
1-4244-0166-6/06/$20.00 ©2006 IEEE.

R

An experimental implementation of SPSA
algorithms for induction motor adaptive control

Francesco Cupertino, Ernesto Mininno, David Naso, and Biagio Turchiano

Dipartimento di Elettrotecnica ed Elettronica,
Politecnico di Bari, Bari, 70125 Italy

E-mail: {naso,turchiano}@poliba.it, {cupertino,mininno}@deemail.poliba.it,
Phone: +39 080 5963 649, Fax: +39 080 5963 410

Abstract— This paper describes the implementation of a

self-optimizing embedded control scheme for an induction
motor drive. The online design problem is formulated as a
search problem and solved with a stochastic optimization
algorithm. The objective function aggregates several
performance indices on tracking error and control signals, and
is measured directly on the hardware bench. The online
optimization is performed with Simultaneous Perturbation
Stochastic Approximation (SPSA) algorithms, which offer a
very effective tradeoff between simplicity of implementation,
speed of convergence and quality of the final solutions. The
cascaded control system obtained by SPSA in about three
minutes of search outperforms alternative schemes obtained
with model-based linear design techniques generally used in
industrial practice.

I. INTRODUCTION
Embedded control systems are becoming increasingly

widespread in industrial automation. In these systems, the
actuators are equipped with relatively-low-cost
microcontrollers that can also perform self-tuning and
adaptation functions. The authors of this paper are engaged
with the development of computationally efficient and
reliable self-tuning strategies for such embedded
controllers. In the case of position control of induction
motors (IMs), the problem is made particularly challenging
by the typical cascaded structure of the control loops (see
Fig.1), which are often tuned consecutively (first the speed
controller and then the position controller). Clearly, this
approach neglects the possible interactions between the
cascaded loops, and may lead, in principle, to suboptimal
solutions. The idea investigated in this paper is to optimize
the parameters of both controllers of the IM simultaneously
and online, using an efficient and “computationally-light”
optimization algorithm known as Simultaneous Perturbation
Stochastic Approximation (SPSA) method [8]. SPSA is
based on a highly efficient approximation of the gradient
based on loss function measurements. In particular, for each
iteration, the SPSA only needs two loss measurements to
estimate the gradient, regardless of the dimensionality of
the problem. Moreover, the SPSA is grounded on a solid

mathematical framework that permits to assess its stochastic
properties also for optimization problems affected by noise
or uncertainties. Due to these striking advantages, SPSA
has been recently used as optimization engine for many
adaptive control problems (see e.g., [1,4, 11, 12], or the
extensive survey in [8]).

With respect to the available literature, the contribution
of our research is the direct implementation of SPSA on the
same microcontroller running the feedback control laws.
We believe that this study is interesting because (1) the
preponderance of the mentioned application of SPSA has
been validated in simulated case studies where the
optimization algorithm has a virtually unlimited
computational time for each iteration, and (2) other online
optimization schemes [2] proposed for a similar hardware
bench (based on DC motors instead of IMs) need a host
computer to run the optimization algorithm and the various
routines necessary to synchronize and reset the hardware
controllers, and process the measured signals. Since our
research aims at finding an adequate compromise between
noise rejection, speed of convergence and quality of the
final solution, we implement two variants of the SPSA
algorithms and discuss their advantages and limitations.

II. OVERVIEW OF SPSA ALGORITHMS
This section provides a short overview of the basic concepts
related to SPSA methods. As technical details are
thoroughly described in related literature [8], here we only
overview the essential concepts. Consider the problem of
finding the minimum of a differentiable loss function

 (The subscript n here is used to indicate
that the loss measurements are affected by noise, whose
distribution must satisfy some important conditions [8]).
There is a large variety of stochastic algorithms that could
be used to find the value of

() : p
nL Rϑ →

ϑ (say *ϑ) that minimizes
()nL ϑ [7]. The SPSA method computes the estimated value

ϑ̂ at the (k+1)th iteration as
 1

ˆ ˆ ˆˆ ()k k k ka g kϑ ϑ+ = − ϑ (1)

