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Abstract

We propose two algorithms for Q-learning that use the two-timescale stochastic approximation methodology. The first of these updates
Q-values of all feasible state–action pairs at each instant while the second updates Q-values of states with actions chosen according to the
‘current’ randomized policy updates. A proof of convergence of the algorithms is shown. Finally, numerical experiments using the proposed
algorithms on an application of routing in communication networks are presented on a few different settings.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Markov decision process (MDP) is a general paradigm for
solving dynamic decision making problems under uncertainty.
Classical solution approaches such as policy iteration and value
iteration for solving the associated Bellman equation for opti-
mality require complete knowledge of the system model. More-
over, the computational requirements for solving the Bellman
equation become prohibitive in the presence of large state and
action spaces. Motivated by these considerations, there has been
significant research in recent times on simulation based meth-
ods for solving the Bellman equation, that largely go under
the name reinforcement learning or neuro-dynamic program-
ming (Bertsekas & Tsitsiklis, 1996). The main idea here is to
simulate transitions instead of computing transition probabil-
ities that may be hard to obtain and to use parametric repre-
sentations of the cost-to-go function. Alternatively, if one has
access to real system data, the same may also be used directly
in the associated algorithms. In Watkins and Dayan (1992), a
simulation-based variant of the value iteration algorithm that
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goes under the name Q-learning was proposed. Here one esti-
mates the state–action value function, also called the Q-value
function, via simulation. In the infinite horizon discounted cost
setting as we consider, the Q-value of a state–action pair corre-
sponds to the sum of the single stage cost for the given pair and
the discounted optimal cost-to-go from the next state onwards.
The Q-learning algorithm has become a popular reinforcement
learning technique and has been applied in several settings.

Amongst other reinforcement learning algorithms, tempo-
ral difference learning (Bertsekas & Tsitsiklis, 1996) is also
based on the value iteration technique (however, it only per-
forms policy evaluation and not control) while actor-critic
algorithms (Konda & Borkar, 1999) are based on policy itera-
tion. In classical value iteration, one starts with a given initial
value function and uses a fixed point iteration to solve the
Bellman equation. Unlike classical value iteration, temporal
difference and Q-learning algorithms do not require transition
probability information.

In another body of research, multi-timescale stochastic
approximation has been studied recently (Borkar, 1997). Such
algorithms have been developed for a variety of settings such
as simulation optimization (Bhatnagar, Fu, Marcus, & Wang,
2003) and reinforcement learning (Konda & Borkar, 1999).
The main idea in these algorithms is to use multiple step-size
schedules or timescales that have different rates of conver-
gence. Recursions governed by step-sizes that tend to zero
slower converge faster because of their better tracking abilities.
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This approach has resulted in the development of computation-
ally superior algorithms in the case of schemes that typically
involve two nested loops with an outer loop update being per-
formed once after convergence of the inner loop procedure.
Another significant advance in recent years has been the
development of simultaneous perturbation stochastic approx-
imation (SPSA) methodology for gradient estimation (Spall,
1992, 1997). A one-simulation SPSA-based gradient estima-
tion procedure is proposed in Spall (1997) that however does
not yield good performance unlike its two-simulation counter-
part in Spall (1992). Multi-timescale simulation optimization
algorithms based on SPSA are presented in Bhatnagar et al.
(2003). Certain deterministic constructions for the perturbation
sequences based on Hadamard matrices are found to con-
siderably improve performance when one-simulation SPSA
estimates are used.

