
A Reinforcement Learning Based Algorithm for Finite Horizon Markov
Decision Processes

Shalabh Bhatnagar and Mohammed Shahid Abdulla
Department of Computer Science and Automation,

Indian Institute of Science, Bangalore, INDIA.

e-mail:{shalabh,shahid}@csa.iisc.ernet.in

Abstract— We develop a simulation based algorithm for
finite horizon Markov decision processes with finite state and
finite action space. Illustrative numerical experiments with the
proposed algorithm are shown for problems in flow control of
communication networks and capacity switching in semicon-
ductor fabrication.

Keywords

Finite horizon Markov decision processes, reinforce-
ment learning, two timescale stochastic approximation,
actor-critic algorithms, normalized Hadamard matrices.

I. INTRODUCTION

Markov decision processes (MDPs) are a general
framework for solving stochastic control problems [1].
Value iteration and policy iteration are two of the clas-
sical approaches for solving the Bellman equation for
optimality. Whereas value iteration proceeds by recur-
sively iterating over value function estimates starting
from a given such estimate, policy iteration does so by
iterating over policies and involves updates in two nested
loops. The inner loop estimates the value function for a
given policy update while the outer loop updates the
policy. The former estimates are obtained as solutions
to linear systems of equations, known as the Poisson
equations, that are most often solved using value itera-
tion type recursions rather than explicit matrix inversion.
This is particularly true when the numbers of states
and actions are large (the ‘curse of dimensionality’).
However, in the above classical approaches, one requires
complete knowledge of the system model via transition
probabilities. Even if these are available, the ‘curse
of dimensionality’ threatens the computational require-
ments for solving the Bellman equation as these become
prohibitive. Motivated by these considerations, research
on simulation-based methods that largely go under the
rubric of reinforcement learning or neuro-dynamic pro-
gramming [2] have gathered momentum in recent times.
The main idea in these schemes is to simulate transitions
instead of directly computing transition probabilities and,
in scenarios where the numbers of states and actions are
large, use parametric representations of the cost-to-go
function and/or policies.

The inner loop of the policy iteration algorithm,
for any given policy update, may typically take a long
time to converge. In [3], an actor-critic algorithm
based on two-timescale stochastic approximation was
proposed. A simulation-based analog of policy iteration,
the algorithm proceeds using two coupled recursions
driven by different step-size schedules or timescales. The
policy evaluation step of policy iteration is performed
on the faster timescale while the policy improvement

step is carried out along the slower one, the advantage
being that one need not wait for convergence of the
inner-loop before an outer-loop update unlike regular
policy iteration. Instead, both recursions are executed in
tandem, one after the other, and the optimal policy-value
function pair are obtained upon convergence of the algo-
rithm. This idea of two-timescale stochastic approxima-
tion is further applied in [4], where parameterizations of
both value function (termed ‘critic’), and policy (termed
‘actor’) are considered. As yet another application of
the two-timescale method, the simulation-based policy
iteration algorithm of [5] performs updates in the space
of deterministic stationary policies and not randomized
stationary policies (RSPs) as in [3], [4]. While not sta-
tionary, the proposed algorithm RPAFA uses randomized
policies as well. On the slower timescale, a gradient
search using simultaneous perturbation stochastic ap-
proximation (SPSA) gradient estimates is performed and
convergence to a locally optimal policy is shown. While
gradient search on the slower timescale is recommended
in [4], no specific form of the gradient estimates is
proposed there. The SPSA estimates used in [5] are of
the two-measurement form first proposed in [6], while
a one-measurement form of SPSA was proposed in
[7]. A performance-enhancing modification to this latter
algorithm was described in [8] that used deterministic
perturbation sequences derived from certain normalized
Hadamard matrices. This last form of SPSA is used in
the proposed RPAFA algorithm.

The algorithm of [5] is for infinite horizon dis-
counted cost MDPs. Obtaining a solution to the Poisson
equation (along the faster timescale) is simpler there as
the cost-to-go depends only on the state and is stage-
invariant (i.e. stationary). Since we consider the finite
horizon setting here, the cost-to-go is now a function
of both state and stage. The faster timescale updates
now involve T ‘stage-wise’ coupled stochastic recursions
in addition to being ‘state-wise’ coupled, where T is
the planning horizon. Therefore, the resulting system of
equations that need to be solved is T−fold larger than
in [5]. Numerical experiments in [5] are shown over
a setting of flow control in communication networks.
We consider experiments not only in this setting, but
also on another setting involving capacity allocation in
semi-conductor fabs. Further, as already pointed out, [5]
considers the setting of compact (non-discrete) action
sets while we consider a finite action setting in our work.

