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LETTER TO THE EDITOR

A More Efficient Global Optimization Algorithm Based on Styblinski and Tang

Editor:

The Styblinski and Tang (1990) (S&T) paper published
in this journal applied the stochastic approximation
algorithm with function smoothing (SAS) to find the
global minimum of loss functions /(- ) in practical ap-
plications. They showed that SAS was much more ef-
ficient than simulated annealing. This letter will show
that another type of algorithm, simultaneous-pertur-
bation stochastic approximation (SPSA) discussed in
Spall (1988, 1992), can also be used for global opti-
mization and typically requires a significantly lower
number of function evaluations (compared to SAS) to
achieve the same level of accuracy [Spall (1988, 1992)
only considers the use of SPSA in a local optimization
context].

To use SPSA for global optimization, one follows
algorithms 2 and 3 in S&T modified by a new gradient
approximation. Letting the elements of n* € R" be the
vector of inverses of the »n elements in the random vector
n, the SPSA-based gradient approximation for use in
eqn 12a of S&T (with N = 1) is

— - - l
VS(x.8) = % n*[f(x+ Bn) — f{x - Bn)],

>0, x&€R".
This form is slightly (but critically!) different from the
SAS gradient approximation in S&T. One of the con-
vergence conditions for SPSA is that the distribution
of the elements of » must have finite inverse moments
(Spall, 1992). The distributions discussed in S&T for
n (Gaussian and Cauchy) are not applicable for SPSA
because they violate this inverse moment condition;
Spail (1992) and Chin (1992) used a Bernoulli distri-
bution with outcomes *1.

The 10-dimensional loss function of Example 3 in
S&T was used to compare the SPSA and SAS global
optimization techniques; the results are tabulated be-
low. There are two cases studied for SPSA using two
different sequences of SA gains. Let 7 and 8™ be the
gains for the mth cycle of the global optimization pro-
cess with each cycle corresponding to a new kernel ap-
proximation to the loss function and having a maxi-
mum number of allowable SA iterations (i.e., the gains
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TABLE 1
Relative Performance of the SPSA and SAS Algorithms When
the Maximum Errors Are Reduced
to 0.24% Level of S&T

No. of Funct. Range of

Evals. (Mean Funct. Evals.

No. for SPSA) in 20 Trials
SAS from S&T 9228 Not available
SPSA standard gains 2764 2696, 2884
SPSA optimal gains 1762 1614, 1890

were kept fixed for ail SA iterations within a cycle).
One case in the table uses the standard decaying (per
cycle) gains, 7 = 0.007 / m for the mth cycle; the other
uses optimal 7", which were estimated as suggested in
Fabian (1971). In both cases, 8™ = {5, 2.5, 1.25,. . .},
no smoothing is used (p; = 1 in S&T), and the initial
conditions are the same as S&T. The values shown in

“the table are the number of function evaluations for

the iteration processes of SPSA and SAS when the
maximum difference between iterated values and the
known global minimum is reduced to the 0.24% level
as in S&T. The table shows that global optimization
using SPSA is three to five times as efficient as that
using SAS for this 10-dimensional problem.

More generally, based on theory in Chin (1992) we
expect SPSA to only need about § the number of func-
tion evaluations of SAS for global optimization prob-
lems of any dimension when the number of cycles is
small and < § when the number of cycles is large [ Chin
(1992) refers to SAS as random-directions stochastic
approximation]. To demonstrate the applicability of
SPSA in higher dimensions, we considered a 50-di-
mensional version of Example 3 in S&T and found the
number of function evaluations averaged to a quite
reasonable 7460 to achieve the 0.24% level of accuracy
above. Moreover, Spall and Cristion ( 1992) successfully
use SPSA in a 332-dimensional optimization problem
for neural network-based adaptive control.

Daniel C. Chin

The Johns Hopkins University
Applied Physics Laboratory
Laurel, MD 20723-6099



574

REFERENCES

Chin, D. (1993). Performance of several stochastic approximation
algorithms in the multivariate Kiefer-Wolfowitz setting, Proceed-
ings of the 25th Symposium on the Interface: Computing Science
and Statistics, 289-295.

Fabian. V. (1971). Stochastic approximation. In J. J. Rustagi. (ed.),
Optimizing methods in statistics (pp. 439-470). New York: Ac-
ademic.

Spall, J. C. (1988). A stochastic approximation algorithm for large-
dimensional systems in the Kiefer-Wolfowitz setting. Proceedings
IEEE Conference Decision Control, 1544-1548.

D. C. Chin

Spall, J. C. (1992). Multivariate stochastic approximation using a
simuitaneous perturbation gradient approximation. /EEE Trans-
actions on Auto Control, 37, 332-341.

Spall, J. C., & Cristion, J. A. (1992). Direct adaptive control of non-
linear systems using neural networks and stochastic approxima-
tion. Proceedings IEEE Conference Decision Control, 878—883.

Styblinski. M. A., & Tang, T. S. (1990). Experiments in nonconvex
optimization: Stochastic approximation with function smoothing
and simulated annealing. Neural Networks, 3, 467-483.



