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We propose two finite difference two-timescale Simultaneous Perturbation Stochastic Approximation (SPSA) algorithms for
simulation optimization of hidden Markov models. Stability and convergence of both the algorithms is proved. Numerical
experiments on a queueing model with high-dimensional parameter vectors demonstrate orders of magnitude faster convergence
using these algorithms over related (N + 1)-Simulation finite difference analogues and another Two-Simulation finite difference

algorithm that updates in cycles.

1. Introduction

A popular approach to simulation optimization of dis-
crete event systems with continuous-valued parameters is
based on stochastic approximation (Kushner and Clark,
1978; Pflug, 1996; Kushner and Yin, 1997; Andradéttir,
1998). Gradient descent stochastic approximation algo-
rithms are typically used to perform function optimiza-
tion in cases where the function to be optimized is difficult
to compute analytically, see for instance, Fu (1994).
Several stochastic approximation schemes that have been
used for optimization of long run average performance
measures suffer from the drawback that they require data
aggregation (for averaging) over regeneration epochs (Fu,
1990; Chong and Ramadge, 1994). These epochs can be
very infrequent (particularly for large systems/networks),
making the scheme extremely slow in practice. In Chong
and Ramadge (1993), an algorithm that updates the pa-
rameter after a fixed number of customers is presented
and convergence proved. However, the algorithms in Fu
(1990) and also Chong and Ramadge (1993, 1994) all
require the availability of direct gradient estimates, and
are all based on infinitesimal perturbation analysis (Ho
and Cao, 1991). In L’Ecuyer er al. (1994) and L'Ecuyer
and Glynn (1994), various stochastic approximation al-
gorithms governed by finite difference estimates (as well
as direct gradient estimates) were considered for opti-
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mizing a steady-state performance measure with respect
to a scalar parameter in a single-server queue.

In Bhatnagar and Borkar (1997, 1998), 2 more general
setting for vector parameters and long run average per-
formance measures is considered, in which the parameter
is updated at deterministic instants that are obtained
using two timescales: a faster timescale at which the sys-
tem evolves, and a slower timescale at which the param-
eter is updated. Specifically, in Bhatnagar and Borkar
(1997), the parameter is updated at deterministically in-
creasing time instants that are in turn obtained using two
timescales (see also Bartusek and Makowski (1994)). On
the other hand, in Bhatnagar and Borkar (1998), the
parameter is updated at every instant using coupled it-
erations that are governed by different timescales, How-
ever as with any other forward finite difference scheme
(L’Ecuyer et al., 1994; L'Ecuyer and Glynn, 1994), these
schemes also require (N + 1) parallel simulations for an
N-vector parameter. A proposed alternative in Bhatnagar
and Borkar (1997) uses only two parallel simulations at
any instant by moving the algorithm in bigger loops or
cycles but results in slow convergence,

Spall (1992) proposed a stochastic approximation
technique that requires only two simulations for a pa-
rameter vector of any dimension and updates all pa-
rameter components at every instant. This technique
came to be known as Simultaneous Perturbation Sto-
chastic Approximation (SPSA), since it simultaneously
perturbs the various parameter components randomly,
most commonly by using independent and identically
distributed (i.i.d.), symmetric Bernoulli random variables
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in the two simulations, and uses the estimates thus ob-
tained for updating the parameter. It has been applied in
various contexts; for instance, see Fu and Hill (1997) for
an application of SPSA to optimization of discrete event
systems. Most of the work in discrete event systems, ex-
cept Fu and Hill (1997), is on low-dimensional problems
(Chong and Ramadge, 1993; L’Ecuyer eral., 1994:
L’Ecuyer and Glynn, 1994; Kushner and Vazquez-Abad,
1996; Bhatnagar and Borkar, 1997, 1998). In Spall (1992)
and Kushner and Yin (1997), a general idea for high-
dimensional problems is proposed.

Motivated by all of the above considerations, in this
paper we develop SPSA variants (that we call SPSA-1 and
SPSA-2) of the two-timescale algorithms of Bhatnagar
and Borkar (1997, 1998) (respectively) for optimizing
high-dimensional parameters in hidden Markov models
(cf. Elliott et al. (1995)). The algorithm SPSA-1 uses only
two parallel simulations and updates the parameter at
increasing time instants as in Bhatnagar and Borkar
(1997). The algorithm SPSA-2 also uses only two parallel
simulations but has the added advantage (over the algo-
rithm in Bhatnagar and Borkar (1998)) that it allows for
data aggregation over a fixed number of instants in be-
tween two successive updates of the parameter for better
performance. Moreover, the algorithm in Bhatnagar and
Borkar (1998) was only for ordinary Markov processes
and not hidden Markov models (which is a more general
setting) considered here. We prove the convergence of
both of these schemes and numerically demonstrate the
algorithms on a feedback queueing network with high-
dimensional parameters. These schemes are found to
converge orders of magnitude faster than their (N + 1)-
Simulation analogues in Bhatnagar and Borkar (1997,
1998), and also the Two-Simulation algorithm of
Bhatnagar and Borkar (1997) that moves in cycles.

Hidden Markov models arise in many queueing and
stochastic control applications. To illustrate a very simple
instance of a hidden Markoy model, consider an M /G/1
queue. Let {g,} represent the queue length process ob-
served at customer arrival epochs. Similarly, let {r,}
represent the sequence of residual service times of the
customers in service at these epochs. Then the joint pro-
cess {(gn.r,)} is Markov. In most real life applications
only the process {g, } is observed whereas {r,} is not. Thus
in this example, {g,} represents a hidden Markov model.

In Bhatnagar er al. (1999a), the algorithms SPSA-1 and
a special case of SPSA-2 were applied for the closed loop
feedback control of Available Bit Rate (ABR) service in
Asynchronous Transfer Mode (ATM) networks, by
considering parameterized feedback policics. A finite
state setting was considered there and as a result there
was no problem with stability of the schemes. We develop
these algorithms in this paper in the framework of hidden
Markov models with an unbounded state space, and
therefore stability issues are explicitly addressed. The
convergence of SPSA-l in the finite state setting of
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Bhatnagar er al. (1999a) was proven in Bhatnagar e al.
(1999b). The convergence analysis of SPSA-2 in any set-
ting has not been shown earlier.

The rest of the paper is organized as follows: in the next
section, we formulate the optimization problem, present
the assumptions on the system and give a result on
tightness of the stationary measures for the hidden
Markov model. In Section 3, we present our SPSA al-
gorithms (SPSA-1 and SPSA-2) and compare their per-
formance with their corresponding analogues in
Bhatnagar and Borkar (1997, 1998). In Section 4, we
present the detailed convergence analyses for both algo-
rithms. In order to save space, however, we skip the more
straightforward steps in the analysis and refer the inter-
ested reader to Bhatnagar e al. (2000) for all the details.
In Section 5, numerical results comparing the SPSA al-
gorithms with those of Bhatnagar and Borkar (1997,
1998) for a simple queueing system are presented. Finally,
Section 6 provides the concluding remarks.

