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ABSTRACT

In image registration, we determine the most accurate match between two images, which may have been taken at the
same or different times by different or identical sensors. In the past, correlation and mutual information have been used
as similarity measures for determining the best match for remote sensing images. Mutual information or relative entropy
is a concept from information theory that measures the statistical dependence between two random variables, or
equivalently it measures the amount of information that one variable contains about another. This concept has been
successfully applied to automatically register remote sensing images based on the assumption that the mutual information
of the image intensity pairs is maximized when the images are geometrically aligned. The transformation which
maximizes a given similarity measure has been previously determined using exhaustive search, but this has been found to
be inefficient and computationally expensive. In this paper we utilize a new simple, yet powerful technique based on
stochastic gradient, for the maximization of both similarity measures with remote-sensing images, and we compare its
performance to that of the exhaustive search. We initially consider images, which are misaligned by a rotation and/or
translation only, and we compare the accuracy and efficiency of a registration scheme based on optimization for this data.
In addition, the effect of wavelet pre-processing on the efficiency of a multi-resolution registration scheme is determined,
using Daubechies wavelets. Finally we evaluate this optimization scheme for the registration of satellite images obtained
at different times, and from different sensors. It is noted that once a correct optimization result is obtained at one of the
coarser levels in the multi-resolution scheme, then the registration process is much faster in achieving subpixel accuracy,
and is more robust when compared to a single level optimization. Mutual information was generally found to optimize in
about one third the time required by correlation.
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1. INTRODUCTION

Within the context of satellite data geo-registration, this work considers the issue of feature-based, precision-
correction and automatic image registration of satellite image data. In this context, image registration is defined as the
process which determines the best match between two or more images acquired at the same or at different times by
different or identical sensors. One set of data is taken as the reference data and all other data, called input data (or
sensed data), is matched relative to the reference data. The general process of image registration includes three main
steps: (1) the extraction of features to be used in the matching process, (2) the feature matching strategy and metrics, and
(3) the resampling of the data based on the correspondence computed from matched features. A large number of
automatic image registration methods have been proposed and surveys can be found in1-3.

This paper considers the search strategy and similarity metric to be used in step (2) of the registration process. In
previous work, exhaustive search was used to compare two different similarity metrics, correlation and mutual
information. The registration process was found to be slow, thus in this work we investigate the application of an
optimization technique for registration based on either of the two metrics. Correlation measurement has been the most
widely used similarity metric4, although it is computationally expensive and noise sensitive when used on original gray
level data. Use of a multi-resolution search strategy provides for large reductions in computing time and increases the
robustness of the algorithms. An alternate similarity metric is mutual information, which measures the "resemblance"
between two images. But while correlation measures similarity by computing global statistics such as mean and variance,
mutual information measures redundancy between two images by looking at their intensity distributions. Prior work12 has



shown that mutual information works well for remote sensing imagery and that the maximum peak provided by mutual
information is sharper and better defined than the correlation maximum peak. This paper utilizes a new method for
optimizing either of these similarity measures, which is simply based on evaluations of the objective function, in order to
determine an approximation to the gradient.

2. BRIEF REVIEW OF MUTUAL INFORMATION
2.1. Definition of  Mutual Information

The concept of mutual information represents a measure of relative entropy between two sets, which can also be
described as a measure of information redundancy6-10. If A and B are two images to register, PA(a) and PB(b) are defined
as the marginal probability distributions, and PAB(a,b) is defined as the joint probability distribution of A and B. Then
mutual information is defined as :

I( A, B)� pAB (a,b)
a, b
� . log

pAB(a, b)
pA(a). pB(b)

This quantity can be computed using the histograms of the two images A and B, hA(a) and hB(b), as well as their joint
histogram hAB(a,b).  The mutual information is then defined by:

I( A, B)� hAB(a,b)
a, b
� .log

N .hAB(a,b)
hA(a).hB(b)

where N is the sum of all the values in the histogram. This number is equal to the total number of pixels in A and B, but it
is higher if an interpolation, e.g. a bilinear partial surface distribution6, is used. The histograms are computed using
original gray levels or the gray levels of pre-processed images such as edge gradient magnitudes or wavelet coefficients.

From this definition, it can be easily shown that the mutual information of two images is maximal when these two
images are identical. Therefore, in the context of image registration, mutual information can be utilized as a similarity
measure which, through its maximum, will indicate the best match between a reference image and an input image.
Experiments indicate that in this context, mutual information enables one to extract an optimal match with much better
accuracy than cross-correlation.

