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Abstract 
 

 This paper applies simulation-based 
optimization to the problem of vessel traffic 
management in a high vessel density 
environment. Specifically, a Monte Carlo 
simulation has been developed that models a 
relatively small craft operating in a high vessel 
density environment under poor visibility 
conditions. In this simulation, the small vessel 
maneuvers to keep all other vessels outside some 
acceptable range (one of the objectives of the 
optimization) subject to the requirements on the 
other vessels to obey pre-established traffic 
management rules. Several stochastic 
optimization algorithms- Blind Random Search, 
Simultaneous Perturbation Stochastic 
Approximation, and Simulated Annealing- are 
applied to this problem with conclusions drawn 
regarding their relative applicability and 
performance, as well as the practical 
implications of the results.  

 
1. Introduction 

 
  Vessels must operate every day in stressing 

situations and it is of paramount importance that 
these operations be completed without incurring 
collisions with other vessels. In response to this 
concern, a Monte Carlo simulation has been 
developed that models a relatively small craft 
(OwnShip) operating in a high vessel density 
environment with poor visibility conditions. 
OwnShip maneuvers to keep all vessels outside 
some acceptable range. Its ability to do so is 
dependent on a number of parameters θ. Some of 
these parameters are constrained by things 
outside of OwnShip’s control, like the ranges at 
which other vessels are detected, and others are 
driven by its tactics. Thus far, the effects of these 
parameters on OwnShips’ ability to avoid 
collisions have been studied by running the 
model a number of times for different values of θ 
to obtain a measure of mean performance for 
each. Note that because of the randomness in the 
simulation, the effect of a particular value of θ 

on collision avoidance cannot be obtained from 
only one evaluation of the model at that θ. While 
averaging over multiple runs is a valid approach, 
it is time consuming and so it will be impossible 
to consider all possible values of θ. This results 
in a significant risk that valuable information 
will not be uncovered. Algorithms designed for 
optimization in the presence of noise, i.e. 
stochastic optimization algorithms, should be 
used to find the optimal set of parameters θ* for 
this problem. 

This paper will first discuss the simulation 
mentioned above and highlight some of the 
simplifying assumptions that were made in order 
to model reality. Next, the problem will be 
placed in a stochastic approximation framework, 
where explicit definitions of the loss function, 
the constraints of the problem, and the 
parameters of interest will be given. Although 
the deterministic form of the loss function is 
unknown, this section will include some analysis 
of its expected characteristics. The following 
section will provide some insight into the 
properties of the measurement noise. These 
analyses are important to understanding which 
stochastic optimization algorithms can be 
expected to converge to the optimal solution. 
Finally, the results of applying several 
algorithms, Blind Random Search, Simultaneous 
Perturbation Stochastic Approximation, and 
Simulated Annealing will be presented and 
compared. 

 
2. Model Assumptions 

 
In each run of the Monte Carlo simulation 

OwnShip will be a small craft, traveling at a 
constant speed of 5 knots, with a radar that is not 
functioning. As a result of the non-functioning 
radar, other vessels in the area can only be 
observed visually. Further, the visibility 
conditions are assumed to be poor, either simply 
because it is night or as a result of inclement 
weather, such as fog. There are a number of 
other vessels in each simulation, the majority of 
which are fishing crafts with speeds ranging 
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from 0 to 10 knots, but also including a small 
number of large merchant ships traveling at a 
constant speed of 15 knots.  

OwnShip maneuvers to attempt to maintain a 
buffer zone of R kyds (1 kyd = 1000 yards) 
between itself and all other vessels. These 
maneuvers will be course changes under the 
assumption of a full rudder. All other vessels 
change course to avoid imminent collisions with 
each other based on the navigational rules of the 
road.  However, since OwnShip is a small craft 
and visibility is severely restricted the other 
vessels in the simulation will not detect Ownship 
and will only react to each other. Trawling 
fishing vessels, those traveling at 5 knots, will 
also periodically change course. 

The simulation is defined over a circular 
region with a radius of 20 kyds and each run 
captures 90 minutes of interaction between 
OwnShip and the other vessels. The number of 
other vessels in the simulation region N remains 
constant throughout each run and is taken as 25 
in this study. This is roughly equivalent to one 
vessel in each circle of radius 4 kyds. Each time 
a vessel leaves the region a new vessel of that 
type (speed) will be entered into the simulation 
at a random bearing on the boundary of the 
simulation circle and will be assigned a random 
course. 