IM

+ -

sa sbi ,i

Rotor
flux

estimator

PI isq
Controller

PI isd
Controller

sdv∗

sqv∗
-

-

isq
* PI Speed

Controller -

ωr
**

ωr

isd
*

isq

isd

d-axis decoupling
term

dt

d

θr

θλr

sav∗

sbv∗

scv∗

q-axis decoupling
term

PI λr
Controller

-

λr*

λr

isq isd

λr

encoder

Axis

Transform

PWM
&

INVERTER Position
Controller

- θr

θr
* Trajectory

Calculator

ωr
max,ar

max,
 θr

final
fi l

θr

Smooting
Filter

ωr
*, ar

*

ωr
*+ar

*τeq

Feedforward
Compensation

Fig.1. Induction motor drive block diagram.

where is the estimated gradient at the kth iteration,
and a

ˆ ()kg i
k is a gain scheduled to decrease over iterations with

the law ()ka a k A α= + , where a, A, and α are positive
configuration coefficients. SPSA estimates using the
following “simultaneous perturbation” method. Let

1 2 1

ˆ ()kg i

[...] p
k k k k R∆ = ∆ ∆ ∆ ∈ be a vector of p mutually

independent zero-mean random variables (satisfying the
conditions described in [8]), and let the sequence of vectors
{ }k∆ be a mutually independent sequence with k∆
independent of . The basic SPSA (bSPSA)
method computes two new points in the solution space, and
evaluates the corresponding loss as follows

ˆ , 0,1,...,j jϑ = k

)

)

 (2) ˆ(k n k k ky L cϑ+ = + ∆

 (3) ˆ(k n k k ky L cϑ− = − ∆

where ck is a gain sequence (1)kc c k γ= + , and c and γ are
nonnegative configuration coefficients. Then, the
estimation of the gradient at the kth iteration is computed as

 1 1 1
1 2

ˆˆ () ...
2

Tk k
k k k k kp

k

y y
g

c
ϑ

+ −
− − −−

⎡= ∆ ∆ ∆⎣ ⎤⎦ . (4)

It can be noted that all the elements of the vector ϑ̂ are
perturbed simultaneously, and that only two measures of the
loss are needed to estimate the gradient independently of
the size of ϑ̂ . Moreover, as the sequence { }k∆ is usually
obtained with a Bernoulli ±1 distribution with equal
probability for each value, the perturbations have the same
amplitude for all the components of ϑ̂ . It has been proven
[8] that under certain conditions the bias in as an
estimate of

ˆ ()kg i
()g i tends to zero as k→∞, and k̂ϑ converges

“almost surely” to *ϑ . Literature also provides effective
and theoretically valid values for most configuration
coefficients, as mentioned in the next sections.

In addition to the bSPSA algorithm described above, a
number of effective variants have been recently developed
with different aims (e.g., [9,10]). In this paper, we have also
considered the one-measurement form of SPSA (1SPSA),

proposed in [10]. Its peculiarity resides in the formula to
estimate the gradient, which is the following variant of (4):

 1 1 1
1 2

ˆˆ () ...
Tk

k k k k kp
k

y
g

c
ϑ

+
− − −⎡ ⎤= ∆ ∆ ∆⎣ ⎦ . (5)

In spite of the fact that this variant does not explicitly
calculate the gradient using the difference between loss
values, it has been shown that it shares the same nearly
unbiased properties of the bSPSA. As noted in [8], since
this variant uses only one loss measure for each gradient
estimation, it may be advantageous in real-time algorithms
as those generally needed for feedback control.

III. THE LOSS FUNCTION
The overall scheme of the control system is illustrated in

Fig.1. The whole control scheme is implemented in
discrete-time on the dSPACE 1104 real-time control board,
equipped with a 250 MHz Motorola PPC working as
microcontroller. The microcontroller runs the whole control
scheme and a stability supervision algorithm that interrupts
the experimentation of badly performing solutions. The
various modules have different sampling times. In
particular, controller and stability supervisor run with a 200
µs sampling time, while the SPSA algorithms have a 1.125
s sampling time. The execution time of a complete iteration
of the control scheme is about 100 µs, and one iteration of
the SPSA requires about 180 µs.

