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Robust optimization in electromagnetic scattering problems
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In engineering design, the physical properties of a system can often only be described by numerical
simulation. Optimization of such systems is usually accomplished heuristically without taking into
account that there are implementation errors that lead to very suboptimal, and often, infeasible
solutions. We present a robust optimization method for electromagnetic scattering problems with
large degrees of freedom and report on results when this technique is applied to optimization of
aperiodic dielectric structures. The spatial configuration of 50 dielectric scattering cylinders is
optimized to match a desired target function such that the optimal arrangement is robust against
placement and prototype errors. Our optimization method inherently improves the robustness of
the optimized solution with respect to relevant errors and is suitable for real-world design of
materials with unconventional electromagnetic functionalities, as relevant to nanophotonics.
© 2007 American Institute of Physics. [DOI: 10.1063/1.2715540]

I. INTRODUCTION

The search for attractive and unconventional materials in
controlling and manipulating electromagnetic field propaga-
tion has identified a plethora of unique characteristics in pho-
tonic crystals (PCs). Their peculiar functionalities are based
on diffraction phenomena, which require periodic structures.
While three-dimensional PC structures are still far from
commercial manufacturing, two-dimensionally periodic PCs
have already been introduced to integrated-device applica-
tions, e.g., through PC fibers.' However, technical difficulties
such as ability to manufacture and disorder control pose re-
strictions on functionality and versatility. Upon breaking the
spatial symmetry, additional degrees of freedom are revealed
which allow for additional functionality and, possibly, for
higher levels of control. Previous studies introduced the bro-
ken symmetry to PC structures of dielectric scatterers by
diluting sites and optimizing the location of the missing scat-
tering sites. Because of the underlying periodic structure, the
additional degrees of freedom and, hence, their benefit have
been very restricted.”* More recently, unbiased optimization
schemes were performed on the spatial distribution (aperi-
odic) of a large number of identical dielectric cylinders.S’6
The resulting aperiodic structure, using an effective gradient-
based optimization was reported to match a desired target
function up to 95%.° While these works demonstrate the ad-
vantage of optimization, the robustness of the solutions still
remains an open issue.

When implemented in the real world, however, the per-
formance of many engineering designs often deviates from
the predicted performance in the laboratory. A key source of
this deviation lies in the presence of uncontrollable imple-
mentation errors. Traditionally, a sensitivity or postoptimality
analysis was performed to study the impact of perturbations
on specific designs. While such an approach can be used to
compare designs, it does not intrinsically find one with lower
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sensitivities. Another class of robust design methods ex-
plored interactions between the uncertainties and the design
variables by conducting a series of designed experiments.7_9
This approach can fail for highly nonlinear systems with a
large number of design variables.'’ Alternatively, the original
objective function was replaced with a statistical measure
consisting of expected values and standard deviations."" This
method requires the knowledge of the probability distribu-
tion governing the errors, which usually cannot be easily
obtained. Another approach suggested adding the first and,
possibly, the second order approximation terms to the objec-
tive function.' Consequently, this is not suitable for highly
nonlinear systems with sizeable perturbations. At the other
end of the spectrum, the mathematics programming commu-
nity has made much advances in the area of robust optimi-
zation over the past decade.">™ However, their results are
confined to problems with more structures; for example, con-
vex problems defined with linear, convex quadratic, conic-
quadratic and semidefinite functions. Since our intention is
not to review the rich literature in robust, convex optimiza-
tion, we refer interested readers to Refs. 13 and 15.