In this paper, we develop two Q-learning-based algorithms
that (both) use two-timescale stochastic approximation. The
first of these updates Q-values of all feasible state–action
pairs at each instant while the other involves a partly asyn-
chronous implementation and updates Q-values of states
with actions chosen according to ‘current’ randomized policy
updates. The regular Q-learning algorithm involves computa-
tion of an action that attains the minimum value amongst current
Q-value updates. The above minimum is obtained prior to the
averaging step. Our algorithms obtain minimum in the space of
stationary randomized policies using a gradient search recursion
based on one-simulation SPSA with Hadamard matrix-based
construction (Bhatnagar et al., 2003). This is done on
the faster timescale and on the slower one, averaging of
Q-values is performed. Our method may allow for more effi-
cient implementations such as least squares or second order
methods as compared to regular Q-learning because of the
use of gradient search in the algorithm updates. Moreover,
since we use stationary randomized policy updates for picking
the actions that minimize Q-values, other actions get picked
as well with certain (albeit diminishing) probabilities ob-
tained from the above policy updates. For regular Q-learning,
an additional exploration step is recommended whereby one
picks ‘non-minimizing’ actions with certain small probabilities
(Bertsekas & Tsitsiklis, 1996). This is taken care of in a natural
manner using randomized policies in our algorithms. We give
a proof of convergence of the algorithms. Next, we consider an
application of our algorithms on a problem of routing packets
in communication networks. We show results of numerical
experiments on a few different settings and present perfor-
mance comparisons with the Q-learning algorithm. Both our
algorithms exhibit fast convergence and give the corresponding
optimal policies in addition to Q-values. Our second algorithm
may have computational advantages in scenarios where the
number of feasible actions in each state is large. We do not
consider in this paper a setting involving feature-based state
representations even though this can be easily incorporated.

The rest of the paper is organized as follows. The framework
and algorithms are presented in Section 2. The convergence
analysis of the algorithms is provided in Section 3. Numerical
experiments over different network topologies for a problem of

routing are presented in Section 4. Finally, Section 5 presents
the concluding remarks.

2. Framework and algorithms

Suppose {Xn} is a controlled Markov chain or a Markov
decision process (MDP) taking values in a set S ={1, 2, . . . , s}
with s < ∞. Let U(i) denote the set of all feasible actions
or controls in state i ∈ S. We assume that U(i) are finite
sets and in particular have the form U(i) = {u0

i , u
1
i , . . . , u

N
i }.

Note that we assume only for notational simplicity that each
feasible action set U(i) has exactly (N+1) elements. In general,
N could also be a function of state i. Suppose p(i, u, j) and
g(i, u, j), i, j ∈ S, u ∈ U(i), respectively, denote the one-
step transition probability and the single-stage cost when the
MDP is in state i and a feasible action u is chosen, and the
next state is j. We assume that g(i, u, j) are nonnegative and
bounded. Let U = ⋃

i∈SU(i) denote the set of all possible
actions. By an admissible policy �̄, we mean a sequence of
functions �̄={�0, �1, �2, . . .} with each �k : S → U such that
�k(i) ∈ U(i), i ∈ S, k�0. Let � be the set of all admissible
policies. If �k��, ∀k�0, then we call �̄={�, �, . . .} or by abuse
of notation, the function � itself as a stationary deterministic
policy or simply a stationary policy.

A randomized policy �̂ is a sequence �̂ = {�1, �2, . . .} of
distributions �n : S → P(U), n�1 with P(U) being the set of
all probability vectors on U and, in particular, for each i ∈ S,
n�1, �n(i) ∈ P(U(i)), where P(U(i)) is the set of all prob-
ability vectors on U(i). A stationary randomized policy is one
for which �n(i)��(i) ∀n�1. In what follows, we shall use �i

to denote the vector of probabilities �i = (�i (u
0
i ), . . . , �i (u

N
i ))

with �i (u) being the probability of picking action u in state i.
Thus �= (�1, . . . , �s) shall represent (by an abuse of notation)
a stationary randomized policy.

Let � ∈ (0, 1) be a given constant. The aim is to minimize
over all admissible policies �̄ = {�0, �1, �2, . . .}, the infinite
horizon �-discounted cost

J�̄(i) = lim
T →∞ E

[
T∑

k=0

�kg(Xk, �k(Xk), Xk+1)|X0 = i

]
. (1)

Let

J ∗(i) = min
�̄∈�

J�̄(i), i ∈ S (2)

denote the optimal cost. For a given stationary policy �, J�(.)

is called the value function corresponding to policy �. One
can show that an optimal stationary policy exists here and J ∗
satisfies the Bellman equation

J ∗(i) = min
u∈U(i)

⎛
⎝∑

j∈S

p(i, u, j)(g(i, u, j) + �J ∗(j))

⎞
⎠ . (3)

From the above, an optimal stationary randomized policy can
be seen to exist as well. Such a policy would assign the entire
probability mass to the optimal action in each state provided
such an action is unique. Else, it would assign equal non-zero
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probabilities to all optimizing actions and zero probabilities to
the rest. The class of stationary randomized policies thus con-
tains within itself the class of stationary policies. In fact, sta-
tionary policies correspond to vertices in the space of station-
ary randomized policies, the latter being a closed convex hull
of the former.