Vessels are each assigned an initial position 
and course randomly, and a speed according to 
the proportions stated previously. In order to 
simulate the scenario in which OwnShip has just 
found itself in a stressing environment, i.e. radar 
was just lost, it is assumed that moving vessels 
start at least M0 kyds from OwnShip.  Those 
vessels traveling at a speed of 5 knots are 
assigned an initial (first in the run) time since 
last course change at random from the interval 0 
to 60 minutes and without loss of generality, the 
initial OwnShip course is due North. 

To simulate the poor visibility conditions 
caused by either night or fog, OwnShip detects 
other vessels at half of the range corresponding 
to perfect visual detection on the horizon. Under 
the assumptions of mast height used in this 
study, detection ranges for fishing vessels and 
merchants are 6.5 and 10.5 kyds, respectively. 
Upon detection, perfect knowledge of each 
vessel’s position and velocity will be assumed. 
The Closest Point of Approach (CPA) will be 
projected between OwnShip and each of the 
other vessels. These projected CPAs will 
determine the action taken by the OwnShip. The 
projected CPA between OwnShip and each of 
the N vessels, C1… Cn is based on the current 

motion of each. If all vessels have projected 
CPAs outside of the R kyd buffer in the next 30 
minutes, then OwnShip will remain steady on 
course. It will only implement its maneuvering 
tactics when this condition is not satisfied.  

 
3. Definition of Theta and the Loss 
Function 

 
The set of input parameters to be varied will 

be given by θ = [R, M0] where R is the buffer 
range that OwnShip is trying to maintain and M0 
is the minimum initial range to all moving 
vessels.  The domain of θ will be defined as the 
hypercube Θ  = [2, 8]2. In practice, the lower 
bounds of R and M0 will be defined by the 
“cavalierness” of the crew, whereas the upper 
bounds on both are dictated by visibility 
conditions. 

After each run of the model, one scalar valued 
loss function measurement will be collected - the 
negative of the minimum range between 
OwnShip and any vessel during the run. Safety 
of OwnShip (and the other vessels) depends 
upon this range being sufficiently large. Thus the 
goal of this analysis will be to find the set of 
input parameters θ that minimize the loss 
function L(θ), subject to θ ∈ Θ. Note that the 
deterministic form of L(θ) is unknown and no 
gradient information is available. There are only 
noisy loss function measurements, y(θ) = L(θ, 
ε(θ)), with the noise ε(θ) resulting from the 
randomness in each run of the simulation. In 
addition, it is possible that L(θ) may have several 
local minima in the domain Θ in addition to one 
global minimum. 

 
4. Characteristics of the Loss Function 

 
Some analysis of L(θ) is necessary. Consider a 

particular run and the Euclidean distances 
between OwnShip and each of the vessels in that 
run. Let the distance function for the vessel that 
came closest to OwnShip during that run be 
given by d(t). Note that the number of distance 
functions resulting from one run will in general 
be some number N~ > N since each time a vessel 
leaves the simulation area a new one is entered.  
Further, note that each distance function is 
continuous and differentiable, regardless of any 
changes to θ. The following paragraphs discuss 
the effects of changes in θ on L(θ). 

The parameter R governs the behavior of 
OwnShip. If any vessels are projected to come 
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within the buffer of R kyds then OwnShip 
considers all possible course changes and 
chooses the one that maximizes the minimum 
CPA, i.e. it attempts to maximize the loss 
function with each maneuver. For values of R 
that are sufficiently small, OwnShip should be 
fairly successful and so E[y(θ)] ≈ R. However, 
recall that the vessels are distributed uniformly in 
position, not in distance from OwnShip. Let Dt 
be a random variable representing the distance 
from OwnShip to a particular vessel at time t. 
Consider a particular distance r.  

P(Dt ≤R) = F(r) = πr2 / π202 
P(Dt =R) = f(r) = F′(r) = 2r / 202 

For the moment, disregard the effect of M0 on 
vessel density. Note that this is a relevant 
simplification since as time progresses the 
randomness in the simulation should eliminate 
the effect of the M0 and the positions of the 
vessels will reach a “steady-state” where they are 
following a uniform distribution. Let t

Rx  

represent the number of vessels within R kyds of 
OwnShip at time t. Then 

( )22 20)(][ RNRFNxE t
R =⋅=  during the “steady-

state” portion of each run. Thus as R increases, 
the vessel density will increasingly impede 
OwnShip’s ability to maintain this buffer. Note 
further that although adjustments to R affect 
OwnShip’s tactics, they have no effect on the 
randomness in the behavior of the other vessels. 
The other vessels are completely unaware of the 
presence of OwnShip and only react to each 
other.  