2. The optimization problem

The process that we seek to optimize is an #9-valued
parameterized (with parameter 0 € #") Hidden Markov
Model (HMM) represented by {¥(j),/ > 0} and is given
by the set of coupled iterations

X(+1) = FX (), Y(),£0),0), (1)

Y+ 1) =GX (), Y(j).n()), 6), )
J 2 0. Here the state process {X ()} is #%-valued and is
unobserved or hidden. Further, {£(j)}, {n(j)} are i.i.d.
sequences in #' and #°, respectively, and are mutually
independent. The maps F: % x & x R' x # — A9
and G: A x R x & x " — A" are measurable. Fur-
ther, 82(01,....&:)? € #" represents the parameter to
be tuned in order to minimize a certain cost function J(f)
(defined below). We will assume that 6 takes values in a
set of the form C2 H‘,.V:, (0 min, B max)- We assume that the
joint process {(X(/), Y(j))} is ergodic Markov for every
fixed 0, and has stationary distribution p,(dx,dy). Let
vg(dy) be the marginal (corresponding to {¥(j)}) of this
stationary distribution. Also, let py(x, y; d', dy’) represent
the transition kernel of {(X (), Y(j))}. Let h: #7 — & be
a given bounded and continuous cost function. Qur aim
then is to find a @ in the set C that minimizes the average
cost

N—1
J(H)éi\!i_{]gc%;h(}’(j}).

Since {(X(j), ¥())} is ergodic Markov (for fixed 6), the
above limit exists and

J(0) = f hy)va(dy).
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Remark. As shown in Borkar (1993), very general classes
of random processes have an HMM representation if one
is permitted time nonhomogeneity namely, replace F and
G in (1) and (2) above with F}, G}, j > 0. Also, {&(;)} and
{n(j)} can be taken to be uniformly distributed on [0, 1]
without loss of generality.

We now proceed with the rest of the model. As mentioned
earlier, the parameter 6 in (1) and (2) has to be tuned in
order to minimize J(0). Let 8, € C represent the param-
eter value at instant n. Thus in particular, we will consider
the following dynamics:

X(+1)=FX{), Y, E(), 0 (3)
Yy +1)=GX\), ¥().n0), ;)= (4)

J 2 0. Let 9, £ 6(X()), Y()), E0). 1), Gy, j < ), n >0,
represent the o-field generated by {X(j), Y(), (), n(/)-
0./ = 0} up to instant n. Note that since {6} can be any
arbitrarily defined parameter sequence, {(X(/), Y())} as
in (3) and (4) is in general not Markov. We thus force
{(X(/). Y(j))} to be Markov by assuming that any se-
quence {0;, j > 0} satisfies

PX(n+1)ed Y(n+ 1) e B|¥9,)
=y, (X (1), Y(n): 4, B), (5

for any 4, B, Borel in 27 and 2 respectively. We call any
such {0,} satisfying (5), an M-Sequence.

Next, we list the following assumptions on our system,
Assumptions (Al), (A2) and (A3) are needed to prove
convergence of our first algorithm SPSA-1, while As-
sumptions (Al), (A2') and (A3) are required for conver-
gence of algorithm SPSA-2. Both algorithms SPSA-1 and
SPSA-2 are presented in Section 3.

Assumptions

(A1) The average cost J() is continuously differentiable.
(A2) The map (60,x,y) — py(x,y;dx',dy') is continuous,
(A2') For any h € C(#%"“) vanishing at oo,
lis /Pﬁ(x,y; dx’, dy’)h(x’ay,) =0,

[[{xp)ll—20
uniformly over 8 € C.
(A3) Liapunov Stability Condition: There exist nonnega-
tive ¥ € C(#7*), K C #" compact and ¢ > 0 such
that under any M-Sequence {6,},

l. “m“uw =< (x y)
2. sup,,EfV( X(n), Y(n)) ]<oo
3. E[P(X(n+1),

Y(n+1))|%,] < V(X(n),¥(n) — e,
whenever (X (n), Y(n)) €K, n > 0.

In the above, || - || represents sup norm. Note that a
sufficient condition for Assumption (A1) to be satisfied is
that the parameterized stationary distribution Hp(dx, dy)
of the ergodic Markov process {(X(n),Y(n))} be con-
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tinuously differentiable in the parameter 6. In Vazquez-
Abad and Kushner (1992), certain sufficiency conditions
for showing the latter have been given. Assumptions (A2)
and (A2') are technical conditions that are satisfied rou-
tinely by most systems, see Bhatnagar and Borkar (1997,
1998). Finally, Assumption (A3) is required to ensure that
the system remains stable, and is a standard assumption.

Recall that a sequence {/i,} of probability measures on
S is tight if for each e > 0, there exists a compact set
K. C § such that ji,(K,) > | —e for all n. The following
lemma shows that the sets of all parameterized stationary
distributions {4y, 0 € C} and their marginals {vy,0 € C}
are tight and crucially uses Assumption (A3) for its proof.
This result is required later in the analysis.

Lemma 2.1. {u;,0 € C} (resp., {vy,0 € C}) is compact
and the map 0 — py (resp., vy) is continuous,

Proof. Follows in exactly the same manner as Lemma 2.1
of Bhatnagar and Borkar (1997). [ |

3. Two-timescale SPSA algorithms

In this section, we present our two-timescale SPSA al-
gorithms and compare their performance with corre-
sponding two-timescale finite difference algorithms in
Bhatnagar and Borkar (1997, 1998). In order to put
things in proper perspective and to clearly bring out the
advantages of our SPSA algorithms, we first begin with
the (N + 1)-Simulation finite difference stochastic ap-
proximation algorithm of Bhatnagar and Borkar (1997)
that we refer to as (N + 1)-Simulation FDSA-1 and its
corresponding Two-Simulation alternative (proposed in
that paper) referred here as Two-Simulation FDSA-1. We
then present our first SPSA algorithm (SPSA-1). Later,
we illustrate the (N + 1)-Simulation finite difference al-
gorithm of Bhatnagar and Borkar (1998) that we refer to
as (N + 1)-Simulation FDSA-2, followed by its general-
ized SPSA version (SPSA-2). Finally, we briefly compare
all these algorithms and argue the reasons for the superior
performance of SPSA-1 and SPSA-2 over the algorithms
in Bhatnagar and Borkar (1997, 1998).

3.1. The algorithms

The algorithms presented here are called two-timescale
algorithms since they are governed by two step-size se-
quences (or timescales) {a(n)} and {b(n)} defined below.
Before proceeding, we define some notation. Let § > 0 be
a fixed small constant. Let m;(x)=min(max(0;min,x),
Oimax), i=1,...,N, denote the point closest to x € # in
the interval [B, s Qi) 1C gf i=1,...,N, and n(6) be
defined by the vector n:(G) (7 (6y), .. ,rr,v(BN))T. Then
n(0) is a projection of 0 € onto the set C. Define
sequences {a(n)} and {b(n)} as follows: a(0) = 5(0) = 1,
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a(i) =i, b(i) =
clearly,

aln+1) b(ﬂ"f*l)_)l
a(n) b(n) ’

Za(n) = Zb(n) =00
> a(n)?,> b(n)?