For given i ∈ S, u ∈ U(i), define Q-values Q∗(i, u)

(Bertsekas & Tsitsiklis, 1996) by

Q∗(i, u) =
∑
j∈S

p(i, u, j)(g(i, u, j) + �J ∗(j)). (4)

The Bellman equation now corresponds to

J ∗(i) = min
u∈U(i)

Q∗(i, u), i ∈ S. (5)

Substituting (5) in (4) gives

Q∗(i, u) =
∑
j∈S

p(i, u, j)

(
g(i, u, j) + � min

v∈U(j)
Q∗(j, v)

)
. (6)

The regular Q-learning algorithm is a stochastic approxima-
tion version of (6) and proceeds as follows:

Qn+1(i, u) = Qn(i, u) + �(n)(g(i, u, 	n(i, u))

+ � min
v∈U(	n(i,u))

Qn(	n(i, u), v) − Qn(i, u)). (7)

In the above, 	n(i, u) is a simulated next state when current
state is i and action u ∈ U(i) is chosen. It is assumed that
	n(i, u), n�0, are independent random variables each having
distribution p(i, u, ·). Also, {�(n)} is a step-size sequence that
satisfies �(n) > 0 ∀n�0,∑
n

�(n) = ∞ and
∑
n

�(n)2 < ∞.

In what follows, we present two variants of (7) that both use
two-timescale stochastic approximation. In these algorithms,
explicit minimization in (7) is avoided and instead a gradient
search over stationary randomized policies is performed on a
faster timescale. As stated before, the search space of station-
ary randomized policies in our algorithms corresponds to the
closed convex hull of the corresponding space of stationary
deterministic policies. In regular Q-learning, only stationary
deterministic policies are used as a result of which it suffers
from the problem of lack of sufficient exploration (Bertsekas &
Tsitsiklis, 1996). This problem gets worse when the numbers of
states and actions are large. An (additional) exploration step is
usually recommended whereby actions that do not correspond
to the ‘minimizing action’ are picked with some small prob-
ability. With our algorithms, on the other hand, an additional
exploration step is not required since actions that do not mini-
mize Q-value updates automatically get picked with probabili-
ties prescribed by the randomized policy updates.

While our first algorithm updates Q-values for all state–action
pairs at each instant, the second updates Q-values for pairs
of states with actions picked according to current randomized
policy updates. In what follows, we shall represent a random-
ized policy as � = (�̂1, . . . , �̂s) with each �̂i = (�i (u), u ∈

U(i)\{u0
i }), i ∈ S. Note that �i (u

0
i ), i ∈ S are directly obtained

from the components of �̂i as �i (u
0
i ) = 1 − ∑N

j=1 �i (u
j
i ). Let

PS ⊂ RN denote the simplex

PS =
{

(y1, . . . , yN)|yi �0, 1� i�N and
N∑

i=1

yi �1

}
,

in which �̂i , i ∈ S, take values. Let 
 : RN → PS de-
note the projection map. Consider now {±1}N -valued vectors
�n(i)= (�n(i, u

1
i ), . . . , �n(i, u

N
i )), i ∈ S, that are used to per-

turb policy updates so as to obtain suitable gradient estimates
of the Q-function. These are obtained in a manner explained
below (Bhatnagar et al., 2003).

