
Abstract— Classical linear controllers are widely used in 
the control of nonlinear stochastic systems and thus there is 
concern about the ability of the controller to adequately 
regulate the system.  An alternative approach to cope with such 
systems is to avoid the need to build the traditional “open-loop” 
model for the system.  Through the avoidance of model, 
controllers can be built for arbitrarily complex nonlinear 
systems via neural-networks trained by simultaneous 
perturbation stochastic approximation so that only the output 
error (between the plant and target outputs) is needed.  In this 
paper, we discuss basic characteristics and limitations of both 
approaches and formally analyze this comparison in the case of 
linear quadratic regulators. The comparison is illustrated 
numerically on a simulated nonstationary multiple input, 
multiple output wastewater treatment system with stochastic 
effects.  

I. INTRODUCTION

ODERN control engineering is expanding rapidly to 
fill the needs in complex and challenging systems for 

regulation and control.  Such modern systems go well 
beyond the traditional electrical, mechanical, and aerospace 
systems that have been at the heart of control systems 
research for many years.  Included in the kinds of modern 
systems for which control is needed are, to name a few, 
communications and transportation networks [1], biomedical 
systems (e.g., automated surgery and drug delivery [2]), and 
the control of financial markets [3]. Such modern systems 
do not typically lend themselves to easy representation via 
linear differential equations. Hence, the majority of the 
techniques that have been developed over the years to 
control linear systems may be inappropriate for coping with 
the control of many modern systems. Furthermore, despite 
the considerable efforts of many researchers and 
practitioners over many years, formal control techniques for 
most real-world nonlinear systems are unavailable [4]. 
Simply put, closed-form (or other “easy”) solutions to 
nonlinear problems are almost never available and hence 
linear methods are generally used.  

Spall and Cristion [5] make a significant advance in 
coping with nonlinear, stochastic systems by using neural 
network based controllers trained via simultaneous 

Authors would like to thank Dr. James C. Spall of The John’s Hopkins 
University’s Applied Physics Laboratory for his constructive comments and 
suggestions.  

V. Aksakalli is with the Department of Applied Mathematics and 
Statistics, The Johns Hopkins University, Baltimore, MD 21218 USA       
(e-mail: ala@jhu.edu).  

D. Ursu is with the Department of Mechanical Engineering, The Johns 
Hopkins University, Baltimore, MD 21218 USA (e-mail: dursu1@jhu.edu). 

perturbation stochastic approximation (SPSA) so that the 
need to build the traditional open-loop model is avoided. 
The approach presented therein is based on using the output 
error of the system to directly train the NN controller 
without the need for a separate model (NN or other type) for 
the unknown process equations. Since it is assumed that the 
system dynamics are unknown, determining the gradient of 
the loss function in typical back-propagation type weight 
estimation algorithms is not feasible. To implement such a 
direct adaptive control, the authors propose simultaneous 
perturbation stochastic approximation for estimating the NN 
connection weights while the system is being controlled. In 
a related work, the authors demonstrate how such a model-
free controller can be efficiently utilized to control a 
challenging nonlinear multiple input, multiple output 
(MIMO) stochastic wastewater treatment problem [6]. The 
model-free approach, although relatively new, has already 
been applied successfully in many real-world control 
problems [8,9,10,11]. However, a comparison with classical 
linear methods, theoretical or numerical, has not yet been 
conducted.  

Our goal in this paper is to formally analyze such a 
comparison in the case of linear quadratic regulators (LQR) 
and illustrate this comparison on an empirical basis in a 
challenging nonlinear control problem encountered in 
wastewater treatment systems. Our purpose is to provide 
some insight into the value of the model-free method and 
motivate further research in this direction.  

The rest of this paper is organized as follows. Section II 
outlines model-free and classical controllers and briefly 
discusses their basic characteristics and limitations. Section 
III presents LQR and compares it to the model-free 
controller. Section IV describes the wastewater treatment 
problem and discusses implementations of the model-free 
controller and LQR for the problem, followed by a 
comparison of the two approaches. Section V summarizes 
our findings and relates them to those of Spall and Cristion 
[5,6] and Dochain and Bastin [7]. Directions for future 
research are discussed in Section VI. 