Reinforcement learning algorithms have generally
been developed and studied as infinite horizon MDPs
under the discounted cost or the long-run average cost
criteria. For instance, approximate DP methods of TD
learning [2, §6.3], Q-learning [2, §6.6] and actor-critic

Proceedings of the 45th IEEE Conference on Decision & Control
Manchester Grand Hyatt Hotel
San Diego, CA, USA, December 13-15, 2006

FrB09.1

1-4244-0171-2/06/$20.00 ©2006 IEEE. 5519

algorithms [4] etc., have been developed in the infinite
horizon framework. However, in most real life scenarios,
finite horizon decision problems assume utmost signifi-
cance. For instance, in the design of a manufacturing fab,
one requires planning over a finite decision horizon. In
a communication network, flow and congestion control
problems should realistically be studied only as finite
horizon decision making problems, since the amount
of time required in clearing congestion and restoring
normal traffic flows in the network is of prime concern.
Finite-horizon tasks also form natural subproblems in
certain kinds of infinite-horizon MDPs, e.g. [9, §2]
illustrates this by using models from semiconductor fab-
rication and communication networks where each tran-
sition of the upper level infinite-horizon MDP spawns a
finite-horizon MDP at a lower level. Policies in finite
horizon problems depend on stage and need not be
stationary, thereby contributing in severity to the ‘curse
of dimensionality’.

We develop in this paper, two-timescale stochastic
approximation based actor-critic algorithms for finite
horizon MDPs with finite state and finite action sets.
Most of the work on developing computationally effi-
cient algorithms for finite horizon problems, however,
assumes that model information is known. For instance,
in [10], the problem of solving a finite horizon MDP
under partial observations is formulated as a nonlinear
programming problem and a gradient search based solu-
tion methodology is developed. For a similar problem,
a solution procedure based on genetic algorithms and
mixed integer programming is presented in [11]. In [12],
a hierarchical structure using state aggregation is pro-
posed for solving finite horizon problems. In contrast, we
assume that information on transition probabilities (or
model) of the system is not known, although transitions
can be simulated. In [13], three variants of the Q-learning
algorithm for the finite horizon problem are developed
assuming lack of model information. However, the finite
horizon MDP problem is embedded as an infinite horizon
MDP either by adding an absorbing state at the terminal
stage (or the end of horizon) or a modified MDP is
obtained by restarting the process by selecting one of the
states at the initial (first) stage of the MDP according to
the uniform distribution, once the terminal stage is hit.

Our approach is fundamentally different from that in
[13]. In particular, we do not embed the finite horizon
MDP into an infinite horizon one. The solution proce-
dure that one obtains using the approach in [13] is at
best only approximate, a restriction not applicable to
our work. In the limit as the number of updates goes
to infinity, our algorithms converge to the optimal T -
stage finite horizon policy. Our algorithms update all
components of the policy vector at every update epoch,
resulting in the near-equal convergence behaviour of
r−th stage policy components and costs-to-go, for each
r ∈ {0, 1, ..., T − 1}.

Further, the method of [13] is a trajectory-based
scheme, in that repeated simulations of entire T−length
trajectories are performed, whereas our algorithm uses
single transitions. In the former method, not all
(state,action) pairs are sufficiently explored and hence
a separate exploration function is needed. Apart from a
look-up table proportional in the number of actions per-
state, the algorithm of [13] also requires counters for the
number of times a (state,action) pair has been seen by
the algorithm.

Section II describes the framework of a finite-
horizon MDP, provides a brief background of the tech-

niques used, and proposes the algorithm. In section III,
we illustrate numerical experiments in the framework of
flow control in communication networks and capacity
switching in semiconductor fabrication wherein we com-
pute the optimal costs and policies using the proposed
algorithm and compare performance with Dynamic Pro-
gramming using certain performance metrics. We dwell
on some future directions in section IV.

II. FRAMEWORK AND ALGORITHMS

Consider an MDP {Xr, r = 0, 1, ..., T} with deci-
sion horizon T < ∞. Suppose {Zr, r = 0, 1, ..., T −1}
be the associated control valued process. Decisions are
made at instants r = 0, 1, ..., T − 1, and the process
terminates at instant T . Let state space at epoch r be
Sr, r = 0, 1, ..., T and let the control space at epoch
r be Cr, r = 0, 1, ..., T − 1. Note that ST is the set
of terminating states of this process. Let Ur(ir) ⊂
Cr, r = 0, 1, ..., T −1, be the set of all feasible controls
in state ir , in period r. Let pr(i, a, j), i ∈ Sr, a ∈
Ur(i), j ∈ Sr+1, r = 0, 1, ..., T −1 denote the transition
probabilities associated with this MDP. The transition
dynamics of this MDP is governed according to