The main advantage of the proposed embedded
optimization scheme is the reliability of final results. While
all the model-based techniques expressly rely on the
accuracy of the model (generally used in simulations), in
the online tuning case the effects of the actual and unknown
high-order phenomena and nonlinearities are fully
accounted in the loss measurement, and the final controller
(the one generating the smallest loss) is ready-for-use with
known performance. This permits to obtain automatic
design tools that do not require skilled expertise for system
modelling, or trial-and-error controller optimization.

The design of the experiment for loss measurement plays

a fundamental role in the success of the online design. In
this paper, the position reference signal corresponds to the
minimum time trajectory for a rotation of π radians (see
Fig.2). After 0.7 s from every change of the reference
signal, a step change of load torque (from 0 to 70% of
motor rated torque) is applied, in order to evaluate also the
overall disturbance rejection. In the final part of the loss
evaluation experiment (after 1.125 s) the load torque is
suddenly removed (see Fig.2).

The profiles of motor position speed and control action
of the PI speed controller (the current ()*

sqi t) are acquired
during the experiment, and used to compute the loss, which
essentially takes into account three criteria, i.e. the tracking
performance, the disturbance rejection, and the smoothness
of the control action. Namely, we define the following loss
function (to be minimized):
 (6) () ()() ()()(*

1 1 1 2 1 3()
EXP

sq
T

L f f t f i tϑ α θ α ω α= + +∫) dt

where TEXP is the duration of the loss evaluation
experiment, αj represent positive weights, and fj are three
performance indices defined as follows:

()*

max

*

1
0.99(())

0

sqi t

isq
if

f t
otherwise

θ θ
θ

⎧ − <⎪= ⎨
⎪⎩

 (7)

()*

max

*

2
0.99(())

0

sqi t

isq
if

f t
otherwise

ω ω
ω

⎧ − <⎪= ⎨
⎪⎩

 (8)

()*

max

* *
*

3
() () 0.99(())

0

sqi tF
sq sq isq

sq
i t i t iff i t

otherwise

⎧ −⎪= ⎨
⎪⎩

< (9)

0 0.5 1 1.5 2 2.5
-50

0

50

ac
c.

, r
ad

/s2

0 0.5 1 1.5 2 2.5
-20

0

20

sp
ee

d,
 ra

d/
s

0 0.5 1 1.5 2 2.5
-2

0

2

po
sit

io
n,

 ra
d

0 0.5 1 1.5 2 2.5
-2

0

2

lo
ad

 to
rq

ue
, N

m

time, [s]
Fig.2. Acceleration, speed and position desired trajectories and load torque
applied during the test.

The first two functions f1 and f2 take into account the
tracking performance and disturbance rejection. More
specifically, the position θ and speed ω tracking errors are

considered only in the time intervals in which the current
feed is lower than a predefined threshold isq* ()sqi t max (the
tracking error due to controller saturation cannot be further
reduced). The third function f3 compares the control action

 filtered by a first-order linear filter with time

constant τ=0.02 s, with the unfiltered actual action

* ()F
sqi t

()*
sqi t

itself. As smoother control actions give lower values of the
integral of f3, this index is intended to penalize controllers
with an excessively oscillatory control action, which may
cause stresses for the IM producing vibrations, acoustic
noise, and extra losses. The hardware scheme computes
each index contributing to the total loss online, i.e. updating
its value at each time sample of the experiment. The online
value of each loss term is constantly monitored, and
whenever it exceeds a predefined threshold the current
experiment is immediately stopped. This allows the system
to detect unstable (or highly unsatisfactory) solutions well
before the involved signals reach potentially dangerous
values. In case a monitored index exceeds the prescribed
threshold, the value of the loss is multiplied by a penalty
factor and assigned to the individual, and the algorithm
proceeds with another experiment. In this way, the
stochastic search is never interrupted until the terminating
condition occurs. On average, less than 1% of the
experiments of the first 10-20 iterations are prematurely
interrupted due to bad performance, while the remaining
iterations always generate stable solutions.