II. MODEL-FREE & CLASSICAL CONTROLLERS: BASIC
CHARACTERISTICS AND LIMITATIONS

A. Model-Free Controllers  
We consider a discrete-time state vector given by 

1 ( , , )k k k k kx x u w ,                          (2.1) 

where k  is a nonlinear, yet unknown function governing 
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the system dynamics, uk is the control input applied to the 
system at time k, and wk is a random noise vector. Our focus 
will be on the case of direct measurements as in [5] and [6]. 
The goal here is to determine the control vectors {uk} such 
that the state values {xk} are as close as possible to a set of 
target vectors {tk}.  The information fed into the NN 
controller consists of the next target vector, M most recent 
state values, and N most recent controls. The output of the 
NN is then the value of the control uk. Associated with this 
NN is a vector of connection weights p

k R  that will be 

estimated. Our goal is to find *
k  that minimizes some loss 

function L( ) measuring system performance. We will use 
the one-step-ahead quadratic tracking error below as the 
performance criterion: 

1 1 1 1( ) T T
k k k k k k k k k kL E x t x t u uW Z       (2.2) 

where Wk and Zk are positive semi-definite matrices 
specifying the relative weights on the deviations from the 
target values and the cost of large control values. 
 To find the optimal values of k , the model-free 
controller uses a stochastic approximation of the form  

1 1
ˆ ˆ ˆˆ ( )k k k k ka g ,                        (2.3) 

where 1
ˆˆ ( )k kg  is the simultaneous perturbation 

approximation to 1
ˆ( )k kg = k kL . The reader is referred 

to [1] for an in-depth discussion of the SPSA-based NN 
controllers. We now briefly discuss basic characteristics and 
limitations of this approach. 
1. The use of “model-free” is to be taken literally in the 

sense that no hidden or implicit modeling is required, 
which eliminates the system characterization and
identification processes, and thus the need to allocate 
time and resources to determine an adequate model of 
the underlying system and evaluate its validity. 

2. Three major advantages of the model-free controllers 
are that they (i) tend to better handle changes in the 
underlying system as they are not tied to a prior model, 
(ii) require no open-loop training data, and (iii) tend to 
be more robust in the case of widely varying control 
inputs.  

3. The model-free approach is appropriate for many 
practical systems, yet it is generally inappropriate for 
systems where a reliable model of the system can be 
determined.  

4. The model-free controller requires that the system under 
consideration be approximately stationary while an 
individual SPSA approximation is performed (the 
system dynamics can be nonstationary over longer time 
periods, however). A further restriction (which is 
typical of controllers relying on imperfect prior system 
knowledge) is that the system be able to tolerate 
suboptimal controls as the learning process takes place. 

5. Success of the model-free approach in any particular 

application depends on the choice of the NN structure 
and SPSA implementation methodology.  

B. Classical Controllers 
Discrete-time MIMO linear time-invariant systems are 
defined as xk+1 = Axk + Buk (assuming direct state 
measurements); where A and B are matrices determined via 
a system identification process. Fundamental characteristics 
and limitations of classical linear controllers are briefly 
discussed below. 
1. These controllers are widely used in practice due to 

their simplicity and availability of corresponding 
software tools and commercial products. 

2. Given a nonlinear system, classical controllers can be 
used only on a “linearized” version of the system, 
giving good results at an equilibrium point about which 
the system behavior is approximately linear. However, 
this assumption of linearity is usually violated to a 
certain degree in many of today’s complex control 
systems. 

3. Such controllers show poor and/or inadequate 
performance when process and/or measurement noise is 
present and in the case where the system varies in time. 

III. LQR VERSUS MODEL-FREE CONTROLLERS: A FORMAL
COMPARISON

A. Linear Quadratic Regulators 
Similar to model-free controllers, linear quadratic 

regulators (LQR) involve minimization of a loss function 
measuring the difference between the system’s outputs and 
target outputs. The performance criterion used in LQR is the 
following quadratic loss function: 

1

1

K
kT T T

k k k k
k k

e
J e v u u

v
Q R                    (3.1) 

Above, ek is the control error (i.e., ek = xk  tk), vk is the 

cumulative error (
1

1

k

k i
i

v e ), K is the number of iterations, 

and uk is the control input. The goal is to determine the 
control sequence {uk} such that J is minimized. The matrices 
Q and R reflect the relative weights of control errors and the 
control gains. The above criterion poses interest to us 
because of its similarity to (2.2); the performance criterion 
of the model-free controller. The implementation of this 
algorithm is as follows [13, Chap. 8]: the loss function is 
first rewritten as 

1

0

[ ]
K

T
k k

k

J x xP                               (3.2)

where P is defined as the optimal steady-state matrix. For a 
linear system described by 1k+ k kx  = x  + uA B , P is given by 

1

1 1 1

T

T

T

T

P = Q + A P(I + BR BP) A 
  = Q + A (P  + BR B ) A
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The above Riccatti equation is solved iteratively until P no 
longer changes values. The above expression further shows 
that P is solely dependent on the state-space matrices A and 
B, and the matrices Q and R associated with the loss 
function. The steady-state gain matrix K can then be written 
in terms of P as: 

1( )T TK = R + B PB B PA (3.3)

The matrix K optimizes the actual input, so the control law 
that minimizes (3.1) becomes: 

uk = Kxk                                (3.4) 
Once fed back into the original control problem, the control 
system can be stated as follows using (3.3) and (3.4): 

T 1 T[ ]k+1 kx  x= A  B(R + B PB)  B PA                (3.5) 

B. LQR versus Model-Free Controllers
The LQR differs from the model-free controller in the 

sense that the former assumes a modeled control process 
whereas the latter does not. However, contrasting (3.1) to 
(2.2), it can be seen that both controllers attempt to minimize 
similar loss functions in an iterative manner. We now 
formalize this connection between the two controllers. 

The objective in the model-free framework is to 
determine the control vector uk that minimizes the one-step-
ahead tracking error where 1 ( , , )k k k k kx x u w . Assuming 
that the model-free framework uses constant gain and error 
matrices as in (2.2), we have 

*
1 1 1 2 1 1( ; , ,... ; , ,..., ; )mf

k k k k k k M k k k N ku u x x x u u u t ,
where

*
1 1 1 1arg min{ }

k

T T
k k k k k k kx t x t u uW Z .

With a slight abuse of notation, we shall write 

1 1 1 1arg min{ }
k

Tmf T
k k k k k k ku

u x t x t u uW Z .   (3.6)

Let the time-invariant linearization of  be ˆk+1 k kx  = x  + uA B
where A and B represent the linear system analogous to that 
of the LQR control. Define linear approximation residuals as  

                     1 1 1ˆ
( , , ) ( )

k k k

k k k k k k

r x x

x u w x  + uA B
     (3.7) 

The control error ek+1 can now be written as 

1 1 1

1 1 1ˆ
k k k

k k k

e x t

x r t

Let 1 1 1ˆ ˆk k ke x r , which implies 1 1 1ˆk k ke e t . Thus, 
equation (3.6) yields 

1 1 1 1ˆ ˆargmin
k

Tmf T
k k k k k k ku

u e r e r u uW Z

1 1 1 1 1 1ˆ ˆ ˆargmin 2
k

T T T T
k k k k k k k ku

e e r r e r u uW W W Z          (3.8) 

Now, to establish a fair comparison between the model-free 
controller and the LQR controller, let R=Z and 

0
0

W
Q

V
 in (3.1) where V specifies the relative weight 

of cumulative errors. Thus, the LQR control law can be 
expressed as: 

1

{ } 1

ˆ
ˆ ˆ{ } arg min

ˆk

N
kLQR T T T

k k k k
u k k

e
u e v u u

v
0

0
W

Z
V

1

1 1 1 1
{ } 1

ˆ ˆ ˆ ˆarg min
k

N
T T T

k k k k k k
u k

e e v v u uW V Z    (3.9) 

Comparing (3.8) to (3.9), we observe that the model-free 
controller performs minimization at each iteration, whereas 
LQR performs a single minimization over all the iterations; 
each with respect to their individual loss functions. This 
particular phenomenon is rather a design issue. Whether the 
control engineer chooses to minimize error at each iteration 
or prefers minimizing the total sum of errors over the entire 
control horizon for a given particular control problem 
depends rather on the nature of the system being controlled 
and/or the specific goals of the control process. 

Now, suppose that the system under consideration is linear 
and time-invariant with no impact of noise. In other words, 

( , , )k k k k k kx u w x uA B . Let 1 1: T T
k k k k kL e e u uW Z  and V=0.

Thus, rk+1=0 and 1 1ˆk ke e  for all k, which yields 

arg min
k

mf
k ku

u L ,

1

{ } 1
{ } min

k

N
LQR

ku
k

u L .

Thus, in the case of a linear system without any stochastic 
effects, the residual terms in (3.8) vanish and the loss 
function of the model-free controller becomes equivalent to 
that of the LQR controller with V=0. That is, both the 
model-free and LQR controllers would be minimizing the 
same loss function, where the model-free controller again 
would be executed at each iteration, while the LQR would 
be executed over all the iterations. Furthermore, assuming 
that all the target values are physically realizable and the NN 
structure in the model-free controller is capable of 
representing linear systems without any approximation 
errors, both controllers would yield the same control inputs, 
i.e., these two controllers would essentially be equivalent. 
Also notice that, in this particular case, the model-free 
controller would interestingly become a minimum variance 
controller. Note that a fundamental advantage of the model-
free controller in general is that it requires only one-step-
ahead target values, as opposed to LQR that requires a priori 
knowledge of the entire target sequence; the latter is a 
desirable feature in real-time control. 

IV. ILLUSTATION: WASTEWATER TREATMENT PROBLEM

A. Problem Description 
The wastewater problem is described in [6] as follows: 

influent wastewater is first mixed (as determined by a 
controller) with a dilution substance to provide a mixture 
with a desired concentration of contaminants. This diluted 
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mixture is then sent to a second tank at a controlled flow 
rate. In the second tank the mixture goes through an 
anaerobic digestion process, where the organic material in 
the mixture is converted by bacteria into byproducts such as 
methane. Therefore, the system consists of two controls (the 
mix of wastewater/dilution substance and the input flow 
rate) and two states (an effluent de-polluted water and 
methane gas, which is useful as a fuel). Since this system 
relies on biological processes, the dynamics are nonlinear 
and usually time-varying. Also, the system is subject to 
constraints (e.g., the input and output concentrations, the 
methane gas flow rate, and the input flow rate all must be 
greater than zero), which presents an additional challenge in 
developing a controller for the system.   

The unknown process equations are assumed to be  

1,1 ,1

2,2 ,2

,1 ,1 ,1

,2 ,1 ,2 ,2

1 0
.3636 1

0

k kk

k k

k k k

k k k k

x xT
x xT

Tx u w
Tx T u u w

(4.1a)

where the bacterial growth rate µk is given by 

,2

,2

.425 .025sin 2 96
.4

k
k

k

k x

x
               (4.1b) 

where
x1 is the methane gas flow rate,  
x2 is the substrate output concentration, 
u1 is wastewater/dilution substance mix rate,  
u2 is the input flow rate, and 
T is the sampling interval, which is .5 seconds.  

B. Model-Free Controller Implementation 
We now replicate the problem environment and the 

model-free controller in [6]. The target sequence tk is a 
periodic square wave with values (.97, .2) for the first 48 
updates and (1, .1) for the second 48 updates1. We assume 
independent noise terms wk,1 and wk,2 ~ N(0, 2I) where    = 
.01. The initial state is assumed to be x0 = (.5, 1.6375).

Note that the model-free controller has no knowledge of 
the above equations. The performance criteria used is the 
weighted root-mean-square (RMS) measurement:  

1 2

1 1 1 1
T T

k k k k k kx t x t u uW Z               (4.2) 

with W = diag(.01, .99) and Z = diag(.001, .001) where 
diag() denotes the square matrix whose diagonal entries are 
the given parameters and all off-diagonal entries are zero. 
Notice that (4.2) corresponds to the loss function (2.2) with 
the matrix Wk = W and Zk = Z. The values .01 and .99 reflect 
the relative emphasis of the controller on methane 
production and water purity, respectively. The control gains, 

on the other hand, are weighted less compared to deviations 
from the target values. The NN used contains two hidden 
layers with 20 nodes in the first hidden layer and 10 nodes 
in the second. All the hidden nodes have the scaled logistic 
function as the activation function. The inputs to the NN are 
the current and most recent states, the most recent control, 
and the target vector for the next state, yielding a total of 
eight input nodes. The output of the NN is then the next 
control values.  Thus, there are a total of 412 weights in the 
NN, which will be updated by SPSA at each iteration. These 
weights are initialized with random values in [-.1, .1]. As for 
the SPSA implementation, a two-sided SPSA with constant 
gains is used (since the system is time-varying) where a = .2
and c = .1 . SPSA is implemented without any gradient 
approximation averaging or smoothing.  
  Figures 1a and 1b show the state values versus target 
values for each target-state pair when the model-free 
controller is used. The discrepancy between the tracking 
errors of the two state variables is not just a result of the 
weight emphasis we have put on the RMS loss function via 
matrix W. In fact, this discrepancy is built into the control 
system proposed by Dochain and Bastin [7], whose research 
also showed that the system exhibits preferential tracking of 
one state variable over the other. From a physical 
perspective, this can be explained by the wastewater system 
having been designed to prioritize the de-polluted water 
output over that of methane gas through the parameters 
proposed in [6]. Indeed, changing the weights of the weight 
matrix W offers slightly different results, but not by much, 
regardless of the weights used. 

Fig. 1a: Model-free controller: tracking x1 (solid line) versus t1 (dashed line)            

Fig.1b: Model-free controller: tracking x2 (solid line) versus t2 (dashed line)   

                                                                                                  
1 Target values for x2 in the first 48 updates are .13 in [2]. We use .2 to 

better illustrate the model-free controller’s tracking capabilities. 
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C. Linear System Identification 
We perform the system identification task via linear 

regression in two steps: collecting the data from which a 
model will be constructed and constructing an appropriate 
model from this data. For data collection, open-loop training 
with random inputs was performed where the bounds on the 
control inputs are [.09, .4] for u1 and [1.5, 3.0] for u2 (as in 
[7]); with the system initialized at x0 = (.5, 1.6375). We 
generated 300 random controls within those bounds and 
evaluated the noisy state values when the process is subject 
to these controls, obtaining 300 random input-output pairs. 
Having generated the data, we fitted a first-order linear time 
invariant auto-regressive (ARX) model, which is given by 

1,1 ,1 ,1

2,2 ,2 ,2

k k k

k k k

x x u

x x u
A B                    (4.3) 

where the 2 2 matrices A and B are estimated using least 
squares regression. We chose the first-order model since it is 
simple and increasing the order did not significantly increase 
the model quality. For model evaluation, we computed the 
R2 statistic associated with the regression, which revealed to 
be .98 for both x1 and x2. Thus, a first-order linear model is 
quite good even though the underlying system is stochastic 
and nonlinear, which indicates validity of designing classical 
linear controllers for the wastewater problem. The least 
squares regression resulted in the following linear model: 

1,1 ,1 ,1

2,2 ,2 ,2

1.0333 .0907 -.5204 -.0007
.1786 .8924 .7851 .1172

k k k

k k k

x x u

x x u
  (4.4) 

D. LQR Implementation 

In our LQR implementation, we chose 0
0

W
Q

V
with W = diag(.01, .99) and V = (.01)W (placing more 
emphasis on the control errors relative to the accumulated 
control errors) and R = diag(.001, .001). Notice that our 
choice of Q and R coincides with the model-free controller 
loss function for a fair comparison. Figures 2a & 2b 
illustrate the LQR controller performance. 

Fig. 2a: LQR controller: tracking x1 (solid line) versus t1 (dashed line) 

Fig. 2b: LQR controller: tracking x2 (solid line) versus t2 (dashed line) 

As the above figures show, LQR outputs follow the target 
outputs to some degree, but not very closely; with t1 being 
tracked somewhat better than t2. We tried fine-tuning the Q
and R matrices, yet did not observe any significant 
performance improvements. In fact, the LQR controller 
exhibited preferential tracking for different target values that 
we tried, with t1 being tracked better than t2 and vice versa. 
We hypothesize that this occurs because the matrices that 
define the loss function J were not fine-tuned throughout the 
simulation process, as the input kept oscillating. That would 
have assumed a controller of the adaptive type, and is 
beyond our scope due to the fact that the model-free 
controller is not of the adaptive type either. Moreover, we 
possess no intuition as to how the Q and R matrices should 
be automatically updated as a function of changing target 
values. 