Define {n,,m >0} as follows: ny=1 and ny. =
min{/ > nu| 30, a(i) > b(m)}, m>1. Then {n,}
represents 4 deterministically increasing sequence of
points. In SPSA-1 (as also (N + [)-Simulation FDSA-1
and Two-Simulation FDSA-1), {n,} defines the param-
eter update instants of the algorithm.

Note that any Finite Difference Stochastic Approxi-
mation (FDSA) scheme ordinarily requires (N+1)
parallel simulations for an N-vector parameter, The two-
timescale stochastic approximation algorithm in
Bhatnagar and Borkar (1997) for an N-vector parameter
is thus as follows:

i™*,i>1, and with 1/2 <« < 1. Then

as n — oc,

(6)

< o0, a(n) =o(b(n)). (7)

(N + 1)-Simulation FDSA-1

The first simulation corresponds to {(X(/), ¥(j))} and is
governed by {0 } that is in turn defined by 8; = 0(m), for
Ay < j < Apyp. The remammg N parallel mmulatnons are
represented by {(X;(/), %())},. di=1...,N, and are re-
specmely governed by {6 (N} = 1 N, with

6'(j) = 0(m) + be;, for n, < j < fpyy, and wherc e; is the
unit vector with 1 in the ith component. Now, for

E=T (.
( (Y()) - (nun))_ @)

Bf(m el l)
- nl( f

It is clear thal one would require N + 1 parallel simula-
tions using this algorithm. An alternative scheme was
proposed in Bhatnagar and Borkar (1997) that uses only
two parallel simulations at any instant. This it achieves by
moving the algorithm in ‘cycles’, in each of which only
one component is updated. This scheme that we call Two-
Simulation FDSA-1 is as follows:

[

+ > al)

J—n,,,+1

Two-Simulation FDSA-I

The first simulation here corresponds to {(X (J) Y}
and is governed by {9 i} whcre the parameter 0 is the V-
vector Bj = (9 I ,N} with 0;; = 8( ), for
Bimpi-1 < f < m\,,,,ﬂ. z— l,...,N, m =0 (with N being
the dlmensmnal]ty of the parameter _vector), where 6;;
(resp. 0i(m)) is the ith component of 6; (resp. 0(m ). The
second simulation is now represented as {(X(/), Y()))}
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and is governed by {6;} defined by 8; = 8(m) + de;, for
ANmi-1 S J < Aymeis =1,...,N, m > 0. The algorithm

is as follows: Fori=1,...,N,
Oi(m + 1)
=7 (8,(#1) i fl aU)( (Y(5) - - h(YU) ))
J=nNmsiot+1

)

Thus using this scheme, the whole parameter is updated
once every nyy, steps instead of the n,, steps required for
one update using the (N + 1)-Simulation FDSA-1 version
(8) of it. Next, we present our first randomized difference
SPSA algorithm (SPSA-1).

Let for any i > 0, A(i)=(Ay,,...,Ay,)" be a vector of
i.i.d. mean-zero random variables with each A,
Jj=1,...,N, taking values in a compact set E C %Y. We
assume that these random variables satisfy Condition (B)
below.

Condition (B). There exists a constant K < oo, such that
forany i >0, and / € {1,...,N}, E[(A,;)"] < K.

Further, we assume that {A(i)} is a mutually independent
sequence with A(i) independent of a(&(/),/ < i), the fil-
tration (o-field) generated by the sequence of parameter
updates. Condition (B) is a standard condition in SPSA
algorithms. Minor variants of this condition are for in-
stance available in Spall (1992). Note that distributions
like Gaussian and Uniform are precluded whnle using
Condition (B). An important consequence of E[A2] < oo
is that P(A;; = 0) =

We now proceed with our first algorithm, SPSA-1,
wherein we use only two parallel simulations and update
all parameter components every n,, instants by perturbing
all of these simultaneously along random directions in the
two simulations.

SPSA-1

Consider two parallel simulations {(X*(j), ¥*())},
k= 1,2, respectively governed by {éjf}, k=1,2, as fol-
lows For the process {(X'(/),¥'(j))}, we define
9 = 0(m) — 6A(m), for n, < j < npy.y, m>0. The pa-
rameter sequence {82} for {(X2(j), Y*(j))} is similarly
defined by ﬂ 6(m ) + 0A(m), for ny < j < gy, m>0.

In the above, 0(m)2(6, (m), .. ., 0x(m))" is the value of
the parameter update that is govemed by the following
recursion equations. Fori=1,... N,

O;(m+1)
Mt | Ay 5l
_n,(ﬁ (m)+ Z U)( U%AhFY (/)))), (10)
J=nn+| m.f
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m = (. It will be shown in the proof of Theorem 4.1 that
the sequence {n,} is an exponentially increasing se-
quence. Thus, using the above algorithms, subsequent
parameter updates become less frequent as time pro-
gresses. The algorithm of Bhatnagar and Borkar (1998)
(cf. (N + 1)-Simulation FDSA-2 below) on the other
hand, uses coupled iterations with two timescales and
updates the whole parameter at every instant (even
though it requires N + 1 parallel simulations for the
same). We present this algorithm next.

/ + 1)-Simulation FDSA-2

Let {(X (n).Y(n))} be governed by {6(n)} (where
8(n) (81 (n),. BN (m))7 is the nth update of parameter 0)
which is updaled according to Equations (11) below. Let
us also define N additional parallel simulations as fol-
lows: Fori=1,...,N, let {(X'(n), Y(n))} be governed by
{0(n) + de;}. In the following, the sequences {Z(n)} and
{Z'(n)}, i=1,...,N, perform weighted averages of the
cost function values and are defined as in the last two
equations in (11) below. Lct Z(0) = Z'(0) =0,
i=1;: «; N Then, for.i=1,.

Bi(n+1) =m (U,(n) +a(n) [L;Z("l] )

Z(n+1) = Z(n) + b(r)(h(¥ () - Z(n)),
Zi(n+1) = Z'(n) + b(n)(A(Y'(n)) — Zi(n)). (11

It is clear that one requires N + 1 parallel simulations in
this manner. Finally, we present our next SPSA algorithm
(SPSA-2) which requires only two parallel simulations as
in SPSA-1 but which also allows for data aggregation
over a fixed number L of epochs in between two succes-
sive parameter updates for better performance.

SPSA-2

Let {(X~ (1) 1)} and {(X*(/),Y*(1))} be the two
parallel simulauons These depend on parameter se-
quences {68(n) — dA(n)} and {0(n) + 6A(n)} respectively
in the manner explained below: Let L > 1 be a given fixed
integer. We extract double sequences {(X, (n), Y, (n))}
and {(Xy(n),Y (n)}, n>0, m=0,1,...,L~1, from
the two parallel simulations in the following manner.
erte ! as | = nL +m, where n/O and m € {0,1,.