P (Xr+1 = ir+1|Xk = ik, Zk = ak, 0 ≤ k ≤ r) =

pr(ir, ar, ir+1)

r = 0, 1, ..., T −1, for all i0, i1, ..., iT , a0, a1, ..., aT−1,
in appropriate sets. We define an admissible policy π
as a set of T functions π = {µ0, µ1, ..., µT−1} with
µr : Sr �−→ Cr such that µr(i) ∈ Ur(i), ∀i ∈
Sr, r = 0, 1, ..., T − 1. Thus at (given) instant r with
the system in say state i, the controller under policy π
selects the action µr(i). Let gr(i, a, j) denote the single
stage cost at instant r when state is i ∈ Sr , the action
chosen is a ∈ Ur(i) and the subsequent next state is
j ∈ Sr+1, respectively, for r = 0, 1, ..., T − 1. Also,
let gT (k) denote the terminal cost at instant T when
the terminating state is k ∈ ST . The aim here is to
find an admissible policy π = {µ0, µ1, ..., µT−1} that
minimizes for all i ∈ S0,

V i
0 (π) =

E

{
gT (XT) +

T−1∑
r=0

gr(Xr, µr(Xr), Xr+1)|X0 = i

}
.

(1)
The expectation above is over the joint distribution

of X1, X2, ..., XT . The dynamic programming algo-
rithm for this problem is now given as follows (see
[14]): for all i ∈ ST ,

V i
T (π) = gT (i) (2)

and for all i ∈ Sr , r = 0, 1, ..., T − 1,

V i
r (π) =

min
a∈Ur(i)

⎧⎨
⎩

∑
j∈Sr+1

pr(i, a, j)(gr(i, a, j) + V j
r+1(π))

⎫⎬
⎭,

(3)
respectively.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrB09.1

5520

A. Brief Overview and Motivation
Note that using dynamic programming, the original

problem of minimizing, over all admissible policies π,
the T -stage cost-to-go V i

0 (π), ∀i ∈ S0, as given in (1),
is broken down into T coupled minimization problems
given by (2)-(3) with each such problem defined over
the corresponding feasible set of actions for each state.
Here,‘coupled’ means that the r−th problem depends on
the solution of the (r + 1)−th problem, for 0 ≤ r < T .
In this paper, we are interested in scenarios where the
pr(i, a, j) are not known, however, where transitions can
be simulated. Thus, given that the state of the system at
epoch r (r ∈ {0, 1, .., T −1}) is i and action a is picked
(possibly randomly), we assume that the next state j can
be obtained through simulation.

We combine the theories of two-timescale stochastic
approximation and SPSA to obtain actor-critic algo-
rithms that solve all the T coupled minimization prob-
lems (2)-(3), under the (above) lack of model informa-
tion constraint. For the case of infinite horizon problems,
[3], [4] and [5] all use two-timescale stochastic approx-
imation algorithms of which [5] adopts two-simulation
SPSA to estimate the policy gradient.

Before we proceed further, we first motivate the use
of SPSA based gradient estimates and two timescales in
our algorithm. Suppose we are interested in finding the
minimum of a function F (θ) when F is not analytically
available, however, noisy observations f(θ, ξn), n ≥ 0
of F (θ) are available with ξn, n ≥ 0 being i.i.d. random
variables satisfying F (θ) = E[f(θ, ξn)]. The expecta-
tion above is taken w.r.t. the common distribution of ξn,
n ≥ 0. Let θ = (θ1, ..., θq)

T , ∆i(n), i = 1, ..., q, n ≥ 0
be generated according to the method in section II-A.1
below and let ∆(n) = (∆1(n), . . . , ∆N (n))T , n ≥ 0.
Let θ(n) denote the nth update of parameter θ. For a
given (small) scalar δ > 0, form the parameter vector
θ(n) + δ∆(n). Then the one-measurement SPSA gra-
dient estimate ∇̃iF (θ(n)) of ∇iF (θ(n)), i = 1, . . . , q
has the form (cf. algorithm SPSA2-1R of [8]:

∇̃iF (θ(n)) =
f(θ(n) + ∆(n), ξn)

δ∆i(n)
, (4)

Note that only one measurement (corresponding to
θ(n) + δ∆(n)) is required here.

Also observe that unlike SPSA estimates, Kiefer-
Wolfowitz gradient estimates require 2q (resp. (q + 1))
measurements when symmetric (resp. one-sided) differ-
ences are used. We now describe the construction of the
deterministic perturbations ∆(n), n ≥ 1, as proposed in
[8].