The initial vessel positions also affect L(θ). 
Previous analyses of the model have shown that 
at the start of each simulation the probability of a 
close encounter is higher than in the later, 
“steady-state” portion. Thus, large portions of 
the loss function measurements result from the 
first part of each run. One reason for this is that 
the initial positions of the dead-in-the-water 
(DIW) vessels can be arbitrarily close to 
OwnShip. However, since only 5% of all vessels 
in each run are of this type the expected number 
of DIW vessels in each simulation NDIW is only 
1.25. It follows that the effect of these vessels on 
the loss function should be quite negligible. The 
primary cause of the spike in close encounters 
during the first portion of each run is that 
OwnShip has not yet had the chance to position 
itself optimally with respect to the moving 
vessels. At the start of each simulation the 
constraint on moving vessels results in a higher 
vessel density outside M0 and only DIW vessels 

inside M0. Let  be the number of 
vessels inside R kyds at time 0, given M
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where Nm represents the expected number of 
moving vessels in the simulation. This increase 
in vessel density outside M0 in turn affects the 
interaction between the vessels, as they must 
change course more often to avoid colliding with 
one another. So the combined affect of M0 is not 
straightforward. As M0 increases, the initial 
positions of the vessels move farther away from 
OwnShip, giving it more time to position itself 
optimally. But the randomness in the vessel 
motion also increases as M0 increases, which 
could make it more difficult to maintain a safe 
distance.  

Clearly L(θ) must either come from the 
“steady-state” portion or the first part of each 
run. Let the prior discussion regarding the level 
of difficulty in keeping all vessels outside of R 
be represented by the function ∆, where 
( ) 0)( 0

0 <∆ MxR  for all θ in Θ. Thus under the 
assumption that the effect of vessel density on 
the level of difficulty is continuous, i.e. ∆ is 
continuous, L(θ) must also be continuous.  

If M0 ≥ R, then L(θ) will most likely result 
from the steady-state portion of the run. 
However if M0 < R and if there are other vessels 
within R at time 0, then these vessels will most 
likely result in loss function measurements. Let 
the expected value of the distance from OwnShip 
to vessels that are between M0 and R kyds from 
OwnShip be E . Then the expected value 
of the loss function is given by 
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Thus it seems that L(θ) is continuous which 

provides some hope that the stochastic 
optimization algorithms will converge to an 
optimal θ*. But θ* may not be unique and there 
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is still the complicating factor of noisy loss 
function measurements. 

This section will provide a brief discussion 
of Blind Random Search, Simultaneous 
Perturbation Stochastic Approximation, and 
Simulated Annealing and then present the results 
of applying each of these gradient-free 
algorithms to this problem. Each algorithm was 
given the same initial condition θ0 = [4, 4] and 
was allowed 40 replications with 1000 
evaluations of the loss function per replication.  

 
5. Properties of Measurement Noise 

 
As stated previously, each loss function 

measurement y(θ) contains noise ε(θ). 
Convergence of many stochastic optimization 
algorithms requires that this measurement noise 
be sufficiently well-behaved. The properties of 
ε(θ) were investigated by collecting the loss 
function values 

algorithms requires that this measurement noise 
be sufficiently well-behaved. The properties of 
ε(θ) were investigated by collecting the loss 
function values )( )(θy  for 1000 runs of the 
simulation at each of 16 different values of θ, 
where ]2,2[ ji=θ  i, j = 1, …, 4. The sample 
mean )(θy  and standard deviation were then 
calculated for each value of θ. Note that for a 
particular θ, the distribution )(θη resulting from 
the difference between each of the observed 
values  and the sample mean should 
approximately represent the properties of the 
measurement noise at that θ. 

 
6.1. Blind Random Search 

 
The first algorithm implemented on this 

problem was the recursive form of Blind 
Random Search (BRS). It is especially attractive 
as a first approach because it does not have a 
large number of parameters that require tuning, 
in fact in the noise-free case there are none. This 
algorithm only requires that measurements of the 
loss function, possibly noisy, be available. No 
gradient information is required and in fact it is 
not necessary that the gradient exist. Further, 
there is no requirement that L(θ) have a unique 
global minimum. The theory behind this 
algorithm states that if L is sufficiently smooth 
and there are noise free loss measurements, then 
this algorithm will converge to θ* є Θ* a.s., 
where Θ* represents the set of values that 
minimize L(θ). The previous analysis of L seems 
to suggest that it will satisfy the requirements of 
this algorithm, but there are only noisy inputs 
available – this may be a problem.  

To have a reasonable chance of 
convergence, it is important that 

∑
=

=
1000

1

)(
1000

1)(
i

i θηθη  be very close to zero for 

each value of θ. Two-tailed Z-tests with the null 
hypothesis H0: )(θη  = 0 were performed for 
each value of θ. In each case the data did not 
provide strong evidence that the sample means of 
the error differed from zero. It is also important 
to understand the relationship between η(θ) and 
θ. Figure 5 indicates that except for a slight dip 
around [4,6], the standard deviation of the noise 
increases steadily (and substantially) as θ 
increases. The magnitude of this standard 
deviation could hinder convergence to the 
optimal solution θ*. 

At each iteration, a new value θnew was 
sampled from a uniform distribution on [2,8]2. 
Thus in this problem setting the application of 
this algorithm contains both characteristics of 
stochastic search and optimization – injected 
randomness in each θnew and noisy inputs. θnew 
was constrained to fall within the domain Θ and 
was assigned the nearest boundary value if it fell 
outside of Θ. In the noise-free implementation of 
BRS,  if . 
However, since each loss function measurement 
contains noise, this acceptance criterion must be 
altered to lower the probability that a new value 
of θ  will be accepted when it is really only 
lower because of noise. A conservative approach 
is to define τ = 2σ, where σ is the standard 
deviation of the measurement noise at the initial 
condition and accept y(θ

)1(ˆ
1 +=+ knewk θθ )ˆ())1(( knew yky θθ <+

new) if  y(θnew)<y(θcurr)-τ. 
It is expected that as the number of iterations k 
increases the number of accepted θnew values will 
decrease. But after several initial replications 
with τ = 2σ  there were only a few θnew values 
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6. Application of Stochastic 
Optimization Algorithms 
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accepted each time, which implied that this 
bound was too conservative. τ was redefined as τ 
= 0.5σ, which resulted in the acceptance of more 
candidate values and so a more reasonable rate 
of decay of L.  

  
6.3 Simulated Annealing 

 
The final algorithm applied to this problem 

was Simulated Annealing (SAN), which again 
can work with only noisy measurements of the 
loss function available. One other attractive 
feature of this algorithm is that if the rate of 
decay of the “temperature” is chosen properly, it 
has a good chance of not getting stuck in local 
minima. Since it is possible that there are several 
local minima for this problem, this may be 
useful. 

Let the region of acceptable error be given by 
S(θ*) = [-0.1, 0.1]2. The probability that a 
particular iterate of θ is in S(θ*) is P* = .0011. 
Let 1-ρ represent the probability that θ lands in 
S(θ*) within 1000 iterations. Using the fact that 
each value of θ is generated independently for 
this algorithm, we can obtain 1-ρ  = 1- e1000log(1-

P*)  =  0.67. This indicates that in subsequent 
analyses, when more time is available, BRS 
should be implemented with more iterations in 
order to get a higher probability of landing in S. 

The temperature T was given a geometric 
rate of decay, Tnew = 0.9Told and 40 iterations 
were performed at each value of T. Initially a 
very small value was chosen for the initial 
temperature, but the algorithm seemed to get 
stuck at the initial condition of θ0 = [4, 4] and so 
T0 was increased to 1.0. A form of SAN, in 
which new values of θ are generated by θnew = 
θold + T*r where r is a random draw from 
U[0,1]2, was used in this implementation. Both 
the randomness in r and the fact that E[r]≠0 
enhance the algorithm’s ability to avoid 
premature convergence in local minima. New 
values of θ were then compared using δ = 
y(θnew) - y(θcurr) via an altered from of the 
Metropolis Criterion, which was modified from δ 
< 0 to δ < τ to account for the noise in the loss 
function measurements. In other words, θnew was 
accepted if y(θnew) ≤ y(θcurr) + τ. The choice of τ 
depends on the hypothesized characteristics of 
L(θ). If L(θ) has many local minima then τ 
should be positive, resulting in a more lenient 
acceptance criterion and a better chance of 
converging to the global minimum. However, a 
negative value of τ is appropriate if  L(θ) has 
only a small number of local minima. This more 
restrictive criterion lowers the probability of 
accepting a θnew that actually leads to an increase 
in the value of the loss function. In this analysis, 
τ was given a negative value of 22στ −= .  

 
6.2 Basic SPSA  

 
The next algorithm considered was the basic, 

i.e. gradient-free, form of Simultaneous 
Perturbation Stochastic Approximation (SPSA). 
Again, this algorithm only requires that noisy 
loss function measurements be available. In fact, 
unlike BRS, the convergence theory for SPSA is 
based on noisy inputs. But there is a price to be 
paid for this robustness in the presence of noise 
and it comes in the form of more restriction on 
the loss function. A sufficient condition for 
convergence of SPSA requires (among other 
things) that the loss function must be three-times 
continuously differentiable. This may or may not 
be the case and could cause problems with 
convergence. Also note one of the most 
attractive features of SPSA is its efficiency in 
high dimensional problems. In this analysis the 
dimension of θ is only 2 and so that feature will 
not really come into play, but in subsequent 
analyses it could prove to be very beneficial. 

