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Abstract— We develop a simulation-based, two-timescale
actor-critic algorithm for infinite horizon Markov decision
processes with finite state and action spaces, with a discounted
reward criterion. The algorithm is of the gradient ascent type
and performs a search in the space of stationary randomized
policies. The algorithm uses certain simultaneous deterministic
perturbation stochastic approximation (SDPSA) gradient es-
timates for enhanced performance. We show an application
of our algorithm on a problem of mortgage refinancing.
Our algorithm obtains the optimal refinancing strategies in
a computationally efficient manner.

I. INTRODUCTION

There are many sequential decision tasks in which the
consequences of an action emerge at a multitude of times
after the action is taken and the problem is to find good
strategies for selecting actions based on both their short
and long term consequences. Such tasks are encountered
in many fields such as economics, manufacturing, and
artificial intelligence. These are usually formulated in terms
of a dynamical system whose behavior unfolds over time
under the influence of a decision maker’s actions. The
randomness involved in the consequences of the decision
maker’s actions is taken care of by modeling the dynamical
system as a controlled stochastic process. Markov Decision
Processes (MDP) [1] are a natural choice to model such
systems and Dynamic Programming (DP) [2] is a gen-
eral methodology for solving these. DP, however, requires
complete knowledge of transition probabilities. Moreover,
the computational requirements using DP are high in the
presence of large state space. Recently there has been a
lot of interest in simulation-based Reinforcement Learning
(RL) algorithms for solving MDPs. These algorithms neither
use transition probabilities nor estimate them and are useful
in general for finding optimal control strategies in real
life systems for which model information is not known.
There are a certain class of (RL-based) algorithms that go
under the name of actor-critic algorithms. These can be
viewed as stochastic approximation versions of the classical
policy iteration technique for solving MDPs. Konda et al.
[3] propose a variant of the actor-critic algorithm based on
stochastic approximation with two time scales. The idea
is to operate the two loops above with different step-size
schedules, so that the first (inner) loop moves on a faster
effective time scale than the second.

Bhatnagar et al. [4] present a two-timescale simulation
based algorithm that adapts the gradient descent simulta-
neous perturbation stochastic approximation (SPSA) tech-
nique [5], to the setting of simulation optimization. Bhatna-
gar et al. [6] present a two-timescale actor-critic algorithm

for solving MDPs with finite state and compact action sets.
The algorithm works with stationary deterministic policies
instead of randomized as in [3]. In this paper, we consider
infinite horizon MDPs with finite state and finite action
sets. We present a two time-scale simulation based, actor-
critic algorithm that uses a one-simulation deterministic
perturbation SPSA estimate. As with [3], our algorithm
updates in the space of stationary randomized policies with
the inner and outer loops similar to those in [6], except that
we use a one-simulation SPSA based gradient search using
deterministic perturbations. Our algorithm being for reward
maximization, uses a gradient ascent update unlike the one
in [6] that is designed for cost minimization. Our algorithm
converges to an optimal point by requiring less computa-
tional effort. We then consider the important problem of
optimal mortgage refinancing [7] as an application for our
algorithm. Our algorithm computes the optimal refinancing
strategies and is seen to show good performance.

The rest of the paper is organized as follows. The next
section provides the setting that we consider. We present
the algorithm in Section III. Section IV presents the con-
vergence analysis. Section V provides the simulation results
for the mortgage refinancing application. Finally, Section VI
provides the concluding remarks.

II. A PRELUDE

A. Markov Decision Process (MDP)

Consider a process, observed at time epochs t = 0, 1, ...,
to be in one of the states i ∈ S. Let S = {1, 2, . . . , s } denote
the state space. After observing the state of the process, an
action a ∈ A = {a0, a1, . . . , a|A|} is taken, where A is the
set of all possible actions. If the process is in state i at time
n and action a is chosen, then two things happen: (1) we
receive a finite reward R(i, a) and (2) the next state of the
system is chosen according to the transition probabilities
Pij(a). We let Xn denote the state of the process at time
n and an the action chosen at that time.