1) Construction for Deterministic Perturba-
tions: Let H be a normalized Hadamard matrix (a
Hadamard matrix is said to be normalized if all the ele-
ments of its first row and column are 1s of order P with
P ≥ q + 1). Let h(1), ..., h(q) be any q columns other
than the first column of H , thus forming a new (P ×q)–
dimensional matrix Ĥ . Let Ĥ(p), p = 1, ..., P denote
the P rows of Ĥ . Now set ∆(n) = Ĥ(n mod P + 1),
∀n ≥ 0. The perturbations are thus generated by cycling
through the rows of the matrix Ĥ . Here P is chosen as
P = 2�log2 (q+1)�. It is shown in [8] that under the above
choice of P , the bias in gradient estimates asymptotically
vanishes. Finally, matrices H ≡ HP×P of dimension
P × P , for P = 2k, are systematically constructed as
follows:

H2×2 =

(
1 1
1 −1

)
,

H2k×2k =

(
H2k−1×2k−1 H2k−1×2k−1

H2k−1×2k−1 −H2k−1×2k−1

)
,

for k > 1.
2) Two-timescale stepsizes: Let {b(n)} and

{c(n)} be two step-size schedules that satisfy∑
n

b(n) =
∑

n

c(n) = ∞,
∑

n

b(n)2,
∑

n

c(n)2 < ∞,

and
c(n) = o(b(n)),

respectively. Thus {c(n)} goes to zero faster than
{b(n)} does and corresponds to the slower timescale
(since beyond some integer N0 (i.e., for n ≥ N0),
the sizes of increments in recursions that use {c(n)}
are uniformly the smallest, and hence result in slow
albeit graceful convergence). Likewise, {b(n)} is the
faster scale. Informally, a recursion having b(n) as the
stepsize views a recursion that has stepsize c(n) as static
whilst the latter recursion views the former as having
converged.

B. Proposed Algorithm (RPAFA)

The acronym RPAFA stands for ‘Randomized Policy
Algorithm over Finite Action sets’. In the following, for
notational simplicity and ease of exposition, we assume
that the state and action spaces are fixed and do not
vary with stage. Thus S and C respectively denote the
state and control spaces. Further, U(i) denotes the set of
feasible actions in state i ∈ S and is also stage invariant.
The set U(i) of feasible actions in state i is assumed
finite. Further, we assume that each set U(i) has exactly
(q + 1) elements u(i, 0), . . ., u(i, q) that however may
depend on state i. For theoretical reasons, we will need
the following assurance on per-stage costs.

Assumption (A) The cost functions gr(i, a, j), i, j ∈ S,
a ∈ U(i), are bounded for all r = 0, 1, ..., T−1. Further,
gT (i) is bounded for all i ∈ S.

We now introduce a Randomized Policy (RP). Let
πr(i, a) be the probability of selecting action a in state
i at instant r and let π̂r(i) be the vector (πr(i, a), i ∈
S, a ∈ U(i)\{u(i, 0)})T , r = 0, 1, ..., T−1. Thus given
π̂r(i) as above, the probability πr(i, u(i, 0)) of selecting
action u(i, 0) in state i at instant r is automatically
specified as πr(i, u(i, 0)) = 1 − ∑q

j=1
πr(i, u(i, j)).

Hence, we identify a RP with π̂ = (π̂r(i), i ∈ S, 0 ≤
r ≤ T − 1)T . Let S̄ = {(y1, . . . , yq)|yj ≥ 0, ∀j =
1, . . . , q,

∑q

j=1
yj ≤ 1} denote the simplex in which

π̂r(i), i ∈ S, r = 0, 1, ..., T − 1 take values. Suppose
P : Rq �→ S̄ denotes the projection map that projects
π̂r(i) to the simplex S̄ after each update of the algorithm
below.

Algorithm RPAFA
• Step 0 (Initialize): Fix π̂0,r(i, a), ∀i ∈ S, a ∈

U(i), 0 ≤ r ≤ T − 1 as the initial RP iterate.
Fix integers L and (large) M arbitrarily. Fix a
(small) constant δ > 0. Choose step-sizes b(n) and
c(n) as in Section II-A.2. Generate Ĥ as in Section
II-A.1. Set Vk,r(i) = 0, ∀0 ≤ r ≤ T − 1, and
Vk,T (i) = gT (i), 0 ≤ k ≤ L − 1, i ∈ S as initial
estimates of cost-to-go. Set ‘actor’ index n := 0.