The weights αj used in loss aggregation permit to
emphasize or reduce the contribution of each single
performance index in the final value of the loss. In this
paper, the αj are set heuristically, i.e. performing
preliminary experiments with changed weights until the
desired trade-off between indices is achieved.

Finally, the vector of parameters optimized by SPSA is
defined as:
 T

pw iw pos sm eqk k kϑ τ τ⎡ ⎤= ⎣ ⎦ (10)
in which kpw and kiw are the proportional and integral

gain of the anti-windup discrete-time PI speed controller
(see Fig.1), kpos is the gain of the proportional position
controller, smτ is the time constant of the first order
smoothing filter and eqτ is the equivalent time constant of
the position control loop (generally estimated offline with
system identification procedures [3]). The stopping
criterion is the maximum number of loss function calls
chosen equal to 200 (i.e. the whole experiment lasts 225
seconds, although the entire algorithm converges in about
one third of this interval).

IV. SUMMARY OF EXPERIMENTAL RESULTS
As mentioned, we use SPSA algorithms to optimize

online a feedback control system for a vector-controlled
induction motor drive. The IM is loaded using a torque

controlled brushless generator, mounted on the same shaft.
The IM nameplate parameters are as follows: voltage
220 V, current 3.1 A, power 750 W, speed 2860 rpm,
torque 2.5 Nm, inertia 0.0012 kgm/s2, pole pairs 1, torque
constant Kc=0.7795 Nm/A.

The performances of SPSA-based controllers are
compared with those obtained using controllers obtained by
linear design techniques basing on the best available model
of the IM [3,5]. In particular, for the model-based
controllers, the gains of the current controllers are set so as
to achieve a first order closed loop response with time
constant equal to 1.2is msτ = . The same current controllers
have been used in all the experiments. For the speed
controller, the plant between the output of the speed
controller and the measured rotor speed is approximated to
a first order system having time constant

is fw shωτ τ τ τΣ = + + , i.e. it is equal to the sum of all the lags
found in the speed control loop (current control isτ , speed
low pass filter fwτ , and delays due to the digital
implementation of the control scheme shτ). In this way The
open loop transfer function reduces to the following:

 1 1
1

pi
pw c

i

ns
G k K

s s J
ω

ω
ω ω

τ
τ τ Σ

+
=

+ s
 (11)

where i pw ik kω wτ = is the time constant of the PI
controller, J is the inertia of the motor and its load and np
the number of pole pairs. In order to obtain good
disturbance rejection, we use the symmetric optimum
theory [5,6], which leads to the following setting

 4 ,
2i pw

p c

Jk
n Kω ω

ω

τ τ
τΣ

Σ

= = (12)

The gain of the position controller is selected equal to 1/4
of the value that gives a marginally stable system so to
eliminate position oscillations near the steady state.
Between the position controller and the speed control loop a
first order smoothing filter is placed to avoid poorly
damped speed responses. The filter time constant is chosen
equal to 1.2 4sm ωτ τΣ= ⋅ ⋅ [5]. Then the plant between the
output of the position controller and the measured rotor
position can be modelled with a first order system with time
constant equal to 1.5 4eq smTθ ωτ τ τ Σ= ⋅ + + ⋅ , where Tθ is the
sampling period of the position controller. Hereinafter, we
will refer to the controller designed using the mathematical
model as “model-based controller” (MBC). The MBC has
gains , , , 0.067pk ω = 1.46ik ω = 27posk = 0.017smτ = and

0.032eqτ = .
Also for the SPSA method there are several

configuration parameters that must be selected
appropriately, which include c and γ, used to define the
perturbed points for gradient estimation (2-4), and a, A, and
α used to find the new solutions in (1). For this task, we