We assume that | R(i, a) |< M ∀ i,a. An admissible
policy or simply a policy is any rule for selecting feasible
actions. An important subclass of policies is the class
of stationary policies. A policy is said to be stationary
if the action it chooses at any time n depends only on
the state of the process at that time. Hence, a stationary
policy is a function π : S → A. We assume for ease
of exposition that all actions are feasible in each state. A
stationary randomized policy can be considered as a map
ϕ : S → P(A) (P (...) = the space of probability vectors on
“...”), which gives the conditional probabilities of aj given
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Xn for all 0 ≤ j ≤ |A|. We consider the infinite horizon
discounted reward as our optimality criterion.

1) Infinite Horizon Discounted Reward: This criterion
assumes a discount factor α, 0 < α < 1, and among all
policies π, attempts to maximize V π where

V π(i) = Eπ[
∞∑

n=0

αnR(Xn, an) | X0 = i], i ∈ S, (1)

and an are the actions, which are being employed according
to policy π. The function V π : S → R is called the value
function for policy π. While using stationary deterministic
policies, the optimal value (of the value function) is:

V ∗(i) = max
π

V π(i), i ∈ S. (2)

An important equation that V ∗ satisfies is the Bellman
optimality equation [2]:

V (i) = max
a

[R(i, a) + α
∑

j

Pij(a)V (j)], i ∈ S. (3)

The RHS of (3) corresponds to the “optimal sum of the
single-stage reward in state i and the discounted conditional
expected value of the reward-to-go from the next stage
onwards”. Intuitively, this should be the same as the reward-
to-go from state i itself. The conditional expectation above
requires knowledge of transition probabilities. RL based
approaches replace the same with simulated transitions.
Now the optimal decision problem turns out to be one of
finding V ∗. Amongst the well-known classical approaches
for solving MDP, we have
Policy iteration: This starts with an initial stationary policy
π0 : S → A. For finding an optimal policy, it does
iteratively for n ≥ 0 as follows:
Step 1: Given πn(.), iterate over l = 0, 1, 2, . . .

V l+1
n (i) = R(i, πn(i)) + α

∑
j

Pij(πn(i))V l
n(j), i ∈ S.

(4)
Let Vn(i)

�
= liml→∞ V l

n(i).
Step 2 : Find

πn+1(i) ∈ argmax(R(i, .) + α
∑

j

Pij(.)Vn(j)), i ∈ S.

(5)
If πn+1 �= πn, set n := n + 1 and go to Step 1.
Convergence issues: In policy iteration, we evaluate a fixed
stationary policy π (cf. Step 1), that requires solving a linear
system of equations (4). Here, we can define an operator
Bπ as

Bπ(V ) = R(π) + αP (π)V (6)

For α < 1, the operator Bπ is a contraction operator
because ∀V ∈ R|S|, ‖Bπ(V ) − V π‖∞ ≤ α‖V − V π‖∞
and V π is the unique solution to V = Bπ(V ). Of course,
the operator Bπ requires knowledge of the state transition
probabilities. For getting more insight on the above issues,
refer [8], [9].

Note that in principle, the inner loop of the policy
iteration procedure can take a long time to converge for
any given policy update. A two time-scale simulation based
approach for policy iteration is presented in [3] for MDPs
with finite state and finite action spaces. Bhatnagar et al.
[6] present a two-timescale simulation based, actor-critic
algorithm that adapts the gradient descent SPSA [5], to the
case of solving MDPs with finite state and compact action
sets under the discounted cost criterion. The algorithm
works with stationary deterministic policies instead of ran-
domized as in [3]. In [4], a two-timescale SPSA algorithm
with certain deterministic perturbation sequences in place
of randomized [5] is found to exhibit good performance
in a simulation optimization setting. For our actor-critic
algorithm, we use a similar perturbation sequence as in
[4] for a one sided [5] simultaneous perturbation algorithm
that performs gradient search in the space of stationary
randomized policies, the latter being necessitated because
of the finite action space setting considered here. We use a
gradient ascent (and not descent) algorithm as our aim here
is to maximize rewards (and not minimize costs).

