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1. INTRODUCTION
Model extrapolation and data inversion are two

important steps in control. Model extrapolation is a step

to find control wwiables that are viable for the control
process. Data inversion is a step to estimate the control
variables horn the sensor data The assumptions ,and

goals are different in these two steps. The model
extrapolation step searches for control variable that gives
minimum errors between modeled and true measurements
(without noise); the data inversion step searches for the
walues of the control variables that give minimum errors
between the modeled and observed measurements (with
noise).

This paper discusses the control processing used in

the magnetospheric image setting. The magnetosphere
exists in the region of space that surrounds the earth
several hundred kilometers above the earth’s surface,
extends and is filled with magnetic field lines passing
through the earth’s surface. The magnetospheric image

process is to estimate the ion-population within the field.
The ion-population variables ,and the magnetospheric
images have no easily modeled physical relationship. The
gradient formula is hard to define, therefore gradient

dependent optimization techniques are not applicable,
such as Robbins-Monro SA, steepest descent, Newton-
Raphson, etc. Chase and Roelof (1995) uses the Powell
algorithm for magnetospheric model extrapolation.

Unfortunately, the Powell method is a trial-and-error type
of search algorithm and may break down in data
inversion, due to high-noise sensors and multiple root
problems. This paper shows that simultaneous
perturbation stochastic approximation (SPSA) is more
efficient than the Powell algorithm and performs well in
the data inversion problem.

SPSA was introduced in Span (1987) and thoroughly
,analyzed in Span (1992). The essential feature of SPSA
— which accounts for its power ,and relative ease of use in

solving challenging multiv,ariate optimization problems
— is the underlying gradient approximation that requires

only two loss function measurements regardless of the
number of parameters beiig optimized. Note the contr,ast
of two function measurements with the 2p measurements
required in classical finite-difference based approaches
(i.e., the Kiefer-Wolfowitz SA algorithm). Under
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reasonably general conditions, Span (1992) shows that the
p-fold savings in function measurements per gradient

approximation c,an translate directly into a p-fold savings
in total number of measurements needed to achieve a
given level of accuracy in the optimization process.

This paper has three additional sections. Section 2
compares the efficiency of SPSA against the Powell
algorithm in model extrapolation. Section 3 shows that
SPSA works well for the data inversion problem. Section
4, the last section, gives a brief conclusion.

2. MODEL EXTRAPOLATION
An examination of the current knowledge on the

global magnetosphere reveals that several pieces of
information are missing. To establish a complete global
picture of the magnetospheric field, satellite missions have
been launched. Chase and Roelof (1995) proposed a
magnetospheric image model, as the control variables
mentioned earlier, for the global model study and showed
that the model was able to fit a well-known emulated
magnetospheric image.

It took Powell 216 function evaluations to reach the
solution reported in Chase and Roelof (1995). A function
evaluation includes m,any line-of-sight integrations; each
pixel vahre is integrated along line-of-sight using the
given model. For example, there are 4050 pixels in the
global image data reported in Chase and Roelof (1995);
that implies 4050 line-of-sight integrations per function
evahration. Hundreds of function evaluations serve to
mark the control variable study as a time-consuming effort

that limits flexibility in searching for the best possible
structure.

SPSA was applied to the same images ,as in the work
mentioned earlier. In this study, a larger size of pixels
was used; a different satellite mission, a low satellite with
noisier data, was studied. SPSA brought the solution to
the same level of accuracy ,around 40 function evaluations.
There is no direct comparison between SPSA and the
Powell algorithm, because of the differences in pixel sizes.
According to Dr. C. Chase, in all the cases he had tried,
the Powell algorithm has never achieved the same level of
accuracy within even 100 function evaluations. Safely
speaking, SPSA is at least two to three times faster than
Powell.

3. DATA INVERSION
We generated a new ~t of images from the Chase ,and

Roelof (1995) defined variables; thus, the true model is
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known. A random noise is also added to each image pixel
to mimic the real data, named mimic da~l. The noise
level statisticof 10 Poisson counts per pixel was used, that
being the noise level in the collected data. The data image
looks like the one shown on Ftgure 1.d in Chase ,and
Roelof (1995). We then applied the SPSA algorithm to

estimate the variables starting from a set of nominal
values. The variables were the upper or lower bounds for
the shape variables and constants for the angular
variables.

The SPSA results are shown by the two curves in
Figure 1 that ,are residuals between estimated ‘and truth
values at each SPSA iteration. Both residuals are
computed in square-sum form ,and normalized by the prior
residuals. One residual curve is the difference between
the pixel images generated from estimated parameters and
the mimic claw, the other is the difference between the
estimated model parameters and the model pam.meters
used to generate the mimic data The image residual
curve shows a 94% drop, i.e., from an error-square-sum
value of 6.73 to a value of 0.40. The model residual curve
shows a 50% reduction rate, horn the error-squ,are-sum
value of 1.78 to value of 0.89. Among the estimated
model parameters, some of them match the truth values to
the second digit; the others moved in-between the true and
prior values, or even stayed around the prior values. We

m:iy have to redefine the model structure to have all the

parameters converge at the same speed because of
identifiability ,and observability issues. The parameter

errors come ffom two error sources, the error from the
estimation process ,and the error from the model

disturbances due to the finite sample data. Nevertheless,
this application shows that the SPSA algorithm can be

used for the inversion problem.
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Figure 1: Residual Errors in Parameter Estimation

and Global Image

In this study, two optical problems have been

overcame in estimation of the magnetospheric image
parameter values: multiple representations and boundary

values. The multiple representation problem is the local
minimum problem that was handled by using the stepped

SPSA gain sequence as described in Chin (1994). The
boundary value problem arises from the fact that the
images of the magnetospheric ion populations have
distinct features. The image at the pole area h,as several
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zero pixels surrounded by the sharply raised population
pixels, and then it drops off to zero and stays zero on the
rest of the pixels. There are no problems in estimating the

parameters representing the shape in the ion concentrated
area. The difficulty is to estimate those parameters
representing the low density images located in the area

before the ion population drops off to zero. The original
loss function used in Chase and Roelof (1995) tends to

overlook these low density images. Therefore, instead of
using the lumped global error loss function as the one
used in Chase and Roelof (1995), a loss function th:it
emphasizes individual pixels is used (for the study of
Figure 1), thereby providing better estimates of low

density pixel parameters.

4. CONCLUSION
This study has shown that with SPSA, the rate of

convergence increases dramatically (relative to the Powell
algorithm) due to a decrease from hundreds of function
evaluations to tens (each function evaluation represents
costly global line-of-sight integration). It greatly increases
the flexibility of potential model variable study due to the
shortening of the computer turn-around time.

Most importantly, the SPSA algorithm has shown

that it can be used very successfully for the data inversion,
i.e., where observability is adequate. This kmd of success
has not been shown with any other optimization

algorithms that have been applied in the magnetospheric
setting. The next step for this magnetospheric image
problem is to process the real data collected tlom a flown

satellite mission and then to estimate the ion-population.
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