In this article, we provide a robust optimization method
for electromagnetic scattering problems with large degrees of
freedom and report on results when this technique is applied
to optimization of aperiodic dielectric structures. A key char-
acteristic of our work is that it applies to nonconvex objec-
tive functions. Previous works did not take into account
implementation errors that can lead to very suboptimal, and
often, infeasible solutions. Our optimization method inher-
ently improves the robustness of the optimized solution with
respect to relevant errors and is suitable for real-world imple-
mentation. The objective is to mimic a desired power distri-
bution along a target surface. The model is based on a two-
dimensional Helmholtz equation for lossless dielectric
scatterers. Therefore, this approach scales with frequency
and allows to model nanophotonic design. Moreover, the ro-
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FIG. 1. (Color online) (a) The desired top-hat power distribution along the
target surface. (b) Schematic setup: the radio frequency-source couples to
the wave guide. Blue circles sketch the positions of scattering cylinders for
a desired top-hat power profile.

bust optimization scheme requires only the function evalua-
tion. Therefore, it is generic and can be applied to various
problems arising in electromagnetics.

Il. MODEL

To study the real-world aspect of robust optimization in
design of dielectric structures, we adopted the model of Ref.
6 which was adapted to the laboratory experiment. In the
following, we summarize the essentials of the physical
model for the sake of completeness and refer for more details
to Ref. 6. The incoming electromagnetic field couples in its
lowest mode to the perfectly conducting metallic wave-guide
(Dirichlet boundary conditions, therefore only the lowest
transverse electric mode TE; ). Figure 1(b) sketches the
horizontal setup. In the vertical direction, the domain is
bound by two perfectly conducting plates, which are sepa-
rated by less than 1/2 the wavelength, in order to warrant a
two-dimensional wave propagation. Identical dielectric cyl-
inders are placed in the domain between the plates. The sides
of the domain are open in the forward direction. In order to
account for a finite total energy and to warrant a realistic
decay of the field at infinity, the open sides are modeled by
perfectly matching layers.I6 The objective of the optimiza-
tion is to determine the position of the cylinders such that the
forward electromagnetic power matches the shape of a de-
sired power distribution, as shown in Fig. 1(a).

For the power distribution, the electromagnetic field over
the entire domain, including the scattering cylinders, is de-
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termined. As in the experimental measurements, the fre-
quency is fixed to f=37.5 GHz.° Furthermore, the dielectric
scatterers are nonmagnetic and lossless. Therefore, stationary
solutions of the Maxwell equations are given through the
two-dimensional Helmholtz equations, taking the boundary
conditions into account. This means, that only the z compo-
nent of the electric field E, can propagate in the domain. The
magnitude of E, in the domain is given through the partial
differential equation (PDE)

[0k ) + 0,(p; ). = wipoeoe, E.= 0, (1)

with u, as the relative and u, as the vacuum permeability. €,
denotes the relative and g, the vacuum permittivity. Equation
(1) is numerically determined using an evenly meshed
square-grid (x;,y;). The resulting finite-difference PDE ap-
proximates the field E; ; everywhere inside the domain in-
cluding the dielectric scatterers. The imposed boundary con-
ditions (Dirichlet condition for the metallic horn and
perfectly matching layers) are satisfied. This linear equation
system is solved by ordering the values of E_; ; of the PDE
into a column vector. Hence, the finite-difference PDE can
be rewritten as

L-E,=b, (2)
where L denotes the finite-difference matrix, which is
complex-valued and sparse. E, describes the complex-valued
electric field, that is to be computed, and b contains the
boundary conditions. With this, the magnitude of the field at
any point of the domain can be determined by solving the
linear system of Eq. (2).

The power at any point on the target surface (x(6),y(6))
for an incident angle 6 is computed through interpolation
using the nearest four mesh points and their standard Gauss-
ian weights W(#) with respect to (x(6),y(6)) as

s 0= "2 diag(E,) - 3)

In the numerical implementation, we utilized the
UMFPACK-library to LU decompose L as well as to solve
the linear system directly.17 Furthermore, our implementation
uses the Goto-BLAS library for basic vector and matrix
operations.]8 By exploiting the sparsity of L, we improved
the efficiency of the algorithm significantly. In fact, the so-
lution of a realistic forward problem (~70 000 X 70 000 ma-
trix), including 50 dielectric scatterers requires about 0.7 s on
a commercially available Intel Xeon 3.4 GHz. Since the size
of L determines the size of the problem, the computational
efficiency of our implementation is independent of the num-
ber of scattering cylinders.