• Step 1: For all i ∈ S, 0 ≤ r ≤ T − 1, do:

– Set ∆n,r(i) := Ĥ(n mod P + 1),
– Set π̄n,r(i) := P (π̂n,r(i) +δ∆n,r(i)).

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrB09.1

5521

• Step 2 (Critic): For ‘critic’ index m = 0, 1, ..., L−
1, r = T − 1, T − 2, ..., 0, and i ∈ S, do

– Simulate action φnL+m,r(i) according to dis-
tribution π̄n,r(i).

– Simulate next state ηnL+m,r(i) according to
distribution pr(i, φnL+m,r(i), ·).

– VnL+m+1,r(i) := (1 − b(n))VnL+m,r(i)

+b(n)gr(i, φnL+m,r(i), ηnL+m,r(i))

+b(n)VnL+m,r+1(ηnL+m,r(i)).

• Step 3 (Actor): For i ∈ S, 0 ≤ r ≤ T − 1, do

π̂n+1,r(i) := P (π̂n,r(i) − c(n)
VnL,r(i)

δ
∆−1

n,r(i))

Set n := n + 1.
If n = M , go to Step 4;
else go to Step 1.

• Step 4 (termination): Terminate algorithm and out-
put π̄M as the final policy.

III. SIMULATION RESULTS

A. Flow control in communication networks
We consider a continuous-time queuing model of

flow control. The numerical setting here is somewhat
similar to that in [5]. In [5], this problem is modelled
in the infinite horizon discounted cost MDP framework,
while we study it in the finite horizon MDP framework
here. Flow and congestion control problems are suited
to a finite horizon framework since a user typically
holds the network for only a finite time duration. In
many applications in communication networks, not only
is the time needed to control congestion of concern,
these applications must also be supported with sufficient
bandwidth throughout this duration.

Assume that a single bottleneck node has a finite
buffer of size B. Packets are fed into the node by
both an uncontrolled Poisson arrival stream with rate
λu = 0.2, and a controlled Poisson process with rate
λc(t) at instant t > 0. Service times at the node are
i.i.d., exponentially distributed with rate 2.0. We assume
that the queue length process {Xt, t > 0} at the node
is observed every T̃ instants, for some T̃ > 0, upto
the instant T̃ T . Here T stands for the terminating stage
of the finite horizon process. Suppose Xr denotes the
queue length observed at instant rT̃ , 0 ≤ r ≤ T . This
information is fed back to the controlled source which
then starts sending packets at λc(Xr) in the interval
[rT̃ , (r + 1)T̃), assuming there are no feedback delays.
We use B = 50 and T = 10, and designate the ‘target
states’ T̂r as evenly spaced states within the queue i.e.,
{T̂1 = 40, T̂2 = 37, T̂3 = 34, ..., T̂9 = 16, T̂10 = 0}.
The one-step transition cost under a given policy π
is computed as gr(ir, φr(ir), ir+1) =

∣∣ir+1 − T̂r+1

∣∣
where φr(ir) is a random variable with law πr(ir).
Also, gT (i) = 0, ∀i ∈ S. Such a cost function penalizes
states away from the target states T̂r+1, apart from
satisfying Assumption (A). The goal thus is to maximize
throughput in the early stages (r small), while as r
increases, the goal steadily shifts towards minimizing
the queue length and hence the delay as one approaches
the termination stage T .

For the finite action setting, we discretize the interval
[0.05, 4.5] so as to obtain five equally spaced actions
in each state. For purposes of comparison, we also im-
plemented the DP algorithm (1)-(2) for the finite action
setting. Application of DP presupposes availability of the

transition probability matrix PT̃ , and in order to compute
these we use the approximation method of [15, §6.8].
Since each state has the same q +1 admissible controls,
q + 1 number of PT̃ matrices of size B × B each are
required. This storage required becomes prohibitive as
either the state space increases, or the discretization is
made finer. Also note that the amount of computation
required for PT̃ also depends upon the convergence
criteria specified for the method in [15, §6.8]. Besides,
such probabilities can only be computed for systems
whose dynamics are well known, our setting being that
of a well-studied M/M/1/B queue.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30 35 40 45 50

La
m

bd
a-

C

States

policies for various r

t=1
t=3
t=6
t=9

Fig. 1. Optimal Policy computed Using DP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30 35 40 45 50

La
m

bd
a-

C

States

RPAFA: policy for various r

r=1
r=3
r=6
r=9

Fig. 2. Policy computed using RPAFA

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25 30 35 40 45 50

C
os

t-
to

-g
o

States

Finite Horizon Costs-to-go

DP
RPAFA

Fig. 3. Comparison of Costs-to-go

The policy obtained using finite-horizon DP with PT̃

computed as above is shown in Figure 1. Note how the
policy graphs shift to the left as the target state moves
to the left for increasing r. Thus, the throughput of the