2.1. Construction for perturbation sequences �n(i)

Let HP be a normalized Hadamard matrix (a Hadamard ma-
trix is said to be normalized if all the elements of its first row and
column are 1s) of order P with P �N + 1. Let h(1), . . . , h(N)

be any N columns other than the first column of HP , and form
a new P × N dimensional matrix H ′

P which has the above as
its columns. Let �(p), p=1, . . . , P be the P rows of H ′

P . Now
set �n(i) = �(n mod P + 1), ∀n�0, i ∈ S. The perturbations
are thus generated by cycling through the rows of H ′

P . Here P
is chosen as P =2	log2 (N+1)
. Finally, matrices HP for P =2k ,
k�1 are systematically constructed as follows:

H2 =
(

1 1
1 −1

)
and H2k =

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
, k > 1.

The perturbations obtained above are seen to satisfy the de-
sired conditions in Theorem 2.5 of Bhatnagar et al. (2003), see
Lemma 3.5 there. Hence one obtains the correct gradient di-
rection by using these sequences.

2.2. Algorithm-1

Let Qn(., .) and �̂i (n), i ∈ S denote the nth updates of
the Q-value function and randomized policy, respectively. Let
�′

i (n)=
(�̂i (n)−��n(i)) where � > 0 is a given small constant.
Let {a(n)} and {b(n)} be two step-size sequences that satisfy
a(n), b(n) > 0, ∀n�0 and∑
n

a(n) =
∑
n

b(n) = ∞,
∑
n

(a(n)2 + b(n)2) < ∞,

b(n) = o(a(n)), (8)

respectively. Further, a(n+1)/a(n), b(n+1)/b(n) → 1 as n →
∞. Let (�n(i))

−1�(1/�n(i, u
1
i ), . . . , 1/�n(i, u

N
i ))T, ∀i ∈ S.

Let �n(j) denote the action chosen from the set U(j) according
to the distribution given by �′

j (n), with probability of picking

action u0
j ∈ U(j) automatically specified from the latter. Also,

let 	n(i, u) be as in (7).
Now for all i ∈ S, u ∈ U(i), initialize Q0(i, u) = 0 and

�̂i (0)=(1/N +1, . . . , 1/N +1), respectively. Any other choice
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of �̂i (0) may also be used. Then ∀i ∈ S, u ∈ U(i),

Qn+1(i, u) = Qn(i, u) + b(n)(g(i, u, 	n(i, u))

+ �Qn(	n(i, u), �n(	n(i, u))) − Qn(i, u)), (9)

�̂i (n + 1) = 


(
�̂i (n) + a(n)

Qn(i, �n(i))

�
(�n(i))

−1
)

. (10)

2.3. Algorithm-2

This is similar to Algorithm-1, except that we do not update
Q-values for each state–action pair as in (9). Instead, Q-value
updates are performed for states with actions picked according
to the ‘current’ randomized policy update. Also, recursion (10)
is exactly the same as before. Thus, (9) is replaced here by the
following recursion:

Qn+1(i, �̂n(i))=(1 − b(n))Qn(i, �̂n(i))

+b(n)(g(i, �̂n(i), 	n(i, �̂n(i)))

+�Qn(	n(i, �̂n(i)), �n(	n(i, �̂n(i))))). (11)

In the above, �̂n(i) is the action chosen from the set U(i)

according to the distribution �̂i (n), with the probability of pick-
ing action u0

i ∈ U(i) automatically specified from the latter.
This corresponds to an asynchronous implementation of
Algorithm-1 whereby at each instant, an action for each state
is first selected (according to the given randomized policy
update) and then the corresponding Q-value is updated.

3. Convergence analysis

We first consider Algorithm-1. Let Fn =(Qj (i, u), 	j (i, u),
�̂i (j), j �n, �j (i), j < n, u ∈ U(i), i ∈ S) denote an increas-
ing sequence of -fields. One can show in a similar manner as
Theorem 2.1 of Tsitsiklis (1994) that supn ‖Qn(i, u)‖ < ∞∀i ∈
S, u ∈ U(i). Define sequences {Mn(i)}, i ∈ S, according to

Mn(i) =
n−1∑
j=0

a(j)(Qj (i, �j (i)) − E[Qj(i, �j (i))|Fj ]).