2.2. Previous Experiments Evaluating Mutual Information versus Correlation
In previous work11,12, we compared mutual information (MI) to correlation as a similarity measure for the

registration of remote-sensing images. Correlation had been more widely used in this context, while mutual information
had been used extensively in medical image registration. We showed that mutual information produces consistently
sharper peaks at the correct registration values than correlation, which is important for obtaining subpixel registration
accuracy. Moreover the sharper peaks are also produced at the lower resolution sub-band images produced by the
wavelet decomposition. This indicates that MI can produce more accurate results than correlation in a multi-resolution
registration scheme based on wavelets. Registration is achieved in a more efficient manner in this framework, since one
can start with a smaller image for the initial search, and successfully narrow down the search range for the larger images.
Previous results showed that MI registration is done correctly even in the presence of noise utilizing both Simoncelli and
Daubechies wavelets, though results were only presented11 for Simoncelli wavelets.

Timing results for MI registration was about 1.5 times more than that for correlation registration based on our
prior experiments. We also showed that when noise was present in the input image, both correlation and MI continue to
produce perfect registration for Gaussian noise levels up to –12db for our tests, with mutual information being more
robust to noise than correlation. Further work13 involved the extension of our tests to multi-sensor remote-sensing
datasets including a comparison of different registration schemes.

3. REGISTRATION USING MUTUAL INFORMATION WITH WAVELETS



As described in our previous work11,12, mutual information is utilized in a multi-resolution wavelet-based
framework. Our algorithm is described in Figure 1, where both the reference and input images are decomposed via a
wavelet decomposition, and then wavelet subbands are iteratively registered by maximizing their mutual information.
This iterative multi-resolution scheme enables one to speed-up computations as well as to refine the deformation
transformation with an increasing level of detail, when going up the wavelet pyramid.

Reference Image

Input Image

Wavelet Decomposition

Wavelet Decomposition

At Each Level of
Decomposition

Maximization of Mutual
Information Between Corresponding
Band-Pass Subbands

Choice of
Best
Transform

Figure 1
Summary of Our Wavelet & Mutual Information Image Registration Method

4. STOCHASTIC GRADIENT OPTIMIZATION FOR IMAGE REGISTRATION
4.1. Brief Survey

Prior work on optimization techniques for image registration can be found in references [6],[10] and [16]-[18].
The techniques described in [16]-[18] are all based on minimizing a sum of square differences. Maes et. al.6,7 use the
Marquardt- Levenberg technique to optimize mutual information (MI). The required derivatives are explicitly calculated
based on a partial volume interpolation of the criterion, and it is implemented in a multiresolution framework. Thevenaz
et. al.16 develop a scheme to optimize an integrated sum of square differences in the intensity values of the images. They
use a Marquardt- Levenberg algorithm, and computation of the derivatives and Hessian is based on a spline interpolation
of the transformed images, which also works in a multiresolution manner. This work was applied to medical imagery, and
is extended in [10] to the maximization of the mutual information similarity criterion. An optimizer is designed
specifically for this criterion, which requires the criterion to be differentiable so that the gradient and Hessian matrix can
be computed. Differentiability is achieved by the use of Parzen windows. Eastman and LeMoigne18 describe a
registration algorithm based on minimizing the square difference of the intensity values using a gradient descent
algorithm. This is done in a multiresolution framework, and results are provided for remote sensing datasets which are
multitemporal and/or multisensor. Irani and Peleg17 choose to minimize the square error of a ‘disparity vector’ between
the two images. It proceeds by a Newton-Raphson technique, and also requires computation of the necessary gradients.
The scheme described in [17] does not involve multiple resolutions of the images. The technique to be presented here is a
multiresolution scheme based on a wavelet decomposition, and it does not require explicit derivation of the required
gradient vector.

4.2.  A New Optimization Technique
The optimization technique, which is implemented in this work is the Simultaneous Perturbation Stochastic

Approximation (SPSA) algorithm. It was first introduced by Spall14, and it has recently attracted considerable attention
for solving challenging optimization problems for which it is difficult or impossible to directly obtain a gradient of the
objective function with respect to the parameters being optimized. SPSA is based on an easily implemented and highly
efficient gradient approximation that relies only on measurements of the objective function to be optimized. It does not
rely on explicit knowledge of the gradient of the objective function, or on measurements of this gradient.

In this study, we consider a parameter search space of two-dimensional rigid motions, consisting of an x and y-
translation and a rotation in the plane. There are thus three parameters to be optimized, and these can be put in vector
form as � = [tx, ty, �]. At each iteration, the gradient approximation is based on only two function measurements
(regardless of the dimension of the parameter space). At iteration k, the update law for the parameters is steepest ascent:

                                                       �k+1 = �k + ak gk

where the gradient vector gk =[(gk)1    (gk)2    …. (gk)m ]  for the m-dimensional parameter space is determined by

                                       (gk)i    = {L(�k + ck ∆k) - L(�k - ck ∆k) }/{2 ck (∆k ) 
i },   for  i=1, 2 … m



For i=1,2 … m,  (∆k )i  takes a value of +1 or –1, as generated by a Bernouilli distribution. ak and ck are positive
sequences of numbers which may be chosen to decrease to zero, as described in [14]. These must be optimized for the
particular problem in order to improve the convergence rate. Spall14 has outlined suggested forms for these parameters
which will ensure convergence of the algorithm. Note that for this problem m=3, since three parameters are to be updated
at each iteration, as indicated above. This technique is a very powerful method, which can get through some local
maxima of the objective function to find the global maximum, because of the stochastic nature of the gradient
approximation. The two objective functions to be optimized in this work are mutual information (MI) and correlation.

The reference image is rotated and translated to search for that transformation, which will provide the best match
with the input image. In our tests, the transformed image is obtained using nearest neighbor interpolation, since this is the
simplest to implement and is not very computationally intensive. But this type of interpolation at the subpixel level,
produces an MI surface with the step-like form shown in Figure 2(a). This surface was plotted for x- and y-translation
increments of 0.1, with � fixed at a value of zero. Note that the MI-value remains constant over a range, and changes at
parameter translations of 0.5. Based on suggested parameter values provided in [14] and some heuristics based on our
observation of the surface under consideration, the following parameter values were chosen for our implementation of the
SPSA algorithm:
                                                                         ck =0.5
                                                                         ak =0.5(1 + 1/(k+1)α )
The parameter α was chosen to be 0.5, and the results provided in Section 5 below were all produced using these
parameter values.

 (a) At the subpixel level,for wind2 & chip2  (b) For wind5 & chip 5 (Level 1) showing the global maximum,
some local minima, and the’ lifting effect’ as the offset increases.

Figure 2
Mutual Information Surfaces

It is important to note that in searching for the maximum MI value, the rotation parameter also varies, and so a
definite peak in the MI-value probably exists in the three dimensional parameter space, but this is not easy to verify
graphically.

5. EXPERIMENTS AND RESULTS

5.1. Description of the Datasets and the Experiments
 In this study two datasets are used. The first dataset, the Landsat dataset, consists of  7 pairs of images of size

256X256, each of which was extracted from Band 4 of two scenes taken by Landsat-5 (in 1997) and Landsat-7 (in 1999)
over the Chesapeake Bay area (Eastern United States)19. These pairs of images shown in Figures 3, are referred to as
wind and chip respectively, and the Landsat-5 windows are registered to the corresponding Landsat-7 chips. Our second
dataset, the AVHRR dataset, corresponds to a series of multi-temporal NOAA Advanced Very High Resolution
Radiometer (AVHRR) scenes acquired over South Africa. These differed from the reference by very small translations
and no rotations, and are shown in Figure 4. Note the varying locations of clouds in the images.



The SPSA optimization algorithm was first run on the 256X256 wind and chip datasets with no wavelet
decomposition, and then on multiple resolutions from a Daubechies decomposition. Our experiments investigate the
performance of the optimization algorithm for the mutual information and correlation metrics when used in conjunction
with the Daubechies wavelet decomposition.

Using Daubechies wavelets, 3 levels of decomposition are processed (i.e. levels 0-2) for the Landsat images and the
feature space for matching is composed of the gray levels of the Low-Pass output images at each level of decomposition.
The images at each of these three levels of decomposition correspond to a decimation of 2, 4 and 8 of the original image,
respectively. For the larger AVHRR dataset, four levels of decomposition were processed, up to a decimation of 16.

Figure  3 - The Landsat Dataset
Seven Chips (256x256) Extracted Seven Corresponding Windows (256x256) Extracted

from Band 4 of a 1999 Landsat-7 Scene from Band 4 of a 1997 Landsat-5 Scene

Figure 4 - The AVHRR Dataset
Series of AVHRR Scenes (1024x512) Acquired Over South Africa

An observed effect for small images of fixed size was that the MI value tends to artificially rise as the offset in the
registration value increases (referred to as the ‘lifting effect’ of the surface). See Figure 2(b) showing an MI surface for
the problematic wind/chip_5 image pair. This effect can be especially pronounced for the smaller-sized lower resolution
images produced by the wavelet decomposition. It can be remedied by using a ‘weighted MI’, as suggested by Carranza
& Loew15, but this modified (weighted) mutual information, which takes into account the area of overlap between the
images being registered, only works well with a full exhaustive search. The suggested weighting is fairly arbitrary and
non-smooth so this modification does not work well in an optimization scheme.



5.2 Results
The different components of our algorithm are tested and compared using our two datasets. The results presented

here were obtained by using multiple levels of decomposition and a search using the SPSA optimization technique at
each level of decomposition.

Results for the datasets are presented in Tables 1-5. In the last column of these tables a/b indicates that the
maximum function value (MI or correlation) is reached at a iterations, and remains constant over the total number of
iterations, b.  An entry, such as 400~ means that the optimum was not yet achieved, and the function value was still
changing. An entry, such as 200* means that the result of the optimization was incorrect for the starting point chosen, and
correct results were not produced at an arbitrary starting point of  [tx, ty, �] =[0,0,0] for that level. In addition, for the
‘typical’ data pair, [wind2,chip2], the results from Tables 1-3 are expanded as shown in Figure 5. These show the
convergence rate of the relevant parameters for the optimization of MI and also for correlation. Note that in all cases the
parameters, which undergo MI optimization achieve their optimum value faster than those which undergo correlation
optimization. In addition for the original image at the top level of the decomposition, the effect of a near optimum initial
condition provided by the wavelet approach, is also seen to produce convergence in much fewer iterations than from an
‘arbitrary’ starting point of  [tx, ty, �]=[20,35,0].

A check of the level 3 decompositions (not shown) of the wind and chip images of size 16, showed that most of the
MI results were incorrect, while correlation produced correct results at level 3 for about half of our tests. The incorrect
results were sometimes due to the algorithm being trapped at a local maximum, and this frequently occurred because the
search proceeded from the starting point in a direction away from the global optimum due to the ‘lifting effect’ on the
surface, caused by the offsets as described above. It may be an indication that the MI criterion is more susceptible to this
‘lifting effect’ than is correlation for the smaller-sized images. This also brings up the question of the choice of starting
point and availability of prior information on the registration values. Tables 4 and 5 provide the results for the AVHRR
images at four levels of decomposition (i.e. levels 0-3).

At level 2, with a decimation of 8 of the original image, MI produced incorrect results for the wind/chip 5 and 6
pairs, as shown by the results in Table 1, while the correlation results for avhrr 1311 were incorrect at level 0. It is
critical, with the multiresolution approach, that a correct result is obtained at the coarsest level of the decomposition so as
not to propagate and multiply errors. An underlying assumption in all our tests is some prior knowledge of the range of
the actual registration values, and our goal is to achieve a result with subpixel accuracy by the use of our algorithm. The
use of this prior information allows us to discard incorrect optimization results at any level, and it also allows us to chose
a reasonable starting point at the coarser levels of the wavelet decomposition.

In the multiresolution approach provided by the wavelet decomposition, when the optimization algorithm works at a
coarser level, it provides a near optimal starting point for the next level. This can produce convergence in as few as one
iteration, and it also increases the robustness of the algorithm since it becomes less likely that it will be trapped in a local
minimum at the next level. Thus a considerable speed up in the overall registration process can be achieved. In general,
MI was found to optimize (faster) in fewer iterations than correlation did. At the subpixel level, there was a small
discrepancy between the optimal values obtained for MI versus those obtained for correlation, but this cannot be resolved
without accurate, independent ground truth estimates of the true transformations.

5.3 Comparison to Exhaustive Search and Discussion
At each level of decomposition, evaluation of the MI or correlation objective function takes up a major portion of

the computational time. For the exhaustive search, the required number of function evaluations is n3, if we use the same
number of data points, n, for each of the search ranges of tx , ty and �. In the multiresolution implementation, the
optimum parameter values from the coarser level are passed to the next level and used as the center of the search range at
that level.

For the exhaustive search used in prior work12, the search range decreases at each decomposition level from the
lowest resolution image to the original size. Consider a 4-level search involving decomposition levels 0-2. At the top (or
finest) level, each parameter is searched over a 5 data point range, obtained by adding 2 points in both directions; the
next coarsest level adds 4 data points, giving  a total of 9 points; then 8 points are added, and so on. Thus the total
number of function evaluations required at each level of the exhaustive search is shown below.



Daubechies Level Number of function evaluations
(Exhaustive search)

2 varies
1 4913
0 729

original 125
At the coarsest level, the initial search depends on the availability or not, of prior information of the correct registration
values. At this level, the default search range for the translation parameters is chosen to be [-1,1] which contains 3
parameter values, but the number of data points for rotation may vary between 3 and 359. Thus the number of function
evaluations can vary between 27 to 3231 for the default setting, and may in fact be much more.

In the SPSA optimization, all parameters are updated simultaneously, and convergence occurs at most levels in less
than 200 iterations. Each iteration requires two function evaluations to obtain the gradient, so the number of function
evaluations is double the number of iterations. From the results of the multiresolution optimization algorithm provided in
Tables 1-5, we observe that we achieve a speed up by a factor of at least 3 at top level for mutual information, over the
exhaustive search. Correlation optimization, which requires more iterations, is still faster than the corresponding
exhaustive search if the search time over all levels is added up. The total computational cost can be evaluated by using
the assignment of unit processing time to a level 2 image, then a level 1 image is processed in 4 time units, etc..

Finally, it should be noted that since the exhaustive search is done in discrete unit increments it is not possible to get
subpixel registration results using this search method.

6. CONCLUSIONS

The study presented in this paper investigated a new optimization technique, and successfully applied it to register
remote sensing images in a multiresolution framework, using wavelets. We observed that with the SPSA optimization
algorithm, MI tends to optimize 3 to 4 times faster than correlation does (see Table 3). Current work involves evaluating
and comparing the application of Simoncelli wavelets for this process, and investigating the effect of a smoother
interpolation scheme for the transformed image on the accuracy of the optimization result. Such a scheme will involve an
increase in the computational cost of the algorithm but it may be justified if there is an improvement in the accuracy of
the result. Further work will also involve the extension of our tests to a larger number of remote sensing datasets, testing
the effect of noise and of large rotations on the algorithm.
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Figure 5
Parameter Optimization Curves for the Registration of Original Wind2 and Chip2 Images

Table 1
Results of Correlation Optimization using Daubechies Wavelets on the Landsat Dataset

Image Lev Starting Pt
Tx/Ty/�

Starting
Correl

Ending Pt
Tx/Ty/�

Correl Iteration

wind/chip_ 0 2 2/4/0 0.8873 2.99/3.98/0.368 0.9674 9/200
2 4/4/0 0.8653 2.99/3.99/0.398 0.9674 9/200
1 6/8/0 0.9632 5.94/7.93/0.248 0.9632 0/200
0 12/16/0 0.9548 11.73/15.64/0.017 0.9548 0/200

orig 24/31/0 0.9544 23.44/31.097/0.037 0.9584 200~
wind/chip_ 1 2 2/4/0 0.2713 2.98/4.02/-1.1 0.3943 14/200

1 6/8/0 0.4086 5.90/8.05/0.02 0.4086 0/200
0 12/16/0 0.4088 11.82/16.63/0.08 0.4265 48/200

orig 24/33/0 0.4578 23.45/33.128/-0.001 0.4662 66/200
wind/chip_ 2 2 2/4/0 0.4738 2.94/3.96/-0.036 0.5338 31/200

1 6/8/0 0.5777 5.886/7.96/-0.0117 0.5777 0/200
0 12/16/0 0.5750 11.587/16.0/0.066 0.5750 0/200

orig 23/32/0 0.5892 23.08/32.14/0.018 0.5892 0/200
wind/chip_ 3 2 2/4/0 0.4492 3.38/3.199/2.54 0.554 500~

1 6/6/0 0.4737 6.01/7.59/0.466 0.551 500~
0 12/15/0 0.5467 11.50/15.35/0.117 0.557 200~

orig 23/30/0 0.5470 22.92/30.795/0.146 0.5721 185/200
wind/chip_ 4 2 2/4/0 0.1498 2.73/3.99/0.44 0.1754 391/400

1 6/8/0 0.1669 5.16/8.00/0.465 0.1772 200
0 10/16/0 0.1897 10.98/16.07/0.332 0.225 200

orig 22/32/0 0.2281 22.13/32.53/0.07 0.2329 400~
wind/chip_ 5 2 2/4/0 0.2916 2.96/4.12/0.116 0.3430 14/200

1 6/8/0 0.3174 5.897/8.91/0.02 0.3592 24/200
0 12/18/0 0.3618 11.41/17.55/-0.03 0.3664 84/200

orig 22/35/0 0.3798 22.95/35.098/-0.04 0.4132 31/200
wind/chip_6 2 2/4/0 0.8440 2.933/4.00/-0.124 0.8827 33/200

1 6/8/0 0.8754 5.91/7.93/-0.18 0.8754 0/200
0 12/16/0 0.8659 11.85/15.41/-0.008 0.8747 139/200

orig 24/31/0 0.8796 23.66/30.798/0.003 0.8796 0/200

Table 2
Results of Mutual Information (MI) Optimization using Daubechies wavelets on the Landsat Dataset
Image Lev Starting Pt

Tx/Ty/�
Starting MI Ending Pt

Tx/Ty/�
MI Iteration

wind/chip_ 0 2 0/0/0 3.501 3.39/4.08/-0.097 4.050 315/350
2 2/4/0 3.8764 3.113/4.07/-0.145 4.050 4/200
1 0/0/0 2.259 5.98/7.99/-0.14 3.035 346/400



1 6/8/0 3.035 5.99/8.04/-0.64 3.035 0/200
0 12/16/0 2.074 11.8/15.82/-0.08 2.074 0/200

orig 24/32/0 1.602 23.31/31.15/0.08 1.749 21/200

wind/c hip_1 2 2/4/0 3.404 3.05/4.04/-0.22 3.6158 4/200
1 6/8/0 2.4065 6.02/8.09/0.134 2.4065 0/200
0 12/16/0 1.3129 11.91/16.73/0.02 1.473 3/200

orig 24/34/0 0.8580 23.48/33.2/0.008 1.1716 9/335
wind/chip_ 2 2 2/4/0 4.2160 2.999/4.011/0.189 4.3662 8/200

2 4/4/0 4.238 2.99/4.04/0.22 4.3662 26/100
1 0/0/0 2.1759 6.04/8.09/1.12 3.006 1000
1 6/8/0 3.1078 5.98/8.05/0.28 3.1078 0/100
0 12/16/0 2.088 11.86/16.05/0.29 2.088 0/100

orig 24/32/0 1.492 23.25/32.23/0.06 1.762 21/200
wind/chip_ 3 2 0/0/0 3.081 2.99/4.04/-0.11 3.6954 91/200

2 2/4/0 3.4076 2.99/4.02/-0.003 3.6954 5/200
1 0/0/0 1.379 5.92/7.97/-0.07 2.288 456/500
1 6/8/0 2.2878 5.92/7.99/0.04 2.2878 0/200
0 12/16/0 1.4959 11.27/15.70/-0.08 1.735 8/200

orig 22/30/0 1.090 22.63/31.17/0.026 1.539 5/200
wind/chip_ 4 2 2/4/0 4.402 3.863/4.114/0.089 4.475 111/200

1 8/8/0 2.737 5.99/8.04/0.349 3.062 39/200
0 12/16/0 1.852 11.21/16.54/-0.03 2.02 200~

orig 22/33/0 1.468 22.61/32.95/0.22 1.5514 8/200
wind/c hip_5 2 2/4/0 3.529 4.38/10.02/0.88 3.955 200**

1 8/0/0 1.869 6.19/8.75/1.65 2.310 1000~
0 12/18/0 1.368 11.60/17.64/0.04 1.368 0/200

orig 23/35/0 1.3486 23.09/35.10/-0.01 1.3486 0/200
wind/chip_ 6 2 2/4/0 4.442 7.623/7.97/0.39 4.896 200**

1 0/0/0 2.3559 6.02/7.87/1.26 3.173 300~
0 12/16/1 2.2469 11.96/15.3/0.08 2.378 21/200

orig 24/30/0 1.7502 23.76/30.75/0.03 1.944 8/200

Table 3
Results of Optimization, Landsat Dataset, without wavelets from an arbitrary starting point of tx/ty/theta=20/35/0

Mutual Information

Wind/Chip
images

Starting Pt
Tx/Ty/�

Starting MI Ending Pt
Tx/Ty/�

Ending MI Iterations

wind/chip_ 0 20/35/0 1.2809 23.309/31.156/0.0833 1.7492 150/400
wind/chip_ 1 20/35/0 0.3871 23.48/33.20/0.011 1.1716 43~/700~
wind/chip_ 2 20/35/0 0.9561 23.253/32.235/0.0597 1.76213 65/400
wind/chip_ 3 20/35/0 0.80698 22.63/31.169/0.025 1.5391 92/400
wind/c hip_4 20/35/0 0.65795 22.61/32.94/0.028 1.55141 28/400
wind/chip_ 5 20/35/0 0.65733 23.094/35.097/-0.008 1.34865 8/400
wind/chip_ 6 20/35/0 1.15283 23.7613/30.762/0.029 1.9440 106/400

Correlation

wind/chip_ 0 20/35/0 0.8820 23.25/31.53/0.12 0.9531 700~
wind/c hip_1 20/35/0 0.2191 23.449/33.124/-0.002 0.46616 118/400
wind/chip_ 2 20/35/0 0.41278 23.08/32.15/0.018 0.55892 232/400
wind/chip_ 3 20/35/0 0.41582 22.81/30.91/0.08 0.5721 452/700
wind/chip_ 4 20/35/0 0.1503 22.13/32.54/0.07 0.23365 700~
wind/c hip_5 20/35/0 0.2977 22.97/35.092/-0.03 0.41318 149/400
wind/chip_ 6 20/35/0 0.7848 23.26/31.07/-0.138 0.8726 700~

Table 4
Results of Mutual Information (MI) using Daubechies wavelets on the AVHRR Dataset

Image (Manual
Registration)

Lev Starting Pt
Tx/Ty/�

Starting MI Ending Pt
Tx/Ty/�

MI Iteration

avhrr 126 3 0/0/0 4.279177 0.01/0.03/-0.41 4.279177 0/200
(0/0/0) 2 0/0/0 2.820572 -0.01/0.02/-0.39 2.820572 0/200

1 0/0/0 1.711433 -0.06/-0.15/-0.01 1.71143 0/200
0 0/0/0 1.028833 -0.31/-0.25/0.01 1.028833 0/200



orig 0/0/0 1.637575 -0.42/-0.22/-0.01 1.637575 0/29
avhrr 127 3 0/0/0 4.176531 0.05/0.09/0.15 4.176531 0/200
(-1/-1/0) 2 0/0/0 2.574838 0.01/0.01/0.43 2.574838 0/62

1 0/0/0 1.288376 -0.26/-0.35/-0.00 1.288376 0/200
0 -1/-1/0 0.601903 -0.71/-0.64/-0.00 0.601903 0/200

orig -1/-1/0 0.972912 -1.50/-0.82/-0.03 1.014969 450 ~
avhrr 129 3 0/0/0 4.093746 1.77/1.00/-0.16 4.154608 177/200*
(-3/-1/0) 2 0/0/0 2.448219 -1.001/2.01/0.17 2.459606 389/500*

1 0/0/0 1.161929 -0.88/0.21/0.14 1.174389 600 ~
0 -2/0/0 0.521364 -1.21/-0.07/0.12 0.529380 600 ~

orig 0/0/0 0.799681 -2.57/-0.66/0.07 0.841950 750 ~
avhrr 133 3 0/0/0 4.169636 0.01/0.03/-0.45 4.169636 0/300

(0/-1/0) 2 0/0/0 2.659957 0.02/-0.02/-0.46 2.663372 0/300
1 0/0/0 1.524865 0.01/-0.32/-0.08 1.524865 0/300
0 0/-1/0 0.953245 -0.11/-0.65/-0.02 0.953245 0/300

orig 0/-1/0 1.386609 -0.26/-1.23/-0.01 1.386609 0/300
avhrr 1244 3 0/0/0 4.316372 2.15/1.43/0.10 4.363943 194/380*

(1/0/0) 2 0/0/0 2.657322 -0.02/0.32/0.16 2.657322 0/81
1 0/0/0 1.276138 0.49/-0.01/0.03 1.285468 600 ~
0 0/0/0 0.465121 0.49/-0.17/0.004 0.465121 0/248

orig 0/0/0 0.649399 0.76/-0.32/-0.07 0.654045 600 ~
avhrr 1300 3 0/0/0 4.263280 1.30/1.17/-0.32 4.291931 69/200

(2/0/0) 2 1/1/0 2.596047 0.85/1.10/0.11 2.596047 0/200
1 2/2/0 1.272731 1.05/0.16/-0.13 1.372877 224/300
0 2/0/0 0.715468 1.52/-0.01/-0.06 0.718038 300 ~

orig 3/0/0 1.290954 2.71/0.7/-0.03 1.290954 0/300
avhrr 1311 3 0/0/0 4.339528 0.01/-0.02/-0.38 4.339528 0/300

(1/0/0) 2 0/0/0 2.845347 0.03/-0.02/-0.36 2.845347 0/300
1 0/0/0 1.701039 0.38/-0.16/-0.09 1.701039 0/300
0 1/0/0 1.136558 0.86/-0.37/-0.03 1.137582 300 ~

orig 2/-1/0 1.529245 1.74/-0.87/-0.01 1.529245 0/300
avhrr 1322 3 0/0/0 4.411436 0.00/-0.02/0.39 4.411436 0/300