III. THE ALGORITHM

Let πi be the vector of probabilities of selecting actions
in state i ∈ S that can be written as πi = (πa0

i , . . . , πa|A|
i ).

Any stationary randomized policy π can be identified with
the vector (πa1

1 , . . . , πa|A|
1 , . . . , πa1

|S|, . . . , π
a|A|
|S| ) with prob-

abilities πa0

i of selecting actions a0, for all i ∈ S getting

automatically specified as πa0

i = 1 −
|A|∑
j=1

πaj

i . For i ∈ S, let

πi(n) denote the nth update of πi. Then π(n) corresponds
to the nth update of policy π.
Defi nition: An m × m (m ≥ 2) matrix H is called
a Hadamard matrix of order m if its entries belong to
{+1,−1} and HT H = mIm, where Im denotes the
identity matrix of order m. A Hadamard matrix is said
to be normalized if all the elements of its first column
and row are 1’s. Normalized Hadamard matrices of order
m = 2k, k ∈ N can be constructed sequentially in k as
under:

• For k = 1, let H2 =
(

1
1

1
−1

)
.

• For k > 1,H2k =
(

H2k−1
H2k−1

H2k−1
−H2k−1

)
.

Let H be a normalized Hadamard matrix of order C
with C ≥ |A|. Let H̄ be the matrix obtained from H
by picking any (|A| − 1) columns from it other than the
first column. Let H̄(i) be the ith row of H , i = 1, . . . , C.
Let �πi(n) = (�πa1

i (n), . . . ,�πa|A|
i (n)) ∈ {±1}|A| for

n ≥ 0, i ∈ S be the ‘deterministic’ perturbation. For
i ∈ S, n ≥ 0, we let �πi(n) ∈ {H̄(1), . . . , H̄(C)}, where
C = 2�log2(|A|+1)�. The desired perturbation sequence <
�πi(1), . . . ,�πi(n), . . . > can be obtained by cyclically
selecting �πi(.) from the set {H̄(1), . . . , H̄(C)} in the
same arbitrary order.
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Fix a0 ∈ A. For a |A|-vector x, let Γ(x) denote
its projection onto the simplex D = {[x1, . . . , x|A|] |
xi ≥ 0, ∀i,

∑
i xi ≤ 1}. Let π̄i(n) = Γ(πa1

i (n) +
δ�πa1

i (n), . . . , πa|A|
i (n) + δ�πa|A|

i (n)) ∈ D, where δ > 0
is a small constant. Let a(n), b(n) be decreasing sequences
in (0, 1) satisfying

∑
n a(n) =

∑
n b(n) = ∞,

∑
n(a(n)2+

b(n)2) < ∞ and a(n) = o(b(n)).
Suppose, for any i ∈ S and action chosen according

to the law πi, {ξn(i, πi)} be a sequence of i.i.d random
variables with distribution

∑
a Pi·(a)πa

i . These correspond
to the simulated next states in the algorithm. Suppose
Vn(i), n ≥ 0 be the stationary value function estimates cor-
responding to policy updates πi(n), i ∈ S. Let L ≥ 1 be an
arbitrarily chosen integer. Let (�πi(n))−1 = (1/�πa1

i (n),
. . ., 1/�πa|A|

i (n)). We have

πi(n + 1) = Γ[πi(n) + a(n)
VnL(i)

δ
(�πi(n))−1] (7)

where, for m = 0, 1, . . . , L − 1,

VnL+m+1(i) = (1 − b(n))VnL+m(i) + b(n)[

R(i, π̄i(n), ξnL+m(i, π̄i(n)))+αVnL+m(ξnL+m(i, π̄i(n)))].
(8)

Note that the cost R(·, ·, ·) also depends on the next state
and is more general than the one considered in (1)-(5). Also,
the update (7) is in the gradient ascent direction as our aim
here is to maximize rewards.