Then {Mn(i)} can be seen to be martingale sequences that
are almost surely convergent (since their associated quadratic
variation processes converge because of (8)). Hence the faster
timescale recursion (10) can be written as

�̂i (n + 1) = 


(
�̂i (n) + a(n)

E[Qn(i, �n(i))|Fn]
�

× (�n(i))
−1 + �1(n)

)
, (12)

where �1(n) = o(1) by the above. Further, recursion (9) can be
written as

Qn+1(i, u) = Qn(i, u) + a(n)�2(n), (13)

where, since b(n) = o(a(n)) by (8), �2(n) → 0 as n → ∞.
Thus, when viewed from the timescale corresponding to {a(n)},

recursion (9) can be seen to asymptotically track the trajectories
of the ordinary differential equation (ODE):

Q̇t (i, u) = 0, i ∈ S, u ∈ U(i). (14)

Note that by (14), Qt(i, u) are time-invariant when viewed
from the faster timescale; hence we suppress the index t
and denote by Q(i, u) the above. Now, in (12), suppose that

Q
�′

i (j)

j (i)�E[Qj(i, �j (i))|Fj ]. By using a Taylor’s expan-

sion of Q
�′

i (j)

j (i) around the point �̂i (j) and using similar
arguments as in Corollary 2.6 of Bhatnagar et al. (2003), one
can see that (12) asymptotically tracks the trajectories of the
following ODE, in the limit as � → 0.

˙̂�i = 
̂(−∇Q�̂i (t)(i)), (15)

where 
̂(.) is defined according to


̂(v(y)) = lim
�↓0

(

(y + �v(y)) − 
(y)

�

)
,

for any bounded, continuous v(.). The stable fixed points of
(15) lie within the set M ={�̂i |
̂(∇Q�̂i (i))=0}. It can be seen
that V�̂ = ∑

i∈S Q�̂i (i) serves as a strict Liapunov function for
the ODE (15). Hence, let �u

i (n) → �u,∗
i as n → ∞. Note that

if u∗ corresponds to a unique optimal action in state i, then the
following will be true: �u,∗

i = 1 for u = u∗ and �u,∗
i = 0 for all

u ∈ U(i), u �= u∗. If on the other hand, the optimal action is
not unique, then one expects policy �∗ in state i to assign equal
positive mass to all optimal actions (viz., those whose Q-values
are equal and are uniformly lower compared to those of other
actions).

Let Q∗(i, u), i ∈ S, u ∈ U(i) correspond to the unique
solution of (4) and consider the slower timescale recursion (9).
We obtain

Theorem 1. For all i ∈ S, u ∈ U(i), the quantities Qn(i, u)

as given by Algorithm-1 converge almost surely to Q∗(i, u) in
the limit as � → 0.

Proof. Consider -fields Gn =(Qj (i, u), �̂i (j), j �n; 	j (i, u),
�j (i), j < n, i ∈ S, u ∈ U(i)), n�1. For given i ∈ S, u ∈
U(i), define

Nn(i, u) =
n−1∑
j=0

b(j)[(g(i, u, 	j (i, u))

+ �Qj(	j (i, u), �j (	j (i, u)))) − E[(g(i, u, 	j (i, u))

+ �Qj(	j (i, u), �j (	j (i, u))))|Gj ]].
Now since supn|Qn(i, u)| < ∞ for all i ∈ S, u ∈ U(i) and∑

nb(n)2 < ∞, one can again see that {Nn(i, u)} are almost
surely convergent martingale sequences. Now observe that

E[(g(i, u, 	j (i, u)) + �Qj(	j (i, u), �j (	j (i, u))))|Gj ]

=
∑
k∈S

p(i, u, k)

⎡
⎣g(i, u, k) + �

∑
v∈U(k)

�v,∗
k Qj (k, v)

⎤
⎦ . (16)
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By the foregoing, recursion (9) can be rewritten as

Qn+1(i, u) = Qn(i, u) + b(n)
∑
k∈S

p(i, u, k)

×
⎡
⎣g(i, u, k) + �

∑
v∈U(k)

�v,∗
k Qn(k, v)

⎤
⎦

+ �(n) − b(n)Qn(i, u), (17)

where �(n) = (Nn+1(i, u) − Nn(i, u)) → 0 as n → ∞ with
probability one. Recursion (17) is then a ‘noisy’ Euler dis-
cretization of the ODE

Q̇(i, u) =
∑
k∈S

p(i, u, k)

⎡
⎣g(i, u, k) + �

∑
v∈U(k)

�v,∗
k Q(k, v)

⎤
⎦

− Q(i, u). (18)

For the above ODE, the unique asymptotically stable equilib-
rium corresponds to the solution to the following system of
equations.

Q̄(i, u) =
∑
k∈S

p(i, u, k)

⎡
⎣g(i, u, k) + �

∑
v∈U(k)

�v,∗
k Q̄(k, v)

⎤
⎦ .

(19)

Note that we have plugged in �v,∗
k directly in the expression

for the expectation in (16) and the subsequent analysis. This
corresponds to the case of � → 0 in the faster scale recursion
(10). Ordinarily, since � > 0 is held fixed in the algorithm, one
should have �v,�

k in place of the above as the stationary proba-
bilities for given Q-value updates. However, it is easy to see by
writing the corresponding faster scale ODE for fixed � > 0 that
�v,�

k → �v,∗
k as � → 0, as the trajectories of the above ODE

converge to those of (15) uniformly on compacts for the same
initial condition in both. Likewise, if Q̄�(i, u) corresponds to
the solution of an analogous equation as (19) with �v,�

k in place
of �v,∗

k (with a corresponding change in ODE (18) as well), it
can again be seen that the trajectories of such an ODE would
converge to those of (18) for the same initial condition, uni-
formly on compacts. Hence, Q̄�(i, u) would converge as � →
0 to the solution of (19).

Now it is easy to see that Q∗(i, u) is the unique solution
to (19). The iterates Qn(i, u) can now be shown via standard
arguments (Borkar, 1997) to converge with probability one to
Q∗(i, u). This completes the proof. �

Finally, note that a similar analysis can be shown for
Algorithm-2 as well. Recall from the previous discussion that
(11) constitutes asynchronous updates in which the actions
�̂n(i) (in the tuples (i, �̂n(i)) whose Q-values are updated)
are sampled according to running policy updates �̂i (n). The
algorithm can be seen to converge in a similar manner as
Algorithm-1 to the pair of optimal policy and Q-values.

4. Numerical experiments

Efficiently routing data is an important decision making prob-
lem in communication networks. This is all the more important
as networks are subject to frequent and unpredictable changes
in topology and link costs. Conventional internet routing algo-
rithms such as the routing information protocol (RIP) or open
shortest path first (OSPF) are based on minimizing the number
of hops which means number of relay nodes between the source
and destination. With every change in topology, the network
generates several routing information packets and a lot of time
is needed to arrive at optimal paths. Reinforcement learning-
based methods have recently been applied for routing in com-
munication networks. For instance, Marbach, Mihatsch, and
Tsitsiklis (2000) uses temporal difference learning for routing
in integrated service networks. In Boyan and Littman (1994),
a ‘Q-routing’ algorithm based on Q-learning is proposed.

We study the performance of our algorithms for the problem
of routing in communication networks. For our experiments,
we consider networks with different topologies involving 4, 8
and 16 nodes, respectively. We show here results of experiments
with networks having 4 and 16 nodes only as similar results
were obtained for the 8-node case. For simplicity, we denote
by A-1 and A-2, our algorithms 1 and 2, respectively. Also, Q-
L shall denote the Q-learning algorithm. We also analytically
compute the Q-values on these settings. These are denoted A-
Q. In all cases studied, 0 is the source and the node with high-
est number is the destination. The network configurations are
shown in Figs. 1 and 2, respectively.

We assume that all links are bidirectional and have the same
cost values along both directions. For ease of exposition, we
assign numbers 0, 1, 2, etc., to the links emerging from the
various nodes, see Figs. 1 and 2. Thus, for instance in Fig.
2, link 0 at node 4 corresponds to the same link as link 2 at
node 1 (but in the reverse direction). The action set U(i) at
node i corresponds to the set of links connected to that node.
Selecting an action at a node thus corresponds to selecting
a link at that node for routing packets. We denote by (n1 −
n2 − · · · − nl−1 − nl) a path from node n1 to node nl through
intermediate nodes n2, . . . , nl−1. We choose � = 0.9, � = 0.06,
a(n)=1/n, b(n)=1/n0.7, ∀n�1, with a(0)=b(0)=1, in all our
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Fig. 1. Network with 4 nodes.
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Table 1
Converged probability vectors on the optimal path (0-1-2-3)

Alg. Node (x) p(x, 0) p(x, 1) p(x, 2)

A-1 0 0.81 0.11 0.08
1 0.21 0.53 0.26
2 0.02 0.00 0.97

A-2 0 0.91 0.01 0.07
1 0.15 0.84 0.01
2 0.01 0.13 0.86

Table 2
Converged Q-values for nodes on the optimal path (0-1-2-3)

Alg. Node (x) Q(x, 0) Q(x, 1) Q(x, 2)

A-1 0 0.55 1.12 1.00
1 0.69 0.22 1.00
2 1.59 0.54 0.10

A-2 0 0.35 1.15 0.98
1 0.48 0.22 0.89
2 1.26 0.34 0.10

Q-L 0 0.27 1.09 1.00
1 0.34 0.19 1.00
2 1.24 0.27 0.100

A-Q 0 0.35 1.10 1.00
1 0.35 0.20 1.00
2 1.20 0.45 0.10

experiments. When the one-stage costs are high in magnitude,
normalizing these is seen to improve performance. The network
learns quickly to route packets along the shortest path. The costs
on each link at an instant are chosen according to a uniform

Table 3
Converged probability vectors for nodes on the optimal path (0-1-4-8-12-14-
15) using A-1 and A-2

Alg. Node (x) p(x, 0) p(x, 1) p(x, 2) p(x, 3)

A-1 0 0.96 0.04 – –
1 0.05 0.32 0.63 –
4 0.11 0.40 0.06 0.43
8 0.01 0.13 0.37 0.49

12 0.13 0.17 0.70 –
14 0.03 0.01 0.96 –

A-2 0 0.90 0.10 – –
1 0.03 0.26 0.71 –
4 0.22 0.02 0.28 0.48
8 0.07 0.09 0.11 0.73

12 0.20 0.03 0.77 –
14 0.02 0.00 0.98 –

distribution over an interval. The latter (interval) for each link
is selected in a manner that the optimal paths get specified. For
both settings below, we run all three algorithms (A-1, A-2 and
Q-L) for 50,000 updates. We observe however that convergence
for all three algorithms is achieved in much less number of
updates (less than 5000 updates in all cases studied).

4.1. Network with 4 nodes

We consider here a network (see Fig. 1) with four nodes
and six bidirectional links. The results obtained for the various
algorithms when the optimal path corresponds to (0-1-2-3) are
shown in Tables 1 and 2, respectively. Here p(·, ·) and Q(·, ·)
denote the converged randomized policy and Q-value obtained
for the node-link pair (·, ·). We observed that convergence to
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Table 4
Converged Q-values for nodes on the optimal path (0-1-4-8-12-14-15) using A-1, A-2, Q-L and A-Q

Alg. Node (x) Q(x, 0) Q(x, 1) Q(x, 2) Q(x, 3)

A-1 0 0.12 0.16 – –
1 0.11 0.16 0.12 –
4 0.12 0.16 0.15 0.08
8 0.11 0.14 0.10 0.06

12 0.086 0.12 0.05 –
14 0.10 0.07 0.00 –

A-2 0 0.24 0.35 – –
1 0.40 0.34 0.23 –
4 0.25 0.63 0.31 0.17
8 0.30 0.30 0.30 0.15

12 0.19 0.38 0.13 –
14 0.26 0.15 0.00 –

Q-L 0 0.47 2.18 – –
1 0.52 2.23 0.41 –
4 0.47 2.18 2.18 0.34
8 0.41 2.12 1.98 0.27

12 0.34 2.05 0.19 –
14 1.98 0.27 0.10 –

A-Q 0 0.36 1.50 – –
1 0.40 1.54 0.30 –
4 0.40 1.48 1.48 0.24
8 0.35 1.44 1.39 0.20

12 0.24 1.38 0.14 –
14 1.26 0.20 0.10 –
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Fig. 3. Plot of probability updates vs. number of iterations at node 14 for optimal path (0-1-4-8-12-14-15).