have performed an extensive preliminary configuration
study using a simulation model of the IM, also considering
the general suggestions provided by literature [4],[7], [8] to
properly setup SPSA methods. The main conclusions of this
study are that, for our specific problem, the SPSA
algorithms can find a reasonable solution in about 200
iterations, with A=20 (10% of the expected iterations to
find optimum), and γ and α both equal to 0.3 (i.e., slightly
different from the values suggested by theory). These
values make ck and ak reach small and almost constant
values after about 150 iterations, letting the SPSA spend the
final 50 iterations in local refinements the of controller (see
Fig. 3). For the values of a and c, a grid of possible value
was investigated. In particular, each couple of parameters
was tested 100 times considering different starting points in
the search space and calculating the average final loss
function value and the percentage of satisfactory runs (i.e.,
with the final loss function below a predetermined threshold
of satisfaction). This study led to the following set:
Parameters a=0.03 and c=0.1 for bSPSA and equal to
a=0.0025 and c=0.05 for 1SPSA. The performances of
both algorithms during simulations were comparable. The
bSPSA reached an average loss function equal to 1.31 and
satisfactory performances in the 83% of the runs. The
bSPSA reached an average loss function equal to 1.20 and
satisfactory performances in the 86% of the runs. Even if
the cost function improvement is not much appreciable in
terms of performances of the IM, the simulation results
suggest that 1SPSA can be profitably used in our online
problem.

Once configured as described, both bSPSA and 1SPSA
were tested experimentally, obtaining comparable
performances that substantially confirm the extensive
simulation investigation. As an example of the behaviour of
the algorithms, Fig. 4(a) shows the loss function, and the
estimates of KP and τeq during a typical run. The respective
average values, measured during 10 experimental run are
also reported in figure 4(b).

The best set of parameters for the selected loss function
is 0.50pk ω = , iω 11.2k = , pos , sm27k = 0.04τ = and

eq 0.034τ = [hereinafter referred to as SPSA controllers
(SPSACs)]. The position response obtained using this set of
parameters is reported in Fig. 5 and confirms the

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

iterations

ak
/a

 a
nd

 c
k/

c ck/c

ak/a

Fig.3. This figure shows the selected decrease rates for parameters
ck/c and ak/a.

remarkable performances of the SPSA approach.

Figure 6-8 compare the performances obtained by using
the SPSACs and the MBCs, in terms of position and speed
errors and current references. The disturbance rejection of
the model-based control is quite unsatisfactory. Even
though trial-and error tuning may reduce the apparent
overshoots, it is difficult to obtain by hand the performance
achieved automatically and in less than 3 minutes by the
SPSA approach. The comparison of the speed errors shown
in Fig.6 evidences that the SPSACs reduce the speed
oscillations using higher gains in the speed PI controllers
together with a smoothing filter with a larger time constant.

In this way also the disturbance rejection of the electric
drive is improved. It must be underlined that this result is
not easily obtainable using linear design techniques, even
with very accurate models. The model-based current is
clearly smoother, although the oscillations produced by the
SPSA method remain admissible, and do not cause
particular stress to the IM.

0 0.5 1 1.5 2
-3

-2

-1

0

1

2

3

time, [s]

ro
to

r p
os

iti
on

, r
ad

Fig.5 – Position tracking using the best set of controllers selected
using SPSA method.

V. CONCLUSIONS

The experimental investigation described in this paper
confirmed that the SPSA methods offer a striking tradeoff
between ease of implementation, computational costs, and
search efficiency, which make it possible to directly
implement the optimization algorithm on the same
microcontroller that runs the discrete time control law. Both
considered SPSA variants permit to obtain a very effective
closed loop scheme in less than three minutes, in a fairly
repeatable and noise-tolerant way, and therefore can be
considered fully compliant with the requirement of most
embedded control devices. This research has many open
aspects currently under investigations, including the
evaluation of more complex parametrized controller
schemes (e.g., NNs), and more advanced versions of SPSA
(e.g., adaptive SPSA [9]).