IV. CONVERGENCE ANALYSIS

Let Fl denote the σ-field obtained from the history of the
algorithm up to instant l defined as Fl = σ(π̂i(p), Vp(i),
p ≤ l, i ∈ S, ξp(i, π̂i(p)), p < l, i ∈ S), l ≥ 1. In the above,
π̂i(p) = π̄i(n) for nL ≤ p ≤ (n + 1)L − 1. For a given
policy π and V ∈ R|S|, define

Fπ(i, πi, V )
�
=

∑
a

∑
j

Pij(a)πa
i [R(i, a, j) + αV (j)]

From (1), for any policy π, Vπ is the solution to the system
of equations

Vπ(i) = Fπ(i, πi, Vπ). (9)

One now obtains in a similar manner as Theorem 1 of [10]
Lemma 1: The iterates Vk(i) in (8) remain bounded with

probability one.
Define:

Mi(l) =
l−1∑
k=0

b(k)(R(i, π̂i(k), ξk(i, π̂i(k)))+αVk(ξk(i, π̂i(k)))

−
∑
a∈A

∑
j∈S

[R(i, a, j) + αVk(j)]Pij(a)π̂a
i (k)) (10)

It is easy to see that {Mi(n),Fn}, i ∈ S are martingale
sequences. Let wi(l) be the associated martingale difference

terms above such that Mi(l) =
l−1∑
k=0

b(k)wi(k). Let us

rewrite (8) as

Vk+1(i) = Vk(i) + b(k)(R(i, π̂i(k), ξk(i, π̂i(k)))

+αVk(ξk(i, π̂i(k))) − Vk(i)) (11)

where π̂i(k) = π̄i(n) for nL ≤ k ≤ (n + 1)L − 1. Now

Vk+1(i) = Vk(i) + b(k)(
∑
a∈A

∑
j∈S

Pij(a)π̂a
i (k)

(R(i, π̂i(k), j) + αVk(j) − Vk(i))) + b(k)wi(k). (12)

We have
Lemma 2: The martingales {Mi(n)} converge with

probability one.
Proof: Note that wi(n) defined above remain bounded

with probability one. A direct calculation shows that in ad-
dition ψi(n) = E[wi(n)2|Fn] remain bounded with proba-
bility 1. Since

∑
k b(k)2 < ∞, we have

∑
k b(k)2wi(k)2 <

∞ with probability one. The foregoing then ensures that
the corresponding quadratic variation processes of {Mi(l)}
([11]) are convergent. Proposition 7 − 3(c)p.149 − 150 of
[11] then ensures the claim.

We treat the above recursions (7) and (12) as noisy ap-
proximations to a system of ordinary differential equations
(ODEs) and analyze them as such. Let

Γ̄(v(y))
�
= lim

0<η→ 0
(
(Γ(y + ηv(y)) − y)

η
).

Consider the following system of differential equations

π̇i(t) = Γ̄[
Fπ̄(t)(i, π̄i(t), Vπ̄(t))

δ
(�πi(t))−1] (13)

π̇i(t) = Γ̄[∇iVπ(t)(i)] (14)

Define {b̄(n)} as, b̄(0) = 1 and for n > 1, b̄(n) = b([ n
L ]),

where [ n
L ] denotes the integer part of n

L . Now it is clear that
a(n) = o(b̄(n)) and {b̄(n)} is a faster step-size sequence
than {b(n)}. For value function updation, {b̄(n)} works as
the natural step-size sequence because of the ‘extra’ L-step
averaging involved in (8). Now define {t(n)} as follows:
t(0) = 0; t(n) =

∑n−1
i=0 b̄(i), n ≥ 1. Consider the ODEs:

π̇i(t) = 0,

V̇i(t) = Fπ(t)(i, πi(t), V ) − Vi(t). (15)

One can view recursions (7) and (8) as noisy approxima-
tions of the system of differential equations (15) along
the faster timescale. Note that the solution to the system
of ODEs (15), is nothing but the solution of the Poisson
equation or the Bellman optimality equation (3) for a given
policy π. It now follows as in [3] that V π(i) are the unique
asymptotically stable equilibrium points for the second
equation in (15).