- 1} Now, set  X_( —X (nL +m) and
Y‘( )2y- (nL + m). Simjlarly X*( )—X*(nL-{-m) and
Y*(n )AY““(nL-i—m) respectively. Now, for m =0, I,

= 1. (X, (n),Y (n)) is governed by the parameter
0(n) — 0A(n). Similarly, for m=0,1,...,L -1, (X} (n),
Y. (n)) is governed by the parameter 6(n) + dA(n). We
also define two double sequences (Z,(n)} and {Z(n)},
nz>0,m=0,1...,L—1,inrecursions (12) for averaging
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the cost function. Let Z; (0) = Z7 (0) =---=Z;(0) =0
and Zf(0)=Zf(0)=---=2}(0)=0. Then, for
f=lly e Vs R0,

Bin+1) = n,-(a,-(n) +an) l%@]) (12)
where, for m=0.1,....L -1,
Zpp(n+1)
=Z, (n+1)+b(n) (Y, (n+1))—Z (n+1)),
Zy(n+1)
=Z,(n+ 1) +b(n)(h(Y,y (n+1)) = Zy(n+1)),

with Zy(n+1)=2Z;(n) and Zf(n+1) = Z/(n). Note
again that one requires only two parallel simulations in
this manner as opposed to N + | earlicr. We observed in
the numerical experiments that for L = 1, SPSA-2 did not
exhibit good performance when the parameter dimension
is high. This could be due to the fact that in this case, the
system does not adapt as quickly to the new parameter
update before it changes again. By selecting L > 1, one
can effectively take care of this problem by holding the
parameter fixed for L instants, thus giving the system
sufficient time to adapt to the new parameter update. The
choice of L is completely arbitrary though. In the nu-
merical experiments for instance, where we consider the
parameter vectors to be 10 and 40-dimensional respec-
tively, the value of L is chosen as 100.

3.2. Comparison of algorithms

We can classify the five algorithms broadly into two
categories — those that update the parameter over time
instants (or their multiples) of increasing separation
Am, m 2 1, and those that update the parameter at reg-
ular intervals. Let us first consider the'algorithms in the
first category. These comprise (N + 1)-Simulation FDSA-
1, Two-Simulation FDSA-1 and SPSA-1. As already
stated earlier, (N + 1)-Simulation FDSA-1 requires N + 1
parallel simulations at every instant but updates the
whole parameter vector once every n, instants. On the
other hand, Two-Simulation FDSA-1 uses only two
simulations and updates the parameter in cycles of iy,
m 2 1, where N is the parameter dimension. SPSA-1,
however, updates the full parameter every n,, instants and
still requires only two parallel simulations for doing so.
Thus SPSA-1 has the combined advantages of (N + 1)-
Simulation FDSA-1 and Two-Simulation FDSA-I.
Moreover SPSA-1 tracks trajectories of the ordinary
differential equation (o.d.e.) (13) as does (N + 1)-Simu-
lation FDSA-1. It was shown in Bhatnagar and Borkar
(1997) that Two-Simulation FDSA-1 tracks trajectories
of an o.d.e. that is similar to (13) but with a factor 1/N
multiplying its RHS. This factor essentially serves to slow
down the rate of convergence of the algorithm (9).
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Our next set of algorithms, namely, (¥ + 1)-Simulation
FDSA-2 and SPSA-2 update parameters after every fixed
number of instants. In particular, (N + 1)-Simulation
FDSA-2 updates the full parameter vector every instant
while requiring N + 1 parallel simulations for the same.
SPSA-2, on the other hand, requires only two parallel
simulations and updates the parameter after every fixed
number °L’ of instants. This number (L > 1) is chosen
arbitrarily. SPSA-2 thus allows for data aggregation in
between successive parameter update epochs (for better
performance) while requiring only two parallel simula-
tions at any instant. It will be shown in Section 4 that
SPSA-2 tracks the trajectories of the o.d.e. (13) on the
slower timescale. A similar result was shown in Bhatna-
gar and Borkar (1998) for (¥ + 1)-Simulation FDSA-2.
In Section 5, we shall consider a simple queueing network
with parameter vectors of dimensions 10 and 40 respec-
tively. We found that both SPSA-1 and SPSA-2 exhibit
significantly superior performance than the algorithms in
Bhatnagar and Borkar (1997, 1998) mentioned here. We
shall consider in Section 5 the following step-size se-
quences {a )} and {&(n)}: a(0) = b(0) = 1, a(n) = 1/n
and b(n) l/n“/‘. n > 1, For these sequences, ny = 1,
nsp =~ 2.5 x 10%, mioo =~ 4.3 x 10° etc. Thus, a possible
disadvantage in using SPSA-1 is for large systems/net-
works that require several updates of the parameter be-
fore convergence is achieved, since in using this scheme,
successive parameter updates are held fixed over intervals
of increasing sizes and thus the parameter is updated less
often as time progresses. This is not the case with algo-
rithm SPSA-2 where we hold the parameter fixed only for
a fixed number L of epochs before updating it. This in-
tuition is also confirmed in Section 5 where we show
numerical experiments with parameters of dimensions 10
and 40 respectively. We observed that when the param-
eter dimension is 10, SPSA-l outperforms SPSA-2.
However, when the same is increased to 40, it is SPSA-2
that performs better than SPSA-1.

As already observed, the algorithms SPSA-1 and
SPSA-2 are computationally superior than their corre-
sponding variants. This is however achieved by gener-
ating N iid. random variables A,,...,A,y, that
satisfy Condition (B). In particular, one could select
these to be i.i.d., Bernoulli distributed (as we do in our
numerical experiments in Section 6) namely, A,; = +1,
w.p. 1/2, i=1,...,N. It will become clear in the con-
vergence analysis in the next section that it is these
randomizations and the particular form of the gradient
estimates that are primarily responsible for both of
these schemes using only two parallel simulations at any
instant as against N + l. Generating N i.i.d., Bernoulli
random variables (or in general those satisfying Con-
dition (B)) is far more computationally simple than
generating N parallel simulations; the latter requires in
particular simulating N independent parallel systems. It
will be shown in the next two sections that algorithms
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(10) and (12) asymptotically track the stable points of
the o.d.e. (13).

Finally, in Bhatnagar er al. (1999b), the algorithm
SPSA-1 was analyzed in the context of rate based feed-
back flow control in Available Bit Rate (ABR) service in
Asynchronous Transfer Mode (ATM) networks. How-
ever, because of the finite state setting there, questions
about stability of the scheme did not arise. This is how-
ever not the case here. Our state space is unbounded and
hence we require Liapunov stability assumptions on the
system to ensure tightness.

4. Convergence analysis

We now present the convergence analyses of algorithms
SPSA-1 and SPSA-2. In order to save space, we skip
certain straightforward steps in the proofs and refer the
readers to Bhatnagar e al. (2000) for all the details.

4.1. Convergence analysis of SPSA-1

Consider now the stochastic approximation scheme
SPSA-1. Recall that {(X*(j), Y*())}, k = 1,2, are the two
parallel s1mulatlons respectwely govemed by
{B} k=12, wuhﬂ = 0(m) — dA(m) andB—B( )+
5A(m) respectively, for o 5 s m >0. Also the
dynamics of the simulations {(X*(;), ¥*(/))}, k = 1,2,
are governed by equations of type (3) and (4), with
éU) n(j) replaced with  analogously  defined
W), i), k=1,2, respectively, independent of one
another,

For this algorithm, we use the assumptions (Al), (A2)
and (A3) (defined in Section 2) for our system. Let the
ﬁltratlon be represented by ﬁ,,ﬁa()(*(_;} Y*()), &),
(), 0;, A;, k=1,2; j<n), where 6 —B(m and
A —Am) for ny < J < fpyr, m >0, For m > 0, define
gandom vagiables {uk}, k= 1,2, for f € Cy(#7*) (the
space of bounded and continuous functions on #9*¢) by

i N+ a( f(Xk(i)! Yk(i))

d - = ] 3 3
f S b TG

m 2 0,k = 1,2. Theorem 4.1 below proves stability of the
algorithm SPSA-1. Its proof is given in the Appendix.
Recall that E is the set where random variables
Ay, 1€{1,...,N}, i >0, take values in (cf. Condition
(B)).