REFERENCES
[1] Alessandri A., Parisini T. (1997), Nonlinear Modeling of Complex

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

time, [s]

lo
ss

 fu
nc

tio
n

 (a)
0 20 40 60 80 100 120 140 160 180

1

2

3

4

5

time, [s]

lo
ss

 fu
nc

tio
n

 (b)

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

time, [s]

sp
ee

d
co

nt
ro

lle
r p

ro
po

rti
on

al
 g

ai
n

 (a)
0 20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

time, [s]

sp
ee

d
co

nt
ro

lle
r p

ro
po

rti
on

al
 g

ai
n

 (b)

0 20 40 60 80 100 120 140 160 180
0

0.02

0.04

0.06

time, [s]

eq
ui

va
le

nt
 ti

m
e

co
sta

nt

 (a)
0 20 40 60 80 100 120 140 160 180

0

0.02

0.04

0.06

time, [s]

eq
ui

va
le

nt
 ti

m
e

co
sta

nt

 (b)
Fig.4. Evolution of loss function, KP and τeq over time (the other components of ϑ follow a similar trend, and thus are omitted): (a) a typical run, (b)
the average value over 10 runs.

Large-Scale Plants Using Neural Networks and Stochastic
Approximation, IEEE Transactions on Systems, Man and Cybernetics,
vol.27, pp.750-757.

[2] F. Cupertino, E. Mininno, D. Naso, B. Turchiano, L. Salvatore, “On-
line genetic design of anti-windup unstructured controllers for electric
drives with variable load”, IEEE Transactions on Evolutionary
Computation, Vol.8,. n.4, pp. 347-364, 2004.

[3] F. Cupertino, G. L. Cascella, L. Salvatore, N. Salvatore, “A Simple Stator
Flux Oriented Induction Motor Control”, EPE Journal, vol. 15, n. 3, 2005.

[4] Ji X.D., Familoni B.O. (1999), A Diagonal Recurrent Neural Network-
Based Hybrid Direct Adaptive SPSA Control System, IEEE
Transactions on Automatic Control, vol.44, pp.1469-1473.

[5] H. Grob, J. Hamann, G. Wiegartner, Electrical feed drives in
automation, Siemens, 2001.

[6] R. Krishnan, Electric Motor Drives, Modeling, Analysis and Control,
Prentice Hall, 2001.

[7] K. Passino, “Biomimicry for Optimization, Control, and Automation”,
Springer, US, 2005.

[8] J. C. Spall, Introduction to stochastic search and optimization:
estimation, simulation, and control, John Wiley and Sons, Hoboken,
NJ, 2003.

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

time, [s]

ro
to

r p
os

iti
on

 e
rro

r,
ra

d

 (a)
0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

time, [s]

ro
to

r p
os

iti
on

 e
rro

r,
ra

d

 (b)
Fig.6. Comparison of position tracking errors under external load torque disturbance, (a) SPSAC, (b) MBC.

0 0.5 1 1.5 2

-20

-10

0

10

20

time, [s]

ro
to

r s
pe

ed
 e

rro
r,

ra
d/

s

 (a)
0 0.5 1 1.5 2

-20

-10

0

10

20

time, [s]

ro
to

r s
pe

ed
 e

rro
r,

ra
d/

s

 (b)
Fig.7. Comparison of speed errors (a) SPSAC, (b) MBC.

0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

3

4

time, [s]

q-
ax

is
cu

rre
nt

 re
fe

re
nc

e,
 A

 (a)
0 0.5 1 1.5 2

-6

-4

-2

0

2

4

time, [s]

q-
ax

is
cu

rre
nt

 re
fe

re
nc

e,
 A

 (b)
Fig.8. Comparison of current references (a) SPSAC, (b) MBC.

[9] J. C. Spall (2000), Adaptive Stochastic Approximation by the
Simultaneous Perturbation Method, IEEE Transactions on Automatic
Control, vol.45, pp.1839-1853.

[10] J. C. Spall (1997), A One-Measurement Form of Simultaneous
Perturbation Stochastic Approximation, Automatica vol.33, pp.109-112.

[11] J.C. Spall, J.A.Cristion (1997), A Neural Network Controller for
Systems with Unmodeled Dynamics with Applications to Wastewater
Treatment, IEEE Transactions on Systems, Man. And Cybernetics- Part
B: Cybernetics 27 no.3, pp. 369-375.

[12] Vande-Wouwer A,. Renotte C., Remy M., On the use of Simultaneous
Perturbation Stochastic Approximation for Neural Network Training,
Proceedings of the 1999 American Control Conference, San Diego,
California, pp.388-392.

	Introduction
	Overview of SPSA algorithms