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrB09.1

5522

r=2 r=6 r=10
Target T̂r 37 25 0

DP 27.1±6.3 22.4±5.1 5.7±3.6
RPAFA 19.2±6.5 19.4±4.8 8.9±5.3

TABLE I

OBSERVED E(ir) FOR THE PROPOSED ALGORITHM

r=2 r=6 r=10
Target T̂r 37 25 0

DP 0.07±0.13 0.21±0.34 0.19±0.31
RPAFA 0.01±0.03 0.13±0.22 0.14±0.24

TABLE II

PROBABILITIES pr = P (ir = T̂r ± 1)

system decreases from one stage to another as the target
queue length is brought closer to zero.

The algorithm RPAFA is terminated at iteration n
where errn ≤ 0.01. The convergence criterion is

errn = max
i∈S,k∈{1,2,...,50}

‖πn(i) − πn−k(i)‖2,

where πn(i) = (πn,r(i, a), 0 ≤ r ≤ T − 1, a ∈ U(i))T .
Further, ‖ · ‖2 is the Euclidean norm in RT×(q+1).
On a Pentium III computer using the C programming
language, termination required upto 47 × 103 updates
and 8 × 103 seconds. The policy obtained is shown
in Figure 2, where for each state the source rate
indicated is the rate that has the maximum probability
of selection. Also shown in Figure 3 is the finite-horizon
cost for each state in a system operating under the
policies in Figure 1 and Figure 2, respectively. The
plots shown in Figure 3 are obtained from 2 × 105

independent sample trajectories {i0, i1, ..., i10}, each
starting from state i0 = 0 with a different initial seed.
Tables I, II and III show performance comparisons
of the proposed algorithm for various metrics with
mean and standard deviation taken over the (above
mentioned) 2 × 105 independent sample trajectories.
Table I shows the mean queue length E(ir) at
instants r = 2, 4, 6, 8, and 10, respectively, with the
corresponding standard deviation. With T̂r defined
as the ‘target’ state at instant r, Table II shows the
probability of the system being in states T̂r ± 1 at the
above values of r. Table III shows the mean one-stage
cost E(gr−1(ir−1, µr−1(ir−1), ir)) = E(|ir − T̂r|)
incurred by the system during transition from ir−1

to ir under policy π. Note that the relatively bad
performance of RPAFA is since it applies a randomized
policy wherein the optimal action, though having a high
probability of selection, may not be selected each time.

The approximate DP algorithm in this case con-
verges much faster since transition probabilities using
the method in [15] are easily computed in this setting.
However, in most real life scenarios, computing these
probabilities may not be as simple, and one may need
to rely exclusively on simulation-based methods.

r=2 r=6 r=10
Target T̂r 37 25 0

DP 10.5±5.5 5.2±3.6 5.8±3.6
RPAFA 18.0±6.3 6.7±3.9 8.8±5.3

TABLE III

MEAN ONE-STAGE COSTS E(|ir − T̂r|)

B. Capacity Switching in Semiconductor Fabs
We first briefly describe the model of a semicon-

ductor fabrication unit, considered in [16]. The factory
process {Xr|X0 = i}, 1 ≤ r ≤ T , i ∈ S0 is such
that each Xr is a vector of capacities at time epochs
r ∈ {1, 2, ..., T}, the components X

(A,i),w
r representing

the number of type w machines allocated to performing
operation i on product A. The duration of the planning
horizon is T , casting this problem as a finite horizon
Markov Decision Process. A type w machine indicates
a machine capable of performing all operations which
are letters in the ‘word’ w. Note that the product A
requires the operation i for completion and that the word
w contains the letter i, among others. The word w of a
machine can also contain the action 0 - indicating idling.
The control µr(Xr) taken at stages 0 ≤ r ≤ T − 1

would be to switch u
(A,i),w,(B,j)
r machines of type w

from performing operation i on product A to performing
operation j on product B.

As in inventory control models, the randomness in
the system is modeled by the demand DA

r for product
A at stages 0 ≤ r ≤ T − 1. The per-step transition cost
consists of costs for excess inventory (Ke

A, for every
unit of product A in inventory), backlog (Kb

A), cost of
operation (Ko

w, one-stage operating cost for a machine
of type w) and the cost of switching capacity from one
type of operation to another (Ks

w, the cost of switching
a machine of type w from one type of production to
another). In all these costs, further complications can be
admitted, e.g., the cost Ks

w could be indexed with the
source product-operation pair (A, i) and the destination
pair (B, j).

