concepts of the theory of *L*mixing processes developed in [4] will be presented. Let a probability space (Ω, \mathcal{F}, P) be given, let $D \subset \mathbb{R}^p$ be an open domain and let $(x_n(\theta)): \Omega \times \mathbb{Z} \times D \to \mathbb{R}^n$ be parameter-dependent stochastic process. We say that $(x_n(\theta))$ is *M*-bounded if for all $1 \leq q < \infty$

$$M_q(x) = \sup_{\substack{n \ge 0\\ \theta \in D}} \mathrm{E}^{1/q} |x_n(\theta)|^q < \infty$$

We shall use the same terminology if θ or t degenerate into a single point. Let $(\mathcal{F}_n), n \geq 0$ be a family of monotone increasing σ algebras, and $(\mathcal{F}_n^+), n \geq 0$ be a monotone decreasing family of σ -algebras. We assume that for all $n \geq 0, \mathcal{F}_n$ and \mathcal{F}_n^+ are independent. For $n \leq 0$ we set $\mathcal{F}_n^+ =$ \mathcal{F}_0^+ . A stochastic process $(x_n(\theta)), n \geq 0$ is *L*-mixing with respect to $(\mathcal{F}_n, \mathcal{F}_n^+)$ uniformly in θ if it is (\mathcal{F}_n) measurable, *M*-bounded and if we set for $1 \leq q < \infty$

$$\gamma_q(\tau, x) = \gamma_q(\tau) = \sup_{\substack{n \ge \tau \\ \theta \in D}} \mathbf{E}^{1/q} |x_n(\theta) - \mathbf{E}(x_n(\theta)|\mathcal{F}_{n-\tau}^+)|^q$$

where τ is a positive integer then

$$\Gamma_q = \Gamma_q(x) = \sum_{\tau=1}^{\infty} \gamma_q(\tau) < \infty.$$

Acknowledgement

This work was supported by the National Research Foundation of Hungary (OTKA) under Grant no. T 032932 and by Bolyai János Research Fellowship. The first author expresses his thanks to James C. Spall and Stacy D. Hill for cooperating in this research and providing a number of useful comments, and to Håkan Hjalmarsson for calling his attention to reference [13].

References

[1] A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic approximations. Springer-Verlag, Berlin, 1990.

[2] A.N. Borodin. A stochastic approximation procedure in the case of weakly dependent observations. *Theory of Probability and Appl.*, 24:34–52, 1979.

[3] H.F. Chen, T.E. Duncan, and B. Pasik-Duncan. A Kiefer-Wolfowitz algorithm with randomized differences. *IEEE Trans. Automat. Contr.*, 44:442–453, 1999.

[4] L. Gerencsér. On a class of mixing processes. Stochastics, 26:165–191, 1989.

[5] L. Gerencsér. Rate of convergence of recursive estimators. SIAM J. Control and Optimization, 30(5):1200-1227, 1992.

[6] L. Gerencsér. A representation theorem for the error of recursive estimators. In *Proc. of the 31st IEEE Conference on Decision and Control, Tucson*, pages 2251–2256, 1992.

[7] L. Gerencsér. Rate of convergence of the LMS algorithm. *Systems and Control Letters*, 24:385–388, 1995.

[8] L. Gerencsér. On fixed gain recursive estimation processes. J. of Mathematical Systems, Estimation and Control, 6:355–358, 1996. Retrieval code for full electronic manuscript: 56854. [9] L. Gerencsér. Rate of convergence of moments for a simultaneuous perturbation stochastic approximation method for function minimization. *IEEE Trans. Automat. Contr.*, 44:894–906, 1999.

[10] L. Gerencsér, S. D. Hill, and Zs. Vágó. Optimization over discrete sets via SPSA. In *Proceedings of the* 38-th Conference on Decision and Control, CDC'99, pages 1791–1794. IEEE, 1999.

[11] L. Gerencsér and Zs. Vágó. SPSA in noise free optimization. In *Proceedings of the American Control Conference*, pages 3284–3288. IEEE, 2000.

[12] L. Györfi and H. Walk. On the average stochastic approximation for linear regression. *SIAM J. Control and Optimization*, 34(1):31–61, 1996.

 H. Hjalmarsson. Efficient tuning of linear multivariable controllers using iterative feedback tuning. Int. J. Adapt. Control Signal Process., 13:553-572, 1999.

[14] J. A. Joslin and A. J. Heunis. Law of the iterated logarithm for a constant-gain linear stochastic gradient algorithm. *SIAM J. on Control and Optimization*, 39:533–570, 2000.

[15] R.Z. Khasminskii. Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems. *Th. Prob. Appl.*, 12:144–147, 1967.

[16] H.J. Kushner and A. Shwartz. Weak convergence and asymptotic properties of adaptive filters with constant gains. *IEEE Trans. Informat. Theory*, 30(2):177– 182, 1984.

[17] H.J. Kushner and G. Yin. Stochastic Approximation Algorithms and Applications. Springer Verlag. New York, 1997.

[18] L. Ljung and T. Söderström. *Theory and practice of recursive identification*. The MIT Press, 1983.

[19] J.C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. *IEEE Trans. Automat. Contr.*, 37:332–341, 1992.

[20] J.C. Spall. A one-measurement form of simultaneous perturbation stochastic approximation. *Automatica*, 33:109–112, 1997.

[21] J.C. Spall. Adaptive stochastic approximation by the simultaneous perturbation method. *IEEE Trans. Automat. Contr.*, 45:1839–1853, 2000.

Figure 1:

Figure 2: