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Abstract 
 This paper compares several optimization algorithms 
that can be used to generate exact D-optimal designs (i.e., 
designs for a specified number of runs) for any polynomial 
model.  The merits and limitations of each algorithm are 
demonstrated on several low-order polynomial models, with 
numerical results verified against analytical results.  The 
efficiencies – with respect to estimating model parameters –  
of the D-optimal designs are also compared to the 
efficiencies of one commonly used class of experimental 
designs: fractional factorial designs.  In the examples 
discussed, D-optimal designs are significantly more efficient 
than fractional factorial designs when the number of runs is 
close to the number of parameters in the model. 
 
1. INTRODUCTION 

In simulations and experiments where little is known 
about the underlying function relating the independent 
variables to the dependent variable, a polynomial model is 
often used to approximate the behavior of the computer 
simulation or real-world system.  One common example of 
this approach is variable screening tests, where a 
multivariate linear model is used to identify the handful of 
independent variables – out of a potentially huge set of 
variables – that have a systematic effect on the dependent 
variable.  Another application of polynomial models is 
response surface modeling, where a polynomial surface is 
used as an approximation of the true function in order to 
reduce the computational load of function optimization.  In 
other contexts, there may be reason to believe that a 
particular polynomial model represents the true relationship 
between the inputs and output.  The techniques discussed in 
this paper apply to all cases where a polynomial relationship 
between independent and dependent variables is assumed.  
Although the researcher may be interested in characterizing 
the bias error of the polynomial model (see [Goel et. al. 
2006], for example), in many cases the goal of the 
experiment is simply to minimize the post-experiment 
uncertainty in the model parameters.  In such cases, it is 

prudent to design the experiment based on the D-optimal 
criterion.     

Polynomial models are of the form 
 

k
T
kk vz += θh    k = 1, …, n, 

 

where n is the number of simulation runs; vk represents 
constant variance, mean-zero, uncorrelated process noise;  
hk = g(xk) is the p-dimensional design vector (which is a 
function of the vector input x for the kth simulation run); θ is 
a p-dimensional vector of regression coefficients; and zk is 
the kth simulation output.  The form of the design vector hk 
is determined by the specific regression model being used.  
For example, if the model includes an intercept, linear term, 
and quadratic term for a single factor (independent 
variable), then xk will be a scalar and hk = [1 xk  xk

2]T.  In 
order to be a polynomial model, hk must consist only of 
multiplicative combinations of the factors to various powers 
(e.g., x1

3, x3, x2x5
2, etc.).  The n input vectors are chosen 

from N ≤ n design points (X1, X2,…, XN) in the space of 
possible input combinations.  Although we will consider 
only hypercube design spaces, some of the techniques 
considered in this paper can easily be extended to more 
general design spaces that one might encounter in practice.   
The choice of input vectors at various design points is 
summarized by the concept of a design, denoted 
 

ξ ≡ X1 X2 XN
w1 w2 wN

…
…ξ ≡ X1 X2 XN

w1 w2 wN

…
… , 

 

where wi represents the proportion of total runs executed at 
design point Xi.  Being a set of proportions, we constrain the 
wi to satisfy  
 

1
1

=∑ =

N

i iw . 
 

For finite-sample designs, note that wi n must be a natural 
number. 

In this context, one of the most common goals of 
experimental design is to identify a design ξ that minimizes 
the post-experiment uncertainty in the p parameter 
estimates.  More formally, the goal is to choose ξ such that 
volume of the p-dimensional confidence ellipsoid for θ is 
minimized.  This can be accomplished by choosing ξ such 
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that det[HTH] is maximized, where H is the pn ×  matrix 
with the ith row equal to hi (see, for example, [Spall 2003] 
pp. 471-472).  A design that maximizes det[HTH] for a 
fixed number of runs is referred to as an exact D-optimal 
design.  Regardless of the specific form of the regression 
model (i.e., regardless of the specific form of the hk), the 
matrix H has d = n f degrees of freedom, where f is the 
number of factors.  Thus, the problem of choosing the best 
design can be cast as a minimization problem, where the 
dimension of the search space is d and with loss function 
L(μ) = −det[HTH] (μ is the d-dimensional vector of input 
levels for each factor in each run). 

Even for relatively small n and f, the dimension of the 
search space d quickly becomes quite large.  For example, if 
n = 10 and f = 2, then d = 20.  This makes identifying a 
global minimum of L(μ) for large n and large f difficult.  
The challenge of obtaining an exact D-optimal design for 
general n, f, and polynomial regression model is one of the 
reasons researchers rely so heavily on classical methods of 
experimental design (e.g.,. fractional factorial designs).  In 
the following sections, we examine a few specific examples 
that test the limits of several optimization algorithms in 
identifying D-optimal experimental designs. 

 
2. OPTIMIZATION ALGORITHMS 

The application of numerical techniques to the problem 
of identifying exact D-optimal designs is not new.  Chapter 
15 of [Atkinson and Donev 1992] describes several 
algorithms that have been applied in this context.  One such 
class of algorithms, called exchange algorithms, involves 
three steps: (1) the generation of a list of M candidate points 
in the design space, (2) the generation of an initial design 
typically based on the M candidate points, and (3) iterative 
updates of the initial design through changes in the design 
weights wi (i = 1,…,M) with the goal of improving the 
design with respect to the D-optimal criterion.  Matlab’s 
statistics toolbox contains two implementations of such 
exchange algorithms: rowexch and cordexch.  Both 
functions generate the same default list of candidate points: 
the set of 3f factorial points at levels −1, 0, and 1 for 
quadratic models, and the set of 2f factorial points at levels  
−1 and 1 for linear models. Polynomial models of order 
greater than order two are not handled by rowexch and 
cordexch.  The default initial design for both functions is 
generated by selecting each of the d inputs from a uniform 
distribution over [−1,1].  This represents a departure from 
most exchange algorithms, which typically choose an initial 
design based on the list of carefully chosen candidate points.  
The two Matlab functions differ, though, as to how the 
initial design is updated.  In the case of rowexch, the 
algorithm evaluates the utility of replacing each point in the 
initial random design by one of the points in the set of M 

candidate design points.  The algorithm sequentially 
replaces each of the design points by the candidate design 
point that leads to the largest gain in det[HTH], if any gain 
is possible.  The exchange portion of cordexch works 
similarly, although this algorithm works at the component 
level, treating each of the f inputs in each of the n runs 
separately. 

In addition to these exchange algorithms, we will 
consider three well-known optimization algorithms: Blind 
Random Search (BRS), Localized Random Search (LRS), 
and Simultaneous Perturbation Stochastic Approximation 
(SPSA).1  Knowing that the efficiency of BRS is poor even 
when the dimension of the search space is only moderately 
high (e.g., more than four or five in many applications), this 
algorithm serves primarily as a baseline upon which to 
improve.  LRS search is well-suited to a problem of this 
type, where loss function evaluations are noise-free and the 
appropriate choice of random search vectors ensures that 
one will not get stuck at a local minimum.  It is also natural 
to apply SPSA in this context, since the randomness in 
search direction and magnitude, like LRS, ensures that 
SPSA will not get stuck at a local minima.  SPSA has the 
additional feature of using a noisy approximation of the loss 
function’s gradient to guide the direction of its search.  Note 
that although SPSA’s stepwise approximation of the loss 
function is noisy, each individual loss function measurement 
is noise-free.  

Before discussing results, a few words about the 
particular implementation of LRS and SPSA used here.  
LRS works by perturbing its estimate of the optimal θ using 
a random search vector at each iteration and checking for 
improvement in the loss function.  To allow LRS converge 
more rapidly in the latter stages of its search, the variance of 
the random search vector generated at each iteration is 
reduced from 0.025 to 0.01 after 70% of its computation 
budget is exhausted.  Similarly, the parameters that control 
how fast SPSA’s gain sequences decay are changed from 
the standard α = 0.602 and γ = 0.101 to the asymptotically

                                                 
1 For details on these algorithms, see [Spall 2003] Chapter 2 
(BRS and LRS) and Chapter 7 (SPSA). 
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Table 1. det[Halg
THalg] / det[Hoptimal

THoptimal] for various approaches.  Results apply to a quadratic regression with two factors. 
 

n BRS LRS SPSA SPSA best rowexch cordexch

6 0.190 0.999 0.996 1.000 0.956* 0.983

7 0.163 0.999 0.996 1.000 0.979* 0.994

8 0.172 0.997 0.991 1.000 0.976* 0.997

9 0.130 0.999 0.973 0.999 1** 1**
* Equivalent to a fractional factorial design; ** Equivalent to a full factorial design

 
optimal α = 1 and γ = 1/6 after 70% of its computational 
budget is exhausted.2  Since the loss function associated 
with SPSA’s estimate is not, in general, monotonically 
increasing from iteration to iteration, it is possible that 
SPSA may happen across the optimal design (or a design 
arbitrarily close to it) and then proceed to search among 
lesser designs in future iterations.  For this reason, we will 
also consider the best design SPSA generates across all 
iterations.  This estimate will be referred to as ‘SPSA best,’ 
and computing it requires making an extra loss function 
measurement at each iteration of SPSA.  Apart from the few 
exceptions noted here, the implementations of BRS, LRS, 
and SPSA used in this paper are standard. 
 
3. QUADRATIC REGRESSION WITH TWO 

FACTORS 
In this section, we consider the most general second-

order polynomial, but in order to compare with known 
solutions, we limit ourselves to two factors.  Thus, our 
regression model is 

 

vxxxxxxz += θ],,,,,1[ 21
2
22

2
11 , 

 

where x1 and x2 are scalars such that −1 ≤ x1, x2 ≤ 1,3 and θ 
is a 6-dimensional vector of regression coefficients.   

[Box and Draper 1971] solved the problem of 
generating an exact D-optimal design for this regression 
model when the number of simulation runs n = 6, 7,…,18.  
According to these authors, the D-optimal designs for each 
n were obtained via a computer hill-climbing search.  Exact 
D-optimal designs for n = 6,…,9 are as follows: 

                                                 
2 See [Spall 2003] p. 190 for a discussion of reasonable 
choices for α and γ, including the recommendation to 
convert α and γ to their asymptotically optimal values at 
some point in the search. 
3 The D-optimal criterion has the desirable property of 
transform invariance.  That is, a D-optimal design for each 
factor ranging between −1 and 1 is also a D-optimal design 
after the range of each factor undergoes a linear 
transformation (with design points scaled in the same way, 
of course). 

n = 6: (−1, −1), (1, −1), (−1, 1), (−δ, −δ), (1, 3δ), (3δ, 1),  
where δ = (4−√13)/3 = 0.1315; 

n = 7: (±1, ±1), (−0.092, 0.092), (1, −0.067), (0.067, −1); 
n = 8: (±1, ±1), (1, 0), (0.082, −1), (0.082, −1), (−0.215, 0); 
n = 9: the 32 factorial at levels −1, 0, and 1. 
 

For their own independent searches, BRS, LRS, and 
SPSA were each given a sizeable budget of 106 (1 million) 
loss function evaluations.  Note that, since the computation 
of ‘SPSA best’ requires an extra loss function measurement 
at each iteration, ‘SPSA best’ is really the result of 1.5 
million loss function evaluations.  Since the number of loss 
function measurements made during each call to rowexch 
and cordexch varies, it is impossible to assign them the 
same fixed computational budget.  To cope with this, we 
store the best design across 10,000 replications of rowexch 
and cordexch.  In this way, the runtime of each of the five 
algorithms is roughly the same.  The results of these 
searches are summarized in Table 1.   

Although rowexch is able to incorporate design points 
in its initial random design (generated in exactly the same 
way that BRS generates its candidate designs), it never did 
so in this experiment.  Thus, out of 10,000 initial random 
designs, none of the design points were better suited to the 
problem of estimating the optimal θ than the points in the 32 
factorial space.  As a result, rowecxh simply generated the 
best fractional factorial design for each n.  On the other 
hand, the component-wise exchange in cordexch did find 
design points better suited for estimating θ.  In this way, 
cordexch generated designs more efficient than the 
fractional factorial designs. 

As expected, BRS is unable to cope with the high 
dimensionality of the search space (in this example, the 
dimension is between 12 and 18).  On the other hand, there 
is nothing stopping BRS from stumbling upon an excellent 
design – it just may take billions (or more!) iterations.  We 
also observe that LRS performs very well, considering the 
lack of directionality in its search.  In fact, LRS outperforms 
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Table 2. det[Halg
THalg] / det[Hoptimal

THoptimal] for various approaches.  Results apply to a quadratic regression with 3 factors. 
 

n BRS LRS SPSA SPSA best rowexch cordexch

10 0.000 0.960 0.994 0.996 0.716 0.716
 

 
 
SPSA, unless you consider the best SPSA design across all 
iterations.  Although SPSA and LRS provided more 
efficient designs than Matlab’s exchange algorithms in some 
cases, the difference is not extraordinary.  For this particular 
example, using the fractional factorial designs – which are 
easy to generate – only slightly degrades the potential 
efficiency of the design.  Still, one might imagine cases 
where each experiment is so costly (or time-consuming) that 
refining a fractional factorial design is worthwhile.  We do 
note, however, that the gap in design efficiency between 
fractional factorial design and the exact D-optimal design is 
largest when the number of runs is equal to the number of 
parameters in the model. 
 
4. QUADRATIC REGRESSION WITH THREE 

FACTORS 
Extending the results of the previous section, we now 

consider the problem of generating an exact D-optimal 
design for the quadratic regression model with three factors 

 

vxxxxxxxxxxxxz += θ],,,,,,,,,1[ 323121
2
33

2
22

2
11  

 
 

and n = 10 simulation runs.  Note that since the model 
contains ten parameters, the number of simulation runs must 
be at least ten.  In this setting, the dimension of the design 
space is n f = 30.  [Box and Draper 1971] also solved this 
problem, stating that the optimal inputs for ten runs are 
 

(−1,−1,−1), (1,−1,−1), (−1,1,−1), (−1,−1,1), (−1,α,α), 
(α,−1,α), (α,α,−1), (−β,1,1), (1,−β,1), and (1,1,−β), where 

α = 0.1925 and β = 0.2912. 
 

Applying the same algorithms as in the previous 
sections, again allowing 106 loss function evaluations for 
BRS, LRS, and SPSA, as well as 10,000 replications of 
rowexch and cordexch, we get the results summarized in 
Table 2.  Again we observe the futility of BRS in a high-
dimensional situation; even with 106 iterations, the BRS 
design fails to have even 0.1% of the efficiency of the 
optimal design.  We also observe that LRS and SPSA are 
able to generate designs very close to the exact D-optimal 
design, with the best SPSA design across all iterations 
coming within 0.4% of the exact D-optimal design. 

Since the regression model used in this example (and 
the last) is quadratic in the factors, fractional factorial 
designs consist of the factors set at one of three levels – 

either −1, 0, or 1 – in each run.  Thus, with 30 input levels to 
choose, there are 330 ≈ 2 x 1014 possible fractional factorial 
designs.  Although rowech and cordexch are not constrained 
to generate fractional factorial designs, they both returned 
factional factorial designs in this case.  With the gap in 
design efficiency between good fractional factorial designs 
(generated by rowech and cordexch) and the exact D-
optimal design at around 28%, this is a case where allowing 
input levels to take on more than two or three values (a la 
many classical experimental designs) offers a significant 
gain in performance. 

 
5. PURE CUBIC REGRESSION WITH ONE 

FACTOR 
In this final example, we show that numerical methods 

can also be helpful in determining asymptotic D-optimal 
designs.  An asymptotically D-optimal design, as opposed to 
an exact D-optimal design, assigns weights wi to the N 
design points assuming an infinite number of runs.  We 
investigate the optimum experimental design for the 
regression model  

 

,],,,1[ 32 vxxxz += θ  
 

where −1 ≤ x ≤ 1 is a scalar input.  In this case, θ contains 
four parameters, so the number of runs n must be at least 
four.  We proceed by finding the optimal finite-sample 
design with n = 4 and showing via the Kiefer-Wolfowitz 
equivalence theorem that this design is in fact the D-optimal 
asymptotic design.   

To test design ξ for asymptotic efficiency using the 
Kiefer-Wolfowitz equivalence theorem (see [Spall 2003] p. 
478 for a statement of the theorem), we must compute the 
variance function 

 

)()ξ()()ξ,( 1T xxxV gMg −= , 
 

where g(x) maps inputs to the space of design vectors and 
M(ξ) is the precision matrix 
 

T
1

)()()ξ( i
N

i ii XX ggM ∑=
= w . 

 

The variance function V(x,ξ) is proportional to the variance 
of predictions , and if V(x,ξ) is less than p for all x 
given design ξ, the Kiefer-Wolfowitz equivalence theorem 
states that ξ is an asymptotically D-optimal design. 

)(ˆ xz

One might approach the problem of identifying the     
D-optimal asymptotic design by first identifying a candidate 
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set of support points and then searching for the optimal 
weighting across these points.  This approach is analogous 
to that of factorial designs, where the factors are constrained 
to take on either −1 or 1 for linear regression models and 
either −1, 0, or 1 for quadratic regression models.  In the 
current example, if the candidate set of support points is 
specified to be {−1, −0.5, 0, 0.5, 1}, the best design across 
the 54 = 625 possible designs is 
 

ξ (1) = −1  −0.5   0.5   1
¼ ¼ ¼ ¼ξ (1) = −1  −0.5   0.5   1
¼ ¼ ¼ ¼  

 

For this design, the value of det[HTH], where H is one 
of the 4! = 24 possible permutations of the four design 
points, is 1.2656.   

Computing the variance function V(x,ξ(1)) and plotting 
V(x,ξ(1)) versus x (−1 ≤ x ≤ 1) gives Figure 1. 

 

Figure 1. Plot of the variance function V(x,ξ(1)). 
 

Since V(x,ξ(1)) is greater than p = 4 for some x, the 
Kiefer-Wolfowitz equivalence theorem ensures that ξ(1) is 
not the D-optimal asymptotic design.  On the other hand, the 
maximum of the variance function is not much greater than 
p (it is approximately 4.152), which suggests that ξ(1) is 
“close” to the D-optimal asymptotic design. 

Another approach is to perform a numerical search, 
such as has been described in this paper, over the continuous 
domain  in R4]1,1[− 4.  The following design was generated 
with 250,000 iterations of SPSA: 

 
 

ξ (2) = −1   −0.4472   0.4420   1
¼ ¼ ¼ ¼ξ (2) = −1   −0.4472   0.4420   1
¼ ¼ ¼ ¼ . 

 

For this design, the value of det[HTH] is 1.3105.  
Furthermore, computing the variance function V(x,ξ(2)) and 
plotting V(x,ξ(2)) versus x where −1 ≤ x ≤ 1 gives Figure 2. 

In addition to det[HTH] being larger for ξ(2) than for 
ξ(1), ξ(2)

 is very close to satisfying the condition that 
V(x,ξ(2)) ≤ p (the maximum value of V(x,ξ(2)) is 4.001 at      
x = 0.45).  Thus, in terms of efficiency in the choice of 

design points, ξ(2) is very close to a D-optimal asymptotic 
design.  

 
Figure 2.  Plot of the variance function V(x,ξ(2)). 
 

A third approach is to attack the problem analytically.  
If we assume that the set of optimal design points is of the 
general form {a1, a2, a3, a4}, where −1 ≤ ai ≤ 1 (i = 1,…,4), 
then det[HTH] does not have enough structure to determine 
the optimal values for the ai.  On the other hand, if we 
assume that the set of optimal design points is of the form 
{−1, −a, a, 1}, as suggested by the numerical search, 
det[HTH] has the form 

 

246810 1664966416 aaaaa +−+− . 
 

Setting the derivative of this equal to zero, we get 
 

0818165 3579 =+−+− aaaaa . 
 

Factoring this result, we get 
 

0)1()1)(15( 332 =+−− aaaa . 
 

The above polynomial in a has roots at −1, 1, 0, 1/√5, 
and −1/√5.  Inspection of the second derivative or a plot of 
det[HTH] reveals that only 1/√5 and −1/√5 provide local 
maxima.  Note that 1/√5 ≈ 0.44721, which makes the 
following design very similar to the one found via the 
numerical search: 

 

ξ (3) = −1   −1/√5 1/√5 1
¼ ¼ ¼ ¼ξ (3) = −1   −1/√5 1/√5 1
¼ ¼ ¼ ¼ . 

 

A plot of V(x,ξ(3)) reveals that the maximum value of 
the variance function over the interval −1 ≤ x ≤ 1 is p = 4.  
Thus, by the Kiefer-Wolfowitz equivalence theorem, design 
ξ(3) is a D-optimal asymptotic design.  In this example, the 
numerical approach was instrumental in simplifying the 
analytical optimization of det[HTH]. 
 
6. CONCLUSIONS 

We have explored several techniques that can be used 
to numerically search for exact D-optimal designs.  For the 
regression models considered, we observed that BRS was 
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unable to cope with the high-dimensionality of the search 
space.  LRS and SPSA, on the other hand, did converge to 
the optimal design after many iterations.  But because the 
magnitude of det[Hoptimal

THoptimal] for the optimal design 
matrix Hoptimal increases as the number of runs n and factors 
f increases, SPSA needed to be retuned for each problem.  
LRS, on the other hand, did not require any retuning; that is, 
the same distribution of random search vectors was used in 
all cases.  Another desirable property of LRS and SPSA is 
that they can be easily extended to more general design 
spaces (i.e., space more complex than a hypercube).  
Matlab’s exchange algorithms can also be extended in this 
way, although the user must generate custom candidate lists 
and initial designs that adhere to the design space 
constraints. 

This paper did not explore the role of orthogonality in 
the selection of experimental designs.  If a design is 
orthogonal, then each component of θ may be treated 
independently from the others in post-experiment 
hypothesis testing.  In many cases, the designs generated by 
Matlab’s exchange algorithms were, for the most part, 
orthogonal; the nearly D-optimal designs generated by LRS 
and SPSA, on the other hand, would typically lead to 
undesirable correlations between components of θ.  The 
tradeoff – if there is one to be made – between orthogonality 
and D-optimality must be made by the researcher.  If 
orthogonality or near-orthogonality is required, the 
necessary constraints could be imposed on SPSA and LRS 
to generate such designs. 

This work might be extended by investigating the 
performance of these techniques when the number of factors 
is considerably higher.  Although analytical solutions have 
not been derived in many cases, numerical techniques could 
at least be compared with fractional factorial designs.  
Another extension of this work might be a theoretical 
comparison, possibly within the framework suggested by 
[Spall et. al. 2006], of algorithm efficiencies for finding D-
optimal designs in certain classes of linear regression 
models.  Finally, one might explore the efficiencies of these 
techniques when generating designs based on other design 
criteria, such as the model-robust and model-sensitive 
criteria discussed in [Goos et. al. 2005]. 
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