”n+1

Theorem 4.1. Almost surely, (u., 12, 8(m), A(m)), m >0,
converges to the compact set {(fp_sa. Rorsa. 0, A)
e C,A€E}.

The final step is to show convergence of the algorithm
(10) to the set of local minima, The o.d.e. technique
is commonly used to prove convergence of stochastic
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approximation algorithms, Here, we show that the algo-
rithm (10) asymptotically converges to the stable pomts
of the o, d c. (13). For any l‘uncnon H:#" — R,
let VH(x)2 ViH(x),.... VaH(x)" fcpresenl the gradient
of H at the point x € #". Let Z ())=(Z(t),...,Zxn(1))
e R, with Z,(1), i=1,...,N, sansfymg the o.d.c.

Z(t) = #(=V(Z(O),t 2 0,2(0) € C,  (13)

where for any bounded, continuous, real-valued function

u(-),

#(60)) = tim (

O0<p—0

iy + noly)) — m(y)).
n

Fot ¥ = (xl....,xv) let #(x) = (@(x;),. ..,nN(xN})T.
The operator 7(.) forces the 0- d.e. (13) to evolve within
the constraint set C. Let K2{f € C|n(VJ(8)) = 0}. We
recall here a key result from Hirsch (1987) stated as
Lemma 4.1 below. Consider an o.d.e. in 2"

(1) = F(x(1)), (14)

with the set G2{x|F(x) = 0} of stable points associated
wn:h it. Let G* denote the e-neighborhood of G namely,
G {x|EIr'e Gs.t.||x—x||<e}. For T>0, v >0, say
that y(-) is a (T, y)-perturbation of (14) if there exist real
numbers 0=Th<N<h<- - such that
Tiyy =T 2T, ¥i, and on each interval [T;, T,;,], there
exists a solution x'(-) of (14) such that

sup [x'(1) — y(1)] < 7.

[T T

The result from Hirsch (1987, p. 339) is as follows.

Lemma 4.1. For given e > 0, T > 0, there exists a 7 such
that for all y € [0,7], any (T,9)-perturbation of (14) con-
verges 1o

For fixed n >0, let K"2{f € C|3¢’ € Ks.t.|0— 0| < n}
represent the set of points within a distance 5 of the set K.
As a direct consequence of Lemma 4.1, for any given
1.7 >0,37> 0s.t. ¥y € [0,7], any (7, y)-perturbation of
(13) shall converge to K". Finally, Theorem 4.2 shows
that given n > 0, there exists a d > 0 such that the algo-
rithm SPSA-1 for all § < 4, converges to K" a.s. The
proof of this theorem proceeds through several steps and
is given in detail in Bhatnagar et al. (1999b).

Theorem 4.2. Given >0, 35 >0 such that for any
6 € (0,6], the algorithm (10) converges to K" almost surely

(as.).

Remark. Note that K is the set of all critical points of
(13), and not just the set of local minima. However,
points in K that are not local minima will be unstable
equilibria and since our algorithm is of the gradient de-
scenf type, it will converge a.s. to the n-neighborhood of
Ko(= the set of local minima of J(.)) C K.
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4.2. Convergence Analysis of SPSA-2

Consider the stochastic approximation scheme SPSA-2.
We now assume (Al), (A2') and (AB) r.o prove conver-
gence of SPSA-2. Recall that {(X ¥Y=(1))} and
{(X*(0),Y*(1))} are the two para!!cl snmu]at:ons respec-
tively governed by {6({) — 8A(1)} and {0(1)+ 6A(I )}
where 6(1) = 0([I/L]) and A(l) = A(|l/L]), and where
[//L] represents integral part of //L. In other words, if
has the form [ = nL + m, where m € {0, 1,. 1} and
n is an integer, then [//L] = n. Note that by deﬁmtlon
{O(E)} (resp. {A (1)}) takes values in the compact set C
(resp. E). Corresponding to {(X~(/),Y(I))}, define the
process {u; } by

My (A] x Ay x Bx D) =

Z!{x

m-

€ Ay, H(m) € B, A(m € D},

for Borel sets 4, C #, Ay C %, BCC and DCE.
Similarly, one can define {§'} as well. The following
theorem establishes tightness of sequences {u;} and
{1 }. The proof follows in a somewhat similar manner as
the proof of Theorem 4.1 and is not being presented in
order to avoid repetition.

m) € Ay, Y~ (m)

Theorem 4.3. Almost surely, {u;} and {pt} are tight
sequences.

We now procecd with the rest of the analysis. Let for

k>1, & —a( (0), 6(1), ..., 8(k), A(0), A(1), .
A(k—1)). Then A(k) is independent of #, sz 1.
Define sequences {N (p).p>1}, i=1,...,N, as fol-
lows:;
= J(60) — 6A())
;ao ( Aji
J(0() = 6A()) | s
i [ A_,.;,- |g‘7j] ) )

Then, we have

Lemma 4.2. For every i=1,..
a.s.

N, {N;(p)} converges

Proof. Follows in a similar manner as Lemma A.2 of
Bhatnagar et al. (1999b). |

A similar result holds for analogously defined sequences
{N;"(p)}. Now define {s(n)} as follows: s(0) =0, s(n) =
" La(i), n>0. Let Ay = A,,, for te [s(n), s(n+1)],
n > 1. Further, let A(t) = (A....,Ax)". Recall that for

any bounded, continuous, real- va]ued function v(-),

m(y +m)) — m(y)
wi(v(y)) u<n—»0( ; )
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Also, for x=(x,...,xy)" € @, i(x) = (n,()

iy (x )) Consider the fo[lowmg odesFori=1,, N,
(jr(!) - (E {1(6(:) - rSA(r)Z)é;;{(G(r) - éA(t))])* (15)

where the operator £[-] in (15) represents the expectation
with respect to the common distribution of {A.;}. Now,

fori=0,1,2,...,let ¢(i) = b(i)L. It is easy to see from (7)
that

Zc(: oc, Z ? < oc,ali) = o(c(i)).
Here, we consider {a(i)} and {e(i)} to be the two step-size

sequences (as opposed to {a(i)} and {b(i)} in SPSA-1).
Define {z(n)} as follows £(0) =0, t(n) = S0 (i),

n> 1. Letz7(-),z%() : [0,00) — & and 6(-) : [0,00) — C
denote the conunuous functions obtained by setting

2~ (t(n)) = Z[ (n), z*(t(n)) = Z[ (n), (())~ (} re-

spectively ¥ n, with linear mtcrpo]atlon on [t(n), t(n + 1)],
n > 0. Consider the system of o.d.e.’s
0(r) =0,
(1) = J(6(r) — 0A(r)) — 2™ (1),
(1) = J(0(1) + SA()) — 2+ (2). (16)

We now have the following theorem whose proof appears
in the Appendix.

Theorem 4.4. For any T,6 > 0, (z~(t(n) +.),z"(¢(n) +.),
0(t(n) + .)) is a bounded (T,8)-perturbation of (16) for n
sufficiently large.

Deﬁncz‘(—," [ODO)Hf?andH() [0,00) — C by
27(s(n)) = (ft) " (s(n)) = Z[ (n), O(s(n)) = 0(n) re-
spectively Vn, with linear mterpolatmn on intervals
Is(n), s(n + 1)}, n > 0.

Lemma 4.3. For any T, § >0, é(s(n) +.) is a bounded
(T, &)-perturbation of (15) for sufficiently large n.

Proof. Rewrite the first equation in (12) as follows: for

=L,

0,‘(M+ l)

=m (ﬁn(mj+a(nﬂ5[J(B(M)—6A(m§35;J(_8(m)+aA(m”J?’m] +’i‘(m)) .
(17)

In the above, n(m) is an error term that becomes
asymptotically negligible (Bhatnagar er al, 2000) by
Lemma 4.1, Lemma 4.2 and Theorem 4.4. The algorithm
(12) can then be viewed as a discretization of the o.d.e.
(15). Now a standard argument as in Kushner and Clark
(1978, pp.191-194) proves the claim. |
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Lemma 4.4, For any 0(m) € C, foralli=1,...,N

I:J(G(m) — 6A(m)) — J(B(m) + SA(m))
20A;

lim |[E

|
310

- ‘V‘J(G(m))‘ =0.

Proof. Follows in a similar manner as Lemma A.5 of
Bhatnagar er al. (1999b). ||

Recall that the set Ké{ﬁ € C|a(VJ(0)) =0} is the as-
ymptotically stable attractor set for the o.d.e. (13) with
J (-%itse[f serving as the strict Liapunov function. Further,
K'={0eC|||8—6||[<n b €K} represents the set of
points in C that are within an #-distance from the set K.
We now have

Lemma 4.5. Given n > 0, there exists dg > 0 such that for
all 6 € (0,0¢], K" is an asymptotically stable attractor set
Jor the o.d.e. (15).

Proof. As already mentioned, J(:) itself serves as a strict
Liapunov function for (13) outside the set K. Now by
Lemmas 4.3 and 4.4, for sufficiently small 3, J( -) will also
serve as a strict Liapunov function for (4.3) outside the
set K. |

Finally, we come to the main result of this section.

Theorem 4.5. Givenn > 0, there exists 8y > 0 such that for
all & € (0, dp), O(n) — K" a.s.

Proof. Follows from Lemmas 4.1, 4.3 and 4.5. |

This completes the convergence analysis of both the al-
gorithms SPSA-1 and SPSA-2.

5. Numerical results

In this section, we demonstrate our algorithms SPSA-1
and SPSA-2 by means of a simple queueing system and
numerically compare their performance with the algo-
rithms in Bhatnagar and Borkar (1997, 1998) described in
Section 3. We consider the two-node queueing network
shown in Fig. 1.

There are two external arrival streams (one each) to the
two nodes. Arrivals to the nodes from these streams
follow independent Poisson processes with rates A, and
4. The service times are exponentially distributed with
rates y(6;) and u,(62), respectively, where 8; and 6,
are parameter vectors at the two nodes. The exact
dependence of y, and p, on 8, and ,, respectively is
given below. A customer after service at Node 1 joins the
queue at Node 2. After service at Node 2, a customer
either departs with probability p or is fed back to Node 1
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!
! iy

Node 2

' q=lp

Fig. 1. Queueing network.

with the remainder probability of | — p. Our aim is to
find the optimum (joint) parameter vector (8,,0,) within
the constraint set C which minimizes the sum of the sta-
tionary mean waiting times in the two queues. The con-
straint set C is defined as follows: Given M > 0, each
component %, i = 1,2, j=1,....M, takes values in the

interval [Gf|min,05_max] and so the set C is defined as
C= [8:!min=0:.max] Ko {G‘:fmim Ufmax]

X [Hé.min' gé.max] Xore X [g‘gmin' G';fm“].

We assume that both 8, and 0, are vectors of the same
dimension M. Note that M =N/2. Thus,
(J,é(ﬂ,.',...,ﬂf"}r. i=1,2, and the whole parameter vec-
tor is represented as 02 o,...,0M, 8;,....()‘;‘)7". Let
Bé(al, T ,6711“, 9;, . .,?;’)T represent the target/optimum
parameter. The dependence of the service times on the
parameters has the following form:

wi(0) = L

(1+1 o -8])

where i, i = 1,2, is assumed to be constant. Note that
the cost, which is the sum of the stationary mean waiting
times in the two queues, will be minimized if the service
rates are maximized, and which clearly occurs at 6 = 6.
Thus we know that the optimum for our problem lies at
0. Let 8/(0), i=1,2, j=1,...,M, represent the initial
(starting) values of the parameter components.

For the simulation experiments, the following step-size
sequences are chosen for all the five schemes:
a(0) = b(0) = 1, a(n) = 1/n, b(n) = 1/n*?, n> 1. Also,
we choose L =100 in SPSA-2. For both SPSA-1 and

i=1,2,

SPSA-2, we choose random variables e = e
n >0, to be ii.d., Bernoulli distributed with A,; = +1
w.p. 1/2,i=1,...,N, n > 0. We consider the following

set up for all the three algorithms.

A =02 =01 g =87 §=92, p=04. For
= R ) P imin = 0.1, & ., =06, and
=03 Also, for j=1,...,M, #(0)=02 and
#,(0) = 0.4.

We consider two values of M for our experiments:
M =5 and M = 20. Thus the parameter vectors we con-
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sider in the simulations have dimensions 10 and 40 re-
spectively. We consider a total of 3 x 10° data
aggregation epochs for all the five schemes. The corre-
sponding total number of parameter updates for each
algorithm (for M =5 and 20 respectively) is shown in
Table 1.

Note that whereas there are 3 x 10° parameter updates
in (N + 1)-Simulation FDSA-2, the corresponding num-
ber in SPSA-2 is 3 x 10? (since L = 100). Moreover, the
corresponding number in SPSA-1 and (N + 1)-Simula-
tion FDSA-1 is only 92. This is so because for the step-
size sequences considered in the experiments, the values
ngy and ngy in {m,.m>1} (defined after (7)) are:
ngy ~ 294 x 10° and g3 ~ 3.09 x 10°  respectively.
Finally, in Two-Simulation FDSA-1, the number of
parameter updates for M = 5 (mentioned in Table 1) is

2
9 T
It is written in this manner to indicate that in addition to
the nine times that the whole parameter is updated in
3 x 10° data aggregation epochs, the first two compo-
nents of the parameter vector are also updated for a 10th
time. Similarly, for M = 20, the number of parameter
updates in Two-Simulation FDSA-1 is
12
2 20

In what follows we compare the performance of our
SPSA algorithms (SPSA-1 and SPSA-2) with the algo-
rithms of Bhatnagar and Borkar (1997, 1998) described in
Section 3, in terms of speed of convergence. We choose
the Euclidean distance between the current parameter
update and the target parameter value as the performance
metric and plot that w.r.t. the number of data aggrega-
tion epochs for all the five schemes. The Euclidean dis-

tance d(60, 0) is defined by

2 M, A
d(0.8) = (zz(e;—oj,) ) .
J=1 i=1

We performed five independent replications of each ex-
periment using different seeds. In Figs. 2 and 3, the mean

Table 1. Number of parameter updates in 3 x 10° epochs

Algorithm Number of Number of
parameter updates  parameler updates
for M = 5 for M = 20
(N + 1)-FDSA-2 3 x 10° 3x 10°
SPSA-2 3x 107 3x10°
SPSA-1 92 92
(N + 1)-FDSA-1 92 92
2 12
Two-FDSA-| 855 25




— SPSA2 !
- SPSA-1

- (N+1)-FDSA-1
(N+1)-FDSA-2
Two-FDSA-1

1 15 2 25 3
Data Aggregation Epochs x 10°

0 05

Fig. 2. 10-parameter vector.

trajectories from these experiments are plotted for all five
schemes, for both the 10-dimensional and the 40-dimen-
sional parameter cases respectively. The standard error
from these replications for the five schemes was computed
at the end of these simulations (after 3 x 105 data
aggregation epochs), and is indicated in Table 2.

When we choose L =1, SPSA-2 does not exhibit
good performance for our model with high dimensional
parameters. As already mentioned in Section 3, this is
probably because of the fact that since SPSA-2 uses
only two parallel simulations, the system is unable to
adapt to the new parameter update before it changes
again. Data aggregation over L epochs (for L > 1) on
the other hand leads to additional averaging and hence
improved performance, However, the choice of L is
completely arbitrary. For our experiments, we select
L =100,

As expected, algorithms SPSA-1 and SPSA-2 show
significantly better performance than the rest of the al-
gorithms. We observe that using SPSA-1, for M =5
(Fig. 2), the Euclidean distance between the current up-
date and the optimum parameter becomes less than 0.10
(on an average of five replications) from the 28th
parameter update onwards (after only 3183 data aggre-
gation epochs). Using SPSA-2, the same is achieved from
its 296th parameter update (after 2.96 x 10* data

18
SPSA-2

g e SPSA-1 |

- = {N+1)-FDSA-1

E 1 (N+1)-FDSA-2 [

g. 1.2 Two-FDSA-1

[=]

0 0.5 1 15 2 25
Data Aggregation Epochs

Fig. 3. 40-parameter vector.
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Table 2. Distance after 3 x 10° data aggregation epochs

Algorithm Mean + standard ~ Mean + standard
error (10-parameter  error (40-parameler
vector) vector)
SPSA-] 0.011 £ 0.001 0.121 + 0.03
SPSA-2 0.051 + 0.02 0.063 + 0.02
(N + 1)-FDSA-I 0.227 + 0.03 0.492 + 0.06
(N + 1)-FDSA-2 0.315 = 0.003 0.507 £ 0.05
Two-FDSA-1 0317 = 0.04 0.782 + 0.05

aggregation epochs). However, using SPSA-1 (after run-
ning the algorithm long enough), it is observed that for
M = 20 (Fig. 3), the same distance becomes less than 0.10
after its 102nd parameter update (after nearly 4.75 x 10°
data aggregation epochs). The same is achieved in SPSA-
2 from its 829th update onwards (or after only 8.29 x 104
data aggregation points). It is clear from the above that
SPSA-1 shows the best performance (better than even
SPSA-2) when the parameter dimension is low. However,
when the parameter dimension is significantly increased,
it is SPSA-2 and not SPSA-1 that shows the best per-
formance. This is probably due to the fact that SPSA-1
(and its variants) requires that the parameter be held fixed
over intervals of increasing size. Also, higher dimensional
parameters typically require several updates before con-
vergence is achieved.

On a Sun Ultral0 Unix workstation, for M = 5, it took
about 2 minutes using SPSA-1 for the Euclidean distance
from optimum to become less than 0.05. SPSA-2 required
about 3-4 minutes for the same. On the other hand, for
M =20, SPSA-1 took about 15 minutes, while SPSA-2
required only about 5 minutes for the same to happen.
(N + 1)-Simulation FDSA-1 and (N + 1)-Simulation
FDSA-2 (along with Two-Simulation FDSA-1) took or-
ders of magnitude more time than SPSA-1 and SPSA-2.
For M =20, after almost 6.5 x 107 data aggregation
epochs and running for nearly 21 hours, the separation
from optimum (for one replication) of (N + 1)-Simula-
tion FDSA-1 was about 0.44, while that of (N + 1)-
Simulation FDSA-2 was about 0.42. As expected,
Two-Simulation FDSA-1 showed the worst performance,
For M = 20, after

20
840’
parameter updates (or nearly § x 10% data aggregation
epochs) and running for almost 18 hours, the Euclidean
distance from optimum using Two-Simulation FDSA-1
was still about 0.70. Thus, our simulation experiments
confirm that both algorithms SPSA-1 and SPSA-2 pre-
sented here perform orders of magnitude faster than the
algorithms (N + 1)-Simulation FDSA-1, Two-Simulation
FDSA-1 and (N + 1)-Simulation FDSA-2 of Bhatnagar
and Borkar (1997, 1998).
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6. Conclusions

We developed two Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithms (SPSA-1 and SPSA-2)
for simulation optimization of hidden Markov models.
Both of these algorithms use only two parallel simula-
tions (each) and are generalized variants of the two-
timescale stochastic approximation algorithms of
Bhatnagar and Borkar (1997, 1998) (N + I)-Simulation
FDSA-1, Two-Simulation FDSA-1 and (N + 1)-Simula-
tion FDSA-2) respectively. Whereas SPSA-1 updates the
parameter over time instants of increasing separation as
in Bhatnagar and Borkar (1997), SPSA-2 updates once
after every fixed number of instants. The latter is a gen-
eralization of the algorithm in Bhatnagar and Borkar
(1998) that updates the parameter at every instant; and it
shows improved performance. The convergence analysis
for both the algorithms was presented. We conducted
numerical experiments with parameters of different di-
mensions on a two node queueing network model with
feedback using both the SPSA algorithms, the Two-
Simulation algorithm of Bhatnagar and Borkar (1997)
and its (N + 1)-Simulation analogue and the (N +1)-
Simulation algorithm of Bhatnagar and Borkar (1998).
We found that the SPSA algorithms converge orders of
magnitude faster than the rest.
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Appendix

Proof of Theorem 3.]. The proof proceeds through sev-

eral steps. Let #°° = g9+ {oc} denote the one point
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compactification of #9%Y. For f € Cy(#+), define se-
quences {Zy(m),m > 1}, k=1,2, by

m-| L
Zm) =Y ()" [ > al) (£, Y<(i)

Jj=0 i=n;+1
—E[f(X*(i). Yk(f))|5‘_'fwl])}- (A1)
Then {Z;(m),#, }, k=1,2, are zero mean, square in-

tegrable martingale sequences (see Neveu (1975) for
Martingales). Let us represent their quadratic variation
processes by

ZE[czko +1) = Z() 1%,

J=

(Zi)(m

+E[Zk(0) ]

with (Z;)(oc) = limy— (Z)(m). Since f is a bounded and
continuous function, it can be easily shown (cf, Theorem
4.1 of Bhatnagar et al. (2000)) that there exist constants
K, K} > 0 such that

(A2)

m—1 e
Zom) <KDY — Y a()?
Jj=0 b(.f) i=n;+1
< ==
- ’; ( ”j+l)
the lalter inequality follows from the fact that

a1 - l/n Also note that 7 ,a(i) = In(n),
and )7 (b(i) ~n'"* Now, from the definition of
{H,,, m 2 0} Z”mvl ) :"=0 b{') Thus, ln(nm+l) A
m'=* Hence, ny., =~ exp(am"’) for some a > 0. Thus,
(Zi)(oc) < o0. Hence, by Proposition V11.2.3(c) of Ne-
veu (1975), {Zi(m),m > 1}, k= 1,2, are a.s, convergent
martingale sequences. Now let us consider {Z;(m)}. From
the fact that 377" ., a(j)/b(m) — 1, as m — oo and from
(6),

/ (f(an) = '/f(xf,)/)Pﬂ(m}-.sA(m)(-’f,)f'idx'|d}"))

x ph(dx,dy) = 0 as. (A3)

Now, since the above holds for all f € Cy(#9M9), it fol-
lows that outside a set of measure zero, any limit point of
(uh,0(m) —6A(m)), m>0, must be of the form
(bos, + (1 — b)u, 0 — A), where . denotes the Dirac
measure at {oo} and is defined as follows:

1 if x = {oo}
O (x) = e A4
() {0 otherwise. (A4)
In the above, b €[0.1], where when b< 1, y must

satisfy
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[ Fyuiana)
= /’/f(f)y’)pﬂ‘édd(xvy; dx', dyr)#(dx: d?)'

Thus for b < 1, u must be of the form py_s5. Forb=1, u
is arbitrary and hence can be set to be yy_s, itself. Now,
note that if in the definition of the sequences {Z*(m)},
k=1,2, the function f(.,.) is replaced by the Liapunov
function ¥(.,.), the sequences {Z*(m)} continue to be
Martingale sequences. Also, from Assumption (A2), the
quadratic variation process of such a Martingale would
converge as well. We then obtain (A3) with function ¥
replacing f. Now define

¢0~6A(x:y)é/ V(x’vyl)PfJ—dA(xay; d.x’,d}/) ¥ V(xvy)v

with ¢g_sa({o0}) = —¢g, V0 € C. Here ¢ is the same as in
Assumption (A3). Now, as a consequence of Asgumptmn
(A3), the map (0,x,y) — ¢dp(x,y) : Cx A =R is
upper semicontinuous and bounded from above. Further,
if (1l B(m) — 6A(m)) — (bdoc + (1 — B)ptg_sa, 0 — 0A)
along a subsequence, then from (A3) with f replaced by
¥, we have,

0 = lim sup / ¢e(m)-6A(m)d#:ln
m—=oc

<(1-5) _/ Po-sadHg_sa — beo,

along the same subsequence. Now, from the definitions of
$g-sa and py_s5 above,

/ Pp—saditg_sa = 0.

Thus from (AS5), we have 0 < —beg, which cannot happen
unless b = 0. A similar argument holds for the sequence
{12}. Thus {4}, k=1, 2 are ught sequences and have
limit points of the form pj_s, or Fﬂi»ﬁ.’_\ Now by Lemma
2.1, the maps 6 — pj_s4 and 0 — @3 s\, k=1,2, are
continuous. The claim now follows from the fact that any
continuous image of a compact set is compact. |

(AS)

Proof of Theorem 4.4. Note that the algorithm SPSA-2

(cf. (12)) can be rewritten as follows: Fori=1,...,N,
Bi(n+1) = m (3,-(!1) +a(n) [2—._5 (’25;? (")D,
Ziln+ 1) =Z () + c(n)%:fj_;(h(yg(n +1))
~Z3(n+ 1))
Z} (n+1) = 23 ) +c(n)%§(h(r:(n +1)
~Z:(n+1)). (A6)
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From {Z_(n)} and {Z}(n)}, n >0, me€ {0,1,...,L — 1}
defined in (12), we obtain sequences {Z~(/)} and
{Z*(1)} in the obvious manner by writing / as ! = nL +m
for appropriate n and m. Now from the second and
third equations in (12), note that Z~(/+1) (resp.
Z*(l + 1)) is the convex combination of 4(.) and Z=(1)
(resp. Z7(/)). Thus {Z(/)} (resp. {Z*(/)}) are uniformly
bounded sequences with upper bound depending on k
and [ 2(0) || (resp. || Z*(0) [)). Now {Z;(n)} (resp.
{Z[(m)}) is just a subsequence of {Z~(1)} (resp. {Z*(/)})
and hence is uniformly bounded (irrespective of the value
of L) as well. Before we proceed further, let us look at
the term

lL—l B
ZZZM(H+ I).
m=0

on the RHS of the second equation in (A6). We will show
that it has the same asymptotic behaviour as Z; (n). A
similar argument holds for the term

[Lul
=Y Zi(n+1),
Lm:O

on the RHS of the third equation in (A6). First note that
the terms Z5(n+1), Z7(n+1),...,Z; ,(n+1) are all
governed by the same parameter update namely,
(0(n+1) = 3A(n+1)). For notational simplicity let
(n+ 1)L = k in the rest of the proof. Now from the sec-
ond equation in (12),

Z7(k+1) = (1 = b(n))Z™ (k) + b(n)h(Y~ (k).

Writing iteratively (cf. Bhatnagar et al. (2000)), one ob-
tains upon simplification

L-1 — (1 — B(n})E
%Zoz-(nm)—%[(——h_l (;(n)b( ) )Z‘(k)

L-2

+ (1= (1=b(n)*)

i=1

X (Y~ (k+i— I})J (A7)

It is now easy to see using routine arguments (see
Theorem 5.2 of Bhatnagar er al. (2000)) that

— 0, ask— oo.

L1
%ZZ‘(k +m)—Z (k)
m=0

Consider now an algorithm analogous to (A6) but with

L—] L—1
%Zh()’;{n 4 1))(resp.z'2h(r;(n +1))),
m=0 m=0

replaced by J(0(n 4 1) — 6A(n + 1)) (resp. J(B(n+ 1)+
SA(n +1))), and with
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= =
=Y Zy(n+ 1)(resps > Zi(n+ 1)),
Lm:{) Lm=0

replaced by Z; (n) (resp. Z; (n)). It can be easily shown as
in Lemma 4.3 of Bhatnagar and Borkar (1998), that the
latter algorithm would have analogous asymptotic be-
haviour as (A6). Finally, the first equation in (A6) can be
rewritien as

Oi(n+1)=m (9:(") + c(”)% [%EMD

(A8)

Moreover, since a(n) = o(c(n)), applying standard argu-
menis as in Borkar (1997) to (A8) and the second and
third equations in (A6), one obtains the claim. |
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