The link between the recursions of the algorithm and
(15) can be explained via the continuous, piecewise linear
interpolation x̄(.) = (x̄1(.), . . . , x̄|S|(.))T of (8) defined as
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follows: Set x̄i(t(n)) = VnL(i) with linear interpolation on
[t(n), t(n + 1)] for n ≥ 0. Let xn(.) denote the trajectory
of (15) on [t(n),∞) with xn

i (t(n)) = VnL(i) for n ≥ 0.

Let [t]
�
= max{t(n) : t(n) ≤ t} and for T > 0, let nT

�
=

min{m > n : t(m) ≥ t(n) + T}.
Lemma 3: limn→∞ supt∈[t(n),t(n)+T ]‖xn(t)−x̄(t)‖ = 0

a.s.
Proof: For m > n,

x̄i(t(m)) = x̄i(t(n)) +
∫ t(m)

t(n)

Fπ̄t
(i, π̄t(i), x̄(t))dt

+
∫ t(m)

t(n)

[Fπ̄t(n)(i, π̄t(n), x̄([t]) − Fπ̄t
(i, π̄t, x̄(t))]dt

+(Mi(m) − Mi(n)). (16)

= x̄i(t(n)) +
∫ t(m)

t(n)

Fπ̄t
(i, π̄t(i), x̄(t))dt

+O(
nT∑
i=n

b̄(i)2) + sup
n≤m≤nT

(Mi(nT ) − Mi(n)). (17)

Since, t ∈ [t(l), t(l+1)], n ≤ l ≤ m, π̄t(i) = π̄t(l)(i), i ∈ S
and from the definition of Fπ(.) we can easily observe the
Lipschitz property,

‖Fπ̄t(l)(i, π̄t(l)(i), x̄(t(l)) − Fπ̄t(l)(i, π̄t(l)(i), x̄(t))‖
≤ α‖x̄(t(l)) − x̄(t)‖ (18)

xn
i (t(m)) = xn

i (t(n))+
∫ t(m)

t(n)

Fπ̄t
(i, π̄t(i), xn(t))dt. (19)

‖xn
i (t(n)) − x̄i(t(m))‖ ≤

‖
∫ t(m)

t(n)

(Fπ̄t
(i, π̄t(i), xn(t)) − Fπ̄t

(i, π̄t(i), x̄(t)))dt‖

+O(
nT∑
i=n

b̄(i)2) + sup
n≤m≤nT

(Mi(nT ) − Mi(n)). (20)

‖xn
i (t(n)) − x̄i(t(m))‖ ≤ α

∫ t(m)

t(n)

‖xn
i (t) − x̄i(t)‖dt

+O(
nT∑
i=n

b̄(i)) + sup
n≤m≤nT

(Mi(nT ) − Mi(n)). (21)

Now from the discrete Gronwall inequality, we have

sup
t∈[t(n),t(n)+T ]

‖xn
i (t) − x̄i(t)‖ ≤

αT (O(
nT∑
i=n

b(i)2) + sup
n≤m≤nT

(Mi(nT ) − Mi(n)). (22)

The first term in parentheses on the RHS above is the
contribution of the discretization error and goes to zero as
n → ∞ because of

∑
b(n)2 < ∞. The second term is the

error due to noise and goes to zero a.s. by Lemma 2. The
claim follows.

Lemma 4: We have ‖Vn(i) − Fπ̄(n)(i, π̄i(n), Vπ̄(n))‖ →
0 as n → ∞.

Proof: Let us view the policy updation recursion (7)
from the time scale of {b̄(n)}. Since a(n) = o(b̄(n)), the
recursion takes the form:

πi(n + 1) = Γ[πi(n) + b̄(n)o(1)].

The rest follows from Lemma 3 and Theorem 1, pp.339 of
[12].