Analysis of the LQR controller output reveals that the 
state values are in the range of the target values, yet x2 is a 
lot more amplified than x1.  However, the LQR controller 
still behaves in a far worse fashion than the model-free 
controller. Since we have formulated both controllers to 
minimize similar loss functions, the difference between the 
behaviors of the two controllers can be attributed to the way 
each controller handles iteration error. The model-free 
controller updates itself after each iteration, thereby keeping 
the error between input and output to a minimum. On the 
contrary, the LQR algorithm sums the error over the whole 
simulation process, only attempting minimization at the very 
end.  It is precisely this buildup in error that prevents the 
LQR controller from tracking as well as the model free 
SPSA controller. This may be particular to the nature of this 
MIMO system and how disturbances in one state variable 
affect the other state variable through relationships to be 
found in the system’s state space. Therefore, in this 
application, the inability of the LQR controller to 
compensate for the error (between the actual output and 
target output) quickly enough actually penalizes it and 
forces the tracking to deteriorate.
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V. SUMMARY & CONCLUSIONS

In this paper, we discuss model-free and classical 
controllers for the control of nonlinear stochastic systems 
and briefly describe their basic characteristics and 
limitations. We then present a limited formal comparison in 
the case of LQR controllers. Specifically, we show that both 
controllers are governed by the same mathematical models; 
the difference being the way each controller handles error 
propagation. Furthermore, given a previously defined 
wastewater treatment problem by Dochain and Bastin [7], 
and a solution to the MIMO control of this system 
implemented by Spall and Cristion [6] through SPSA, we 
attempt to solve this problem through a linear quadratic 
regulator (LQR). The implementation of the LQR controller 
for this problem allowed us to study the interesting coupling 
between the two states of the system and observe some 
interesting comparisons between LQR and model-free 
controllers. These comparisons are more insightful because 
both controllers incorporate a minimization function, which 
tailors their respective outputs accordingly. However, LQR 
has one disadvantage over the model-free controller in that it 
is model based and thus constrained by the values of the 
state equations by which the model is described. 
Furthermore, it was observed that the summation of error on 
behalf of the LQR controller actually makes it perform 
worse than the model-free controller, which looks at error at 
every iteration of the system. This gives the model-free 
controller the flexibility to adapt to changes in a monitored 
system, its only limit being the definition of its loss function. 
A comparison of the two algorithms shows that both choose 
to track this MIMO system preferentially; that is, tracking of 
a certain variable is prioritized over the tracking of the other. 
However, each algorithm “chooses” to do so differently. The 
model-free approach matches the gains of the desired 
outputs but offsets one of them at the cost of following the 
other. The LQR regulator matches the overall value of the 
outputs well, but “chooses” to have smaller steady state 
error on one output, at the cost of the other, again an effect 
of error summation rather than adaptation per iteration.  

Another distinct advantage of the model-free controller is 
that it can attempt to control systems whose internal 
processes cannot be observed because of real world 
constraints. The model-free controller will assume a solution 
as long as it is mathematically possible. While this is 
advantageous to the designer, it is a tool that must be used 
carefully. In control systems design, the state equations are 
designed based on measured parameters of sensors and the 
physical properties of the components. Thus a user of the 
model-free controller will have to choose the cost function 
for this algorithm very wisely, to make sure that, if used in a 
design tool, certain physical properties are met, such as 
controllability and stability of a physical system. 

VI. DIRECTIONS FOR FUTURE RESEARCH

The comparison of the model-free controller to LQR can 
be extended to formally account for stochastic effects and/or 
incorporate linearization error for certain classes of 
nonlinear dynamical systems. The model-free controller can 
further be compared to other methods of classical control, 
such as linear quadratic Gaussian (LQG) controllers or 
control via pole-placement. In addition, the model-free 
controller can be compared to neural network-based 
controllers as in [17], which would provide significant 
information on the relative value of utilizing truly model-
free controllers versus first constructing a neural network 
representation of the system being controlled. These 
comparisons should be made generically to the extent 
possible, including effects of process and/or measurement 
noise. 
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