The Bernoulli distribution was used for the 
random perturbations ∆k. The gain coefficients 
were taken as A=50, c=0.8, a=14, α=0.6, and 
γ=0.1 with the gain sequences given by 

α)1( Akaak ++=  and γ)1( += kcck

0)]([ =

. These are 
“semi-automatic” gain coefficients, obtained 
using the guidance offered in [1] on pages 189-
91. Note that the choices of ∆k, ak, and ck all 
satisfy the requirements on the gains necessary to 
ensure convergence for this algorithm. Recall 
from the section on the properties of the 
measurement noise that θεE , which is 
also required for convergence. In fact, the only 
possible hindrance to convergence should be that 
L may not be sufficiently well-behaved. 

Since the measurement errors have mean 
zero and are uncorrelated with finite variances 
the one-sided Chebyshev inequality can be used 
to get an upper bound on the probability of 
incorrectly accepting a new value of θ. With the 
choice above of c = 1, it can only be said that 
this probability will be less than or equal to 0. 
Note that if the measurement errors were in fact 
normally distributed then this probability would 
be bounded by 1 – P(Z<c), where Z is standard 
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normal, and would be 0.159 - a much more 
meaningful bound.  
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6.4. Results and Conclusions 
 

The terminal estimates of θ  that were obtained 
for each algorithm after each of the 40 
replications are shown in Figure 6. BRS and 
SPSA seem to be converging to the same region 
of  Θ. SAN, on the other hand, converged almost 
exclusively to either [4, 4] or [8, 8] with the 
percentage of θterm values at each given by 65% 
and 20% respectively. Consider Figure 7, which 
shows the mean loss values over 1000 runs of 
the simulation for ]2,2[ ji=θ  where i, j = 1,…, 
4. Note that the loss value at [8, 8] is the 
minimum over these 16 values of θ. This plot 
also illustrates that the loss values in the region 
that BRS and SPSA are converging to are 
roughly the same. This slows their convergence 

to [8, 8] but SPSA does get there several times, 
whereas BRS never quite makes it. It is 
interesting that when SAN gets away from the 
initial condition θ0 = [4, 4] it goes directly to [8, 
8].  

Figure 7. L over 1000 runs of the 
simulation. 

Since each loss function measurement 
contains noise, simply taking one loss value at 
each θterm and then averaging these over the 40 
replications will not be an accurate measure of 
relative performance. Instead, we must first run 
the simulation a number of times at each θterm. 
To decide how many runs N are required to 
average out the noise, recall that the standard 
deviation of the sample mean will decay at a rate 
of N1 , provided that the noise is independent. 
In the area containing the majority of the 
terminal estimates of θ, the standard deviation of 
the measurement noise is about 1.0. N = 100 runs 
were performed at each θ term, which yield an 
error in )( termθL  of about 0.1, which is within an 

acceptable range. Note that SPSA has both the 
lowest value of )( termL θ and the smallest standard 
deviation associated with the terminal loss. Table 
3 presents the sample means of )( termL θ  for each 
algorithm and their corresponding 95% 
confidence over the 40 replications. However, 
two sample t-tests with non-identical variances 
must be used to determine if the performance of 
the algorithms was significantly different. The 
results of these tests show that the mean terminal 
losses for BRS and SPSA are both significantly 
lower than SAN at the 95% level, but they are 
not statistically different from each other. 
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Figure 6. Terminal Estimates of θ 

In conclusion, it seems that both BRS and 
SPSA performed relatively well on this problem. 
It will be interesting to see how they compare 
when the dimension of θ  is increased. The 
practical implications of the terminal estimates 
of θ are also quite interesting. While the terminal 
values for M0 seem quite intuitive, those for R do 
not. The results seem to suggest that in order to 
maintain a safe distance between itself and all 
vessels OwnShip should project CPAs to all 
other vessels it is currently detecting. It was 
originally hypothesized that considering so many 
other vessels would result in an unreasonable 
number of OwnShip maneuvers and so a great 
deal of close encounters. But this does not seem 
to be the case. It should be noted, however, that 
when the vessel density is increased in later 
analyses these results may change dramatically. 
Thus, as is usually the case, the results of only 
one analysis are not the end of the road. Instead 
they simply spur more questions and the journey 
continues. 
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