The rest of the analysis is geared towards showing
convergence of the algorithm to an optimal policy. Let us
rewrite (7) in the following form

πi(n+1) = Γ[πi(n)+a(n)
Fπ̄(n)(i, π̄i(n), Vπ̄(n))

δ
(�πi(n))−1

+a(n)(
VnL(i) − Fπ̄(n)(i, π̄i(n), Vπ̄(n))

δ
(�πi(n))−1)]

= Γ[πi(n)+a(n)
Fπ̄(n)(i, π̄i(n), Vπ̄(n))

δ
(�πi(n))−1+o(1)],

(23)
the last follows from Lemma 4. Now from the result on
pp. 191-194 of [13] for projection based algorithms, it
can be verified as before that (7) asymptotically tracks the
trajectories of (13) on the slower time-scale. Recall that C
is the order of the normalized Hadamard matrix. We have

Lemma 5: (1) For every l,m ∈ {1, . . . , |A|}, l �= m and
for any k ∈ N , i ∈ S

∑k+c
n=k

�πm
i (n)

�πl
i
(n)

= 0,

(2) For every q ∈ N ,
∑k+c

n=k
1

�πq
i
(n)

= 0.
Proof: Both claims follow from the construction of

Hadamard matrix of order C, see [4] for a detailed proof.

Lemma 6: Let π(n) ∈ D|S|. For any π̄(n)
= Γ(π(n) +δ�π(n)), we have with probability one,

lim
δ→0

‖Fπ̄(n)(i, π̄i(n), Vπ̄(n))
δ

(�πi(n))−1 −∇iVπ̄(n)(i)‖ = 0.

Proof: For any ā ∈ A, one needs to show

lim
δ→0

|Fπ̄(n)(i, π̄i(n), Vπ̄(n))
δ�πā

i (n)
− ∂Vπ(n)(i)

∂πā
i (n)

| = 0.

Assume initially that π̄(n) ∈ (D|S|)o (interior of the set
D|S|). Then

Fπ̄(n)(i, π̄i(n), Vπ̄(n))
δ�πā

i (n)
=

∑
a,j

(P (i, j, a)(πa
i (n)+ δ�πa

i (n))

[R(i, a, j) + αVπ(n)(j)])/(δ�πā
i (n)). (24)

The claim now follows from Lemma 5. For π(n) on the
boundary of D|S|, a similar argument as in [6] settles the
claim.

Finally, one can show using standard arguments that
Theorem 1: Let J be the set of local maxima for (14).

Then for all ε > 0,∃δ0 > 0 such that ∀δ ∈ (0, δ0], the
proposed algorithm converges to J ε (the set of all points
that are within an ε-neighborhood of the set J) w.p.1.
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V. APPLICATION TO MORTGAGE REFINANCING

Mortgage is a kind of long term loan to finance the
purchase of real estate, usually with prescribed payment
periods and interest rates. The mortgagor (borrower) assures
the mortgagee (lender) by securing the loan against the
value of the real estate. Since there are many different
schemes for the payment of interest and repayment of the
principle, mortgage could be much more complex than a
loan. The mortgage market consists of two types of interest
rates, fixed interest rate and variable interest rate. In the
fixed interest case, interest rate is fixed for all payment
periods, however, the same varies over different payment
periods in the variable interest case. The interest rates
usually depend on the base interest rate that is derived from
the central bank’s interest rate. Refinancing a mortgage is
nothing but paying off an existing loan and replacing it with
new mortgage contract. Refinancing is commonly practiced
in real life by mortgagors with the hope of obtaining a lower
interest rate, to shorten the term of the mortgage, etc. We
consider a refinancing model that is some what similar to
Pliska’s [7] optimal refinancing model.

In this model, we consider mortgage contracts having
N contracted coupon payments (for the time interval of d
days) each of amount C dollars. We always assume that the
contract will be initiated by a fixed mortgage interest rate
mr. Let Pb be the principle balance and Pb(n) be the same
after nth coupon payment is made. Immediately after the
nth coupon payment, the mortgagor either continues with
the existing mortgage or goes for refinancing the principle
balance Pb(n) for another N -period mortgage by finding
another mortgagee. While refinancing principle balance Pb,
some fraction (fb) of Pb could be done with variable interest
rate (vr) and the remaining fraction (1− fb) could be done
with fixed interest rate. We assume the transaction cost
Tc(Pb) is incurred if and when the principle balance Pb

is refinanced. Tc(.) is a specified, deterministic function.
The mortgagor might choose to refinance several times
before the loan is ultimately paid off. Below we provide
the complete model description.