To verify this finite-difference technique for the power
along the target surface (radius=60 mm from the domain
center), we compared our simulations with experimental
measurements from Ref. 6 for the same optimal arrangement
of 50 dielectric scatterers (g,=2.05 and 3.175+0.025 mm
diameter). Figure 2(a) illustrates the good agreement be-
tween experimental and model data on a linear scale for an
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FIG. 2. (Color online) Comparison between experimental data (circles) (see
Ref. 6) and simulations in (a) linear and (b) logarithmic scale. The solid
lines are simulation results for smallest mesh size at A=0.4 mm and the
dashed lines for A=0.8 mm.

objective top-hat function. The log scale in Fig. 2(b) empha-
sizes the relative intensities of the sidelobes to the peak. This
comparison also shows that the simulation agrees well with
experimental measurements only for a sufficiently small
mesh-size of A=0.4 mm=X\y/20. Other weak scattering
models (e.g., Born approximation) fail to describe the true
scattering behavior. We observed that higher excitation
modes play a crucial role, which can be attributed to the
small size of the scattering cylinders as well as the rapid
jump in the dielectric constant which cannot be assumed
continuos with respect to the wavelength.

lll. ROBUST OPTIMIZATION PROBLEM

By varying the positions of 50 scattering cylinders a top-
hat power profile over the target surface, as shown in Fig.
1(a), is sought. The desired objective function is denoted by
Sobj- A cylinder configuration is given by a vector p € R'™.
The actual power profile along the target surface s,,,4 iS com-
puted using Eq. (3). For any given discretized angle 6, and
configuration p, a cost-functional J measures the deviation of
Smod from s,; through
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J(P) = 2 [smoal B) — Son (O] (4)
k=1

Therefore, the optimization problem is to minimize the area
between s,,; and sy,,4. This nominal optimization problem is
given through

min J(p). (5)

PEP
The minimization is with respect to the configuration vector
p from a feasible set P. Note that J(p) is not convex in p,
and depends on p only over the linear system L(p)-E.(p)
=b.

It needs to be emphasized that P is not a convex set.
Instead, P is a 100-dimensional hypercube containing a large
number of nonempty infeasible subsets, which represent
nonphysical configurations with overlapping cylinders. De-
fining these infeasible subsets explicitly through introducing
constraints in the optimization problem (5) is not practical
due to the large number of constraints required. We took the
alternative approach of avoiding configurations with overlap-
ping cylinders.

To consider possible implementation errors Ap, the ro-
bust optimization problem is defined as

min maxJ(p + Ap). (6)

PEP ApeU
The uncertainty set {/ contains all the implementation errors,
against which we want to protect the design. Therefore, the
robust optimization problem minimizes the worst case cost
under implementation error. These errors can arise due to
misplacement of the scattering cylinders in laboratory ex-
periments or actual manufacturing of the design.

We adopted a two-step strategy. In the initial step, a
good configuration to the nominal optimization problem in
Eq. (5) is found. This configuration is used as an initial so-
lution to the second step, since, with all factors being equal,
a configuration with a low nominal cost J(p) will have a low
worst case cost maxypey J(p+Ap). In the second step, we
iteratively update the configuration under evaluation with a
more robust configuration through a local shift until termi-
nating conditions are satisfied. This robust optimization al-
gorithm does not assume any problem intrinsic structures.
We discuss the nominal problem before we continue with the
robust optimization problem.

A. Nominal optimization problem

To solve the nominal problem (5), we conducted a large
number of random searches. Because of the large dimension-
ality, a coarse-grained random search did not deliver a sig-
nificant and sufficiently fast improvement in max,cp J(p).
Therefore, we developed two alternative algorithms that ef-
ficiently returned a good solution to the nominal optimiza-
tion problem, as required in step 1 of the robust optimization
method.