We consider here a simple model also experimented
with in [16] where the infinite horizon discounted
cost for a semiconductor fab model was computed
using function approximation coupled with the policy
iteration algorithm. In contrast, we do not use function
approximation and adopt a finite horizon of 10. The
cost structure, however, remains the same as [16]. In
particular, we consider a fab producing two products (A
and B), both requiring two operations, ‘litho’ and ‘etch’
(call these l and e). We have a fab with 2 litho and 2
etch machines that can each perform the corresponding
operation on either A or B. We denote the operations
{A, l} (i.e., ‘litho on A’) as 1, {A, e} as 2, {B, l} as
3 and {B, e} as 4, implying that the word w of a litho
machine is 013 and that of an etch machine is 024. The
product-operation pairs that admit non-zero capacities
are therefore: (A, 1), (A, 2), (B, 3), and (B, 4).

The fab’s throughput Pr = (P A
r , P B

r)
is constrained by the following relation:
P A

r = min(X
(A,1),013
r , X

(A,2),024
r) and P B

r =

0.5·min(X
(B,3),013
r , X

(B,4),024
r), 0 ≤ r ≤ T − 1

implying the slower production of B. We assume
that no machine is idling and therefore the capacity
allocated to product B, given capacity allocated to
A, is simply the remainder from 2 for both litho and
etch. Therefore, these are X

(B,3),013
r = 2−X

(A,1),013
r ,

X
(B,4),024
r = 2 − X

(B,4),024
r . We also

constrain the inventories: IA
r ∈ {−1, 0, 1},

IB
r ∈ {−0.5, 0, 0.5}, 0 ≤ r ≤ T − 1. The state

is thus completely described by the quadruplet:
Xr = (X

(A,1),013
r , X

(A,2),024
r , IA

r , IB
r), 0 ≤ r ≤ T .

One can choose a lexicographic order among the
possible starting states X0, which are 34 = 81 in
number.

Capacity switching at stage 0 ≤ r ≤ T − 1 is

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrB09.1

5523

Iterations Time in sec. errn Max Error
RPAFA 1500 209 0.1 30.4

TABLE IV

PERFORMANCE OF RPAFA

specified by the policy component µr . Thus µr(Xr) is
a vector such that µr(Xr) = (µr(Xr, 1), µr(Xr, 2)),
making X

(A,1),013
r+1 = X

(A,1),013
r +µr(Xr, 1) (similarly

for X
(A,2),024
r+1). Note that controls µr(Xr) belong to

the feasible action set Ur(Xr), and that in our setting
0 ≤ |Ur(Xr)| ≤ 9, the state ‘group’ (1, 1, xA, yB),
∀xA ∈ {−1, 0, 1}, ∀yB ∈ {−0.5, 0, 0.5} having the
maximum of 9 actions. We take the various one-step
costs to be Ke

A = 2, Ke
B = 1, Kb

A = 10, Kb
B = 5,

Ko
013 = 0.2, Ko

024 = 0.1, Ks
013 = 0.3 and Ks

024 = 0.3.
The noise (demand) scheme is such that: DA

r = 1
w.p. 0.4, DA

r = 2 otherwise, and DB
r = 0.5 w.p.

0.7, DB
r = 1 otherwise, for all 0 ≤ r ≤ T − 1.

We assume that the control µr(Xr) is applied to the
state Xr at the beginning of the epoch r whereas the
demand Dr is made at the end of it, i.e., X

(A,1),013
r+1 =

X
(A,1),013
r + µr(Xr, 1), X

(A,2),024
r+1 = X

(A,2),024
r +

µr(Xr, 2), IA
r+1 = max(min(IA

r +P A
r −DA

r , 1),−1),
IA

r+1 = max(min(IB
r + P B

r − DB
r , 0.5),−0.5)). We

also take the terminal cost KT (XT) to be 0. Thus, we
have the per-stage cost:

Kr(Xr, µr(Xr), Xr+1) =

2Ko
013 + 2Ko

024 + µA,1
r ·Ks

013 + µA,2
r ·Ks

024

+max(IA
r+1, 0)·Ke

A + max(IB
r+1, 0)·Ke

B

+max(−IA
r+1, 0)·Kb

A + max(−IB
r+1, 0)·Kb

B

The resulting costs-to-go obtained using our algo-
rithm is plotted in Figure 4. The states are sorted
in decreasing order of the exact costs-to-go (computed
using DP). The corresponding cost computed using the
converged policy of RPAFA is seen to be reliably close
- albeit higher than DP. The computing performance is
outlined in Table IV. In the experiments we chose L
and δ as 200 and 0.1, respectively.