the optimal paths is achieved somewhat faster when A-2 is used
as compared to A-1.

4.2. Network with 16 nodes

We consider here a network with 16 nodes and 24 bidirec-
tional links, see Fig. 2. The results obtained for the optimal

path setting (0-1-4-8-12-14-15) using the various algorithms
are shown in Tables 3 and 4, respectively.

We show in Fig. 3, the plots of policy updates vrs. the num-
ber of iterations using our algorithms A-1 and A-2. Also, Fig. 4
provides similar plots of Q-value updates. On a Pentium IV
computer with 2.4 GHz processor, it took less than 1 min to
complete one simulation run of 50,000 iterations for all three



1118 S. Bhatnagar, K.M. Babu / Automatica 44 (2008) 1111–1119

0 500 1000 1500 2000

-1

-0.5

0

0.5

1

1.5

2

2.5

Algorithm1

Q
−V

a
lu

e
s
 a

t 
n
o
d
e
 1

4

Number of iterations

Q(14,0)

Q(14,1)

Q(14,2)

Q(14,0)

Q(14,1)

Q(14,2)

0 500 1000 1500 2000
-1

-0.5

0

0.5

1

1.5

2

2.5

Algorithm2

Q
-V

a
lu

e
s
 a

t 
n
o
d
e
 1

4

Number of iterations

Fig. 4. Plot of Q-factors vs. number of iterations at node 14 for optimal path (0-1-4-8-12-14-15).

algorithms (A-1, A-2 and Q-L) in all cases studied. The codes
for the various network topologies were written using the C
programming language. We also observed convergence to op-
timal path configurations using our algorithms under different
link costs.

5. Conclusions

In this paper, we developed two gradient search-based vari-
ants of the Q-learning algorithm that both use two-timescale
stochastic approximation. We studied applications of these to
the problem of routing in communication networks. One of
the algorithms (Algorithm-1) updates Q-values associated with
each state–action pair while the other (Algorithm-2) updates
Q-values of states with actions chosen according to ‘current’
randomized policy updates. Both our algorithms pick ‘mini-
mizing actions’ for the Q-value updates using probabilities ob-
tained from the randomized policy updates. Thus the ‘non-
minimizing’ actions are also picked with certain, albeit di-
minishing, probabilities. For regular Q-learning, an additional
exploration step is recommended whereby one picks ‘non-
minimizing’ actions with certain small probabilities (Bertsekas
& Tsitsiklis, 1996). This is taken care of in a natural manner us-
ing randomized policies in our algorithms. We gave a proof of
convergence of the algorithms. Both our algorithms are found to
converge to the optimal path configurations. Algorithm-2, how-
ever, may have computational advantages in scenarios where
the numbers of states and actions are large.

We considered synchronous implementations for regu-
lar Q-learning and Algorithm-1, and a partly asynchronous
implementation for Algorithm-2. Fully asynchronous and
distributed implementations (Tsitsiklis, 1994) for the al-
gorithms may also be tried. Further, in the settings that
we considered, the associated MDP had deterministic state
transitions given actions. It would be helpful to consider

also MDPs with non-deterministic transitions for compar-
ing performance of the proposed algorithms with Q-learning.
Also, one could consider settings with dynamically varying
topologies and link costs as with real network scenarios.
For large state and action spaces, suitable modifications to
our algorithms that incorporate feature-based representations
for state and action spaces, and parameterizations of Q-values
and policies need be derived. The performance of the modified
algorithms may then be studied in implementations involving
large scale networks. This is a possible future direction.
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