1. Gradient free stochastic algorithm

This algorithm is adapted from the simultaneous pertur-
bation stochastic approximation (SPSA) algorithm.19 It relies
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only on function evaluations J(p). Under general conditions,
SPSA converges to a local minimum more efficiently, in ex-
pectation, than a gradient descent approach using finite-
difference gradient estimates."”

In iteration k, the algorithm seeks a better configuration
along a direction d;, emanating from the configuration vector
Pi- The direction d, is a random vector generated from a
symmetric Bernoulli distribution where P(d};:tl):%, Vi,
and is deemed acceptable only when p,+c,d; is feasible.
Here, df< is the ith coordinate of d; and c; is a small positive
scalar decreasing with k. Next, §,=J(py+cid;)—J(pr—cidy)
is evaluated. Consequently, p;,; is set to p;— a;d,d;, where
ay is another small positive scalar decreasing with k. Note
that &, approximates the directional gradient d;-V,J/(p=py),
if ¢; is small enough.

2. Modified gradient descent algorithm

We computed the gradient of the cost-functional V,J us-
ing the adjoint method. In general, since the linear operator
L maps the entire vector space C"«<— (", the components of
the cost-functional gradient can be determined from the Egs.
(3) and (4) through the adjoint equation as

aJ JE\ FYRFTae
—=\g|— ) withg=——25
Ip; ap; ISmod OE
——(n|=E) withL*-h=g. )
ap;

Note, that L™ is the adjoint operator to L, which was regu-
larized in the implementation to warrant that J is differen-
tiable. Therefore, in order to compute the gradient, we have
to solve the adjoint linear system L*-h=g. This equation has
the same structure and uses the same linear operator as the
linear system for the function evaluation in Eq. (2). Conse-
quently, we exploited the structure of the problem and utilize
the LU decomposition of L for both the function and the
gradient evaluation at practically no additional computa-
tional cost.

For this optimization problem, standard gradient descent
steps quickly led to infeasible configurations and terminated
at solutions with high cost. Nevertheless, gradient informa-
tion is pertinent. To make use of it, we modified the standard
algorithm to avoid configurations with overlapping cylinders.
These modifications are: (1) if a gradient step leads to an
infeasible configuration, the step size is repeatedly halved
until a threshold, or (2) otherwise, apply the gradient step
only to those cylinders that would not overlap. If the thresh-
old is consistently breached, the algorithm approximates a
coordinate descent algorithm which has similar convergence
properties to standard gradient descent.”

B. Nominal optimization results

The starting configuration for the optimization is obvi-
ously significant for the performance. Due to the high-
dimensional and nonconvex response surface, a global opti-
mum can only be found through Ilarge-scale random
searches, which is computationally exhaustive and, thus, be-
yond the scope of this work. Randomly generated initial con-
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FIG. 3. (Color online) Performance comparison between the gradient free
stochastic algorithm and the modified gradient descent algorithm on the
nominal problem. Results show that modified gradient descent is more effi-
cient and converges to a better solution.

figurations often lead to overlapping cylinders. These infea-
sible arrangements can only be overcome by human
intervention, which we intended to omit. The performance of
a large number of regular PC-like structures with and with-
out random perturbation was simulated to obtain the best
starting configuration. The inset of Fig. 3 illustrates this ini-
tial arrangement of the dielectric scattering cylinders, as it
appears to be an intuitively good structure as well.

We applied the gradient free stochastic algorithm and the
modified gradient descent algorithm to this initial configura-
tion. Figure 3 shows that the modified gradient descent algo-
rithm reduces the objective function more efficiently. The
gradient-free algorithm took ~2500 iterations to converge to
an objective value of 0.0052. In contrast, the modified gra-
dient algorithm required ~750 iterations to obtain configu-
rations with a cost lower than 0.0052; it eventually con-
verged to a configuration with a cost of 0.0032.

It is not surprising that the modified gradient descent
algorithm outperforms the gradient free stochastic algorithm.
Note, that at each iteration step, the gradient free algorithm
uses two function evaluations and twice the time as com-
pared to the modified gradient descent algorithm. The gradi-
ent free algorithm does not decrease the objective value
monotonically, because, at any step, ¢* and of may be too
large. Adopting a strategy employing smaller scalars can al-
leviate the spikes but increase the overall time required to
converge. Nevertheless, it is worthwhile to note the viability
of using a gradient free optimization approach, since an ef-
ficient cost-functional gradient for such high-dimensional
problems is not always available.

When the iteration count is high, both algorithms im-
prove the objective value monotonically, albeit very slowly
because infeasible configurations are encountered more of-
ten. Once the improvement rate went below a certain thresh-
old, we terminated the search and used the final nominal
configuration as the initial configuration for the robust opti-
mization method.
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FIG. 4. (Color online) A two-dimensional illustration of the neighborhood
{p| [p-pl,=T?}. The solid arrow indicates an optimal direction d* which
makes the largest possible angle with the vectors p'—p and points away
from all bad neighbors p'.

C. Robust local search algorithm

In laboratory experiments, implementation errors Ap are
encountered, when physically placing the cylinders. To in-
clude most of the errors, we define the uncertainty set I/ such
that the probability P(Ap €U)=99%. Consequently,

U={Ap|||Ap[, =T}, (8)

where Ap; is assumed to be independently and normally dis-
tributed with mean O and standard deviation 40 wm, as ob-
served in experiments.21 We chose T" to be 550 pum.

Evaluating the worst cost under implementation errors
involves solving an inner maximization problem

max J(p + Ap), 9)
ApeU

which does not have a closed form solution. Thus, we can

only find an estimate of the worst case cost, jmax(p), through
efficient local searches. These searches are conducted within
the neighborhood N of a configuration p, defined as

N={p|llp-plL=T}. (10)

This set is illustrated in Fig. 4.

These searches form the initial part of the robust local
search algorithm. The obtained worst case costs within N\ are
used to find the next configuration with a local move, which
aims to improve the worst case cost. The local move forms
the second part of the robust local search algorithm. These
two parts are repeated iteratively until the termination con-
ditions are met. Next, we discuss these two parts in more
detail.

1. Neighborhood exploration

The local search within a neighborhood N is conducted
with several modified gradient ascents. To ensure that A is
explored thoroughly, an additional boundary penalty is ap-
plied whenever an ascent step is near the boundary.

For this 100-dimensional problem, 101 gradient ascent
sequences are carried out. The initial sequence starts from p
while the remaining 100 sequences start from p+(I'/3)e;, if
[dJ(p=p)]/dp;=0 or from p—(I'/3)e,, otherwise. p; is a co-
ordinate of p and e; denotes the ith unit vector. A sequence is
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terminated when either a local maximum is obtained, a con-
figuration outside the neighborhood is visited, or a time limit
is exceeded.

Finally, the results of all function evaluations up to itera-

tion k are stored in a set , and used to evaluate J,,.(p,).

2. Robust local move

In the second part of the robust local search algorithm,
we update the configuration p; such, that the previously dis-
covered “bad” neighbors are excluded from the updated
neighborhood N, ;. We define the set of these bad neighbors
as

M, =[p|p € Hi, P E Ni J(P) = Tinn(p) — 0]

The cost factor o; governs the size of the set and may be
changed within an iteration to ensure a feasible move.

The problem of determining a good direction d, which
points away from bad neighbors, can be formulated as

min

d, e €

st. |d,=1
- (11)
<M>'d§8VpEMk

Ip = p4

e=0.

Because the first constraint is a conic quadratic constraint
and all others are linear, this problem is a second order cone
problem (SOCP), which can be solved efficiently using both
commercial and noncommercial solvers. The optimal solu-
tion of this SOCP delivered a direction d* forming the maxi-
mum possible angle with all the vectors p—p;, pE M, as
shown in Fig. 4. This angle is at least 90° due to the con-
straint € =0. However, if a good direction is not found, we
reduce oy, reassemble M, and solve the updated SOCP. The
terminating condition is attained, when o}, decreases below a
threshold.

D. Computation results

As the initial step of the robust optimization method, the
nominal optimization also decreases the worst case cost sig-
nificantly. For the PC-like initial configuration (see inset of

Fig. 3), a worst case cost of jmaX:0.05413 was estimated,

whereas the final nominal configuration delivered jmax(pl)
=0.00646, as shown in Fig. 5. While the nominal optimiza-
tion primarily aims to reduce the nominal cost and increases
the robustness indirectly, only the robust local search algo-
rithm directly minimizes the worst case cost and, thus, im-
proves the robustness further.

In the robust local search, the worst case cost at the

terminating iteration step 65, J,.x(Pes), Was estimated with
110 000 configurations in the neighborhood of pgs. As the
iteration counts increase, the knowledge about the neighbor-
hood grows and the more robust configurations are discov-
ered. Figure 5 shows the improvement after 65 iterations of
the robust local search algorithm. Here, the nominal cost of
the design remains practically constant, while the estimated
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FIG. 5. (Color online) Performance of the robust local
search algorithm. The worst case cost for the final con-
figuration pgs is improved by 8% compared to p;, while
the nominal cost remained constant. The overall im-
provement of the robustness is 90%.
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worst case cost decreases significantly. Overall, we observe a
90% improvement in robustness of the final design, when
compared to the initial PC-like structure.

Since we can only estimate the worst case cost by local
searches, there is always a chance for late discoveries of
worst implementation errors. Therefore, the decrease of the
estimated worst case cost may not be monotonic.

IV. SENSITIVITY ANALYSIS

We have probed the neighborhood of p; and p¢s each
with 10000 normally distributed random perturbations.
When the standard deviation of the perturbation is compa-
rable to the assumed implementation errors, pgs is up to 2%
less sensitive as pj.

It is evident, that a 100-dimensional random sampling is

computationally challenging, e.g., when estimating 7max(p1),
random sampling is far inferior to the multiple gradient as-
cent method: the best estimate attained by the former with
30 000 random samples is 96% of the estimate obtained with
only 3000 multiple gradient ascent steps. Furthermore, a per-
turbative sensitivity analysis does not improve the worst case
performance. There are no known practical approaches that
improve sensitivities for a problem at such high dimensions.
In contrast, our approach incorporates the widely used con-
cept of probabilistic robustness through the variable size of
the uncertainty set U.

V. CONCLUSIONS

We have presented a robust optimization technique for
electromagnetic scattering problems and applied it to the op-
timization of aperiodic dielectric structures. This generic
method only assumes the capability of function evaluation.
We have demonstrated that using a modified gradient descent
will increase the efficiency of the robust algorithm signifi-
cantly. However, if the function gradient is not accessible, a
gradient-free stochastic algorithm can be utilized to obtain a
robust solution. The application of our robust optimization
method to improve the configuration of 50 dielectric cylin-
ders showed that the final design configuration matches the
shape of the desired function whose top-hat maximum is at

60

30° = 6=060°. Since the problem is high-dimensional and
highly non-convex, a global optimum can be estimated only
through local searches. While the deviation from an optimal
solution (perfect matching) is negligible, the robustness
against implementation errors in laboratory experiments or
manufacturing increased by 90%. Furthermore, laboratory
measurements have verified our model.®

The generic aspect of the presented method allows it to
be employed in various engineering problems in electromag-
netics, in particular when function evaluation is provided.
Moreover, the demonstrated approach for the dielectric scat-
tering structure scales with frequency and can be applied to
nanophotonic design to achieve unconventional and desired
functionalities.
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