 50

 55

 60

 65

 70

 75

 80

 85

 0 10 20 30 40 50 60 70 80

C
os

t-
to

-g
o

States in Sorted Order

Finite Horizon Costs-to-go

RPAFA
DP

Fig. 4. Comparison of Costs-to-go

IV. FUTURE DIRECTIONS

The policy iteration algorithm used one-simulation
SPSA gradient estimates with perturbation sequences
derived from normalized Hadamard matrices. However,
in general, two-simulation SPSA algorithms are seen to

perform better and converge faster as compared to one-
simulation SPSA, which could be derived along similar
lines (see [8]). In order to further improve performance,
efficient simulation-based higher order SPSA algorithms
that also estimate the Hessian in addition to the gradient
along the lines of [17] could also be explored.

Acknowledgments
This work was supported in part by Grant no.

SR/S3/EE/43/2002-SERC-Engg from the Department of
Science and Technology, Government of India.

REFERENCES

[1] M. Puterman, Markov Decision Processes: Discrete
Stochastic Dynamic Programming. New York: John
Wiley, 1994.

[2] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Program-
ming. Belmont, MA: Athena Scientifi c, 1996.

[3] V. Konda and V. Borkar, “Actor–Critic Type Learning Al-
gorithms for Markov Decision Processes,” SIAM Journal
on Control and Optimization, vol. 38, no. 1, pp. 94–123,
1999.

[4] V. Konda and J. Tsitsiklis, “Actor–Critic Algorithms,”
SIAM Journal on Control and Optimization, vol. 42, no. 4,
pp. 1143–1166, 2003.

[5] S. Bhatnagar and S. Kumar, “A Simultaneous Perturbation
Stochastic Approximation–Based Actor–Critic Algorithm
for Markov Decision Processes,” IEEE Transactions on
Automatic Control, vol. 49, no. 4, pp. 592–598, 2004.

[6] J. Spall, “Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation,” IEEE
Transactions on Automatic Control, vol. 37, no. 1, pp.
332–341, 1992.

[7] ——, “A One–Measurement Form of Simultaneous Per-
turbation Stochastic Approximation,” Automatica, vol. 33,
no. 1, pp. 109–112, 1997.

[8] S. Bhatnagar, M. Fu, S. Marcus, and I.-J. Wang, “Two–
timescale simultaneous perturbation stochastic approxi-
mation using deterministic perturbation sequences,” ACM
Transactions on Modeling and Computer Simulation,
vol. 13, no. 4, pp. 180–209, 2003.

[9] H. Chang, P. Fard, S. Marcus, and M. Shayman, “Mul-
titime Scale Markov Decision Processes,” IEEE Transac-
tions on Automatic Control, vol. 48, no. 6, pp. 976–987,
2003.

[10] Y. Serin, “A nonlinear programming model for partially
observed Markov decision processes: fi nite horizon case,”
European Journal of Operational Research, vol. 86, pp.
549–564, 1995.

[11] A. Lin, J. Bean, and C. White, III, “A hybrid ge-
netic/optimization algorithm for fi nite horizon partially
observed Markov decision processes,” INFORMS Journal
On Computing, vol. 16, no. 1, pp. 27–38, 2004.

[12] C. Zhang and J. Baras, “A hierarchical structure for
fi nite horizon dynamic programming problems,” Technical
Report TR2000-53, Institute for Systems Research, Uni-
versity of Maryland, USA, 2000.

[13] F. Garcia and S. Ndiaye, “A learning rate analysis of
reinforcement learning algorithms in fi nite-horizon,” in
Proceedings of the Fifteenth International Conference on
Machine Learning, Madison, USA, 1998.

[14] D. Bertsekas, Dynamic Programming and Optimal Con-
trol, Volume I. Belmont, MA: Athena Scientifi c, 1995.

[15] S. Ross, Introduction to Probability Models, 7/e. San
Diego, CA: Academic Press, 2000.

[16] Y. He, S. Bhatnagar, M. Fu, S. Marcus, and P. Fard,
“Approximate policy iteration for semiconductor fab-level
decision making - a case study,” Technical Report, Insti-
tute for Systems Research, University of Maryland, 2000.

[17] S. Bhatnagar, “Adaptive multivariate three–timescale
stochastic approximation algorithms for simulation based
optimization,” ACM Transactions on Modeling and Com-
puter Simulation, vol. 15, no. 1, pp. 74–107, 2005.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrB09.1

5524

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