- We assume a riskless base interest rate process r =
{rt; t = 1, 2, . . .}, the base interest rate of rt depends
on rt−1. Here rt is a random variable that is uniformly
distributed on {rt−1 − 2a, rt−1 − a, rt−1, rt−1 +
a, rt−1 + 2a}, where a is an arbitrary constant.

- Fixed interest rate mt = rt +b, where b is a constant.
- Variable interest rate vt = rt + c, where c

is the random variable uniformly distributed on
{2,2.5,3.0,3.5,4.0}. This is so chosen since the vari-
able interest rate usually lies between rt+2 and rt+4.

- Opportunities for new mortgage (from various
lenders, who offer both fixed and variable interests)
appear in the market according to a Poisson process
with rate λ.

The mortgagor’s objective is to minimize the expected
present value of the cash flow. The mortgagor is the learning

agent in the system and uses reinforcement learning to learn
the optimal refinancing strategy. The MDP has four state
variables: rt, fb, vt and n, respectively. In the simulation
experiments, we consider Pb(0) = $200, 000, N = 60,
r0 = 0.06, a = b = 0.005, rt is bounded between 0.04
and 0.12, and fb ∈ {0.1, 0.2, . . . , 0.9, 1.0}. We consider
that transaction cost is equivalent to two percent of Pb

and λ = 1 lender appearances/day. The action set is
A = {0.0, 0.1, . . . , 0.9, 1.0}, where action 0.0 means not to
choose refinance and the other actions are meant to choose
refinance with a fraction fb variable interest rate. The cost
(or reward) function chosen is

R(i, π(i), j) = 0 if 0 ≤ t < d

= C + Cfbvt + C(1 − fb)rt, if t ≥ d

= 0.02(Pb − C) + C + Cfbvt(t/d) +
C(1 − fb)rt(t/d), if 0 ≤ t < d.

(25)

Note that the basic problem here is a finite horizon MDP.
However, we use a similar technique as in [7] to convert
the same to an infinite horizon MDP, thus enabling the use
of the proposed actor-critic algorithm.

Table I shows the converged refinancing strategies
(rounded off to second digit after decimal place) for the
mortgagor for two randomly picked states (0.08, 0.2, 0.115,
34) and (0.07, 0.6, 0.09, 14). Fig. 1 shows the conver-
gence and stability of learning refinancing policy at state
(0.07, 0.4, 0.095, 11) using our algorithm. In Figs. 2 and
3, we show for given components rt, vt and n of states,
the variation of the optimal reward as obtained from our
algorithm with the state component fb, for two classes of
states (0.07, fb, 0.09, 0) and (0.08, fb, 0.09, 0), respectively.
Note that the optimal reward dips initially in both cases and
subsequently shows an increase. The optimal reward is high
for high values of fb. This behavior is along expected lines.

VI. CONCLUSIONS

We developed a simulation based two-timescale actor-
critic algorithm for infinite horizon discounted reward
Markov decision processes. The algorithm does gradient
search in the space of stationary randomized policies and
uses a one-simulation simultaneous deterministic perturba-
tion gradient estimate. The algorithm has less computational
requirements and exhibits fast convergence. We then studied
an application using our algorithm for the problem of
optimal mortgage refinancing to find the optimal refinancing
strategies and reward. As future work, it would be worth
exploring other reinforcement learning based algorithms.
For instance, the algorithms in [14], for the simulation
optimization setting, perform second order Newton based
search. Reinforcement learning variants of similar algo-
rithms could be developed and tried.
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Fraction of Policy of Policy of
Principle Balance Mortgagor for state Mortgagor for state
With vt (0.08, 0.2, 0.115, 34) (0.07, 0.6, 0.09, 14)

0.0 0.42 0.18
0.1 0.04 0.15
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0.3 0.30 0.01
0.4 0.08 0.10
0.5 0.00 0.09
0.6 0.01 0.07
0.7 0.00 0.06
0.8 0.03 0.00
0.9 0.00 0.03
1.0 0.00 0.10

TABLE I

POLICIES OF MORTGAGOR AT SOME INDIVIDUAL STATES
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