(0/-1/0) 2 0/0/0 2.956676 0.01/-0.00/-0.44 2.956676 0/263
1 0/0/0 1.803839 0.13/-0.22/-0.09 1.803839 0/300
0 0/0/0 1.149540 0.30/-0.59/-0.01 1.88324 271/300

orig 1/-1/0 1.721903 0.58/-1.04/-0.04 1.725832 300 ~
avhrr 1411 3 0/0/0 4.300184 0.08/0.22/-0.15 4.300184 0/300

(0/-1/0) 2 0/0/0 2.667522 0.04/0.14/-0.33 2.669109 293/300
1 0/0/0 1.288783 0.03/-0.27/-0.10 1.288783 0/24
0 0/-1/0 0.657162 -0.03/-0.99/-0.01 0.657162 0/300

orig 0/-2/0 1.160988 -0.05/-1.82/-0.10 1.173493 300 ~
avhrr 1488 3 0/0/0 4.333458 0.60/-0.04/-0.38 4.338499 122/200

(2/3/0) 2 1/0/0 2.726772 0.34/0.17/-0.29 2.739452 154/300
1 1/0/0 1.491790 0.77/0.71/-0.02 1.621418 26/300
0 2/1/0 0.955991 1.27/1.48/-0.01 0.995065 300 ~

orig 3/3/0 1.613441 2.82/3.08/0.01 1.613441 0/300

Table 5
Results of Correlation using Daubechies wavelets on the AVHRR Dataset

Image Lev Starting Pt
Tx/Ty/�

Starting
Correl

Ending Pt
Tx/Ty/�

Correl Iteration

avhrr 126 3 0/0/0 0.624229 0.01/-0.18/0.09 0.624229 0/400
(0/0/0) 2 0/0/0 0.609182 0.02/-0.29/0.15 0.609182 0/400

1 0/0/0 0.594873 -0.002/-0.47/0.01 0.594873 0/55
0 0/0/0 0.578333 -0.06/-0.36/-0.02 0.578333 0/53

orig 0/0/0 0.596399 -0.32/-0.87/-0.02 0.597129 237/400
avhrr 127 3 0/0/0 0.369078 0.01/-0.10/0.23 0.369078 0/400
(-1/-1/0) 2 0/0/0 0.371508 -0.0004/-0.17/0.28 0.371508 0/400

1 0/0/0 0.366964 -0.07/-0.34/0.07 0.366964 0/58
0 0/0/0 0.354653 -0.17/-0.27/0.05 0.354653 0/60

orig 0/0/0 0.418214 -1.22/-1.56/0.07 0.411439 700~
avhrr 129 3 0/0/0 0.482614 0.002/-0.04/0.41 0.482614 0/400
(-3/-1/0) 2 0/0/0 0.470858 -0.01/-0.03/0.47 0.471624 400 ~

1 0/0/0 0.456853 -0.37/-0.30/0.15 0.456853 0-59
0 0/0/0 0.443043 -0.82/-0.67/0.11 0.446756 400 ~



orig -2/-1/0 0.361033 -1.94/-1.34/0.26 0.355661 600~
avhrr 133 3 0/0/0 0.638302 0.03/-0.07/.031 0.638302 0/400

(0/-1/0) 2 0/0/0 0.623101 0.04/-0.13/0.34 0.623101 0/397
1 0/0/0 0.605265 0.08/-0.37/0.06 0.605265 0/65
0 0/0/0 0.586242 0.08/-0.94/0.05 0.596173 160/400

orig 0/-2/0 0.573482 0.13/-1.75/0.07 0.574968 400 ~
avhrr 1244 3 0/0/0 0.227456 0.47/0.18/-0.09 0.227546 0/81

(1/0/0) 2 0/0/0 0.224989 0.24/0.20/-0.01 0.224989 0/600
1 0/0/0 0.222097 0.44/0.21/0.05 0.222097 0/133
0 0/0/0 0.217905 0.41/0.17/0.04 0.217905 0/145

orig 0/0/0 0.289095 0.73/0.35/0.16 0.290349 500 ~
avhrr 1300 3 0/0/0 0.542354 -0.0008/0.89/0.19 0.548916 26/400*

(2/0/0) 2 0/0/0 0.524704 0.01/0.83/-0.49 0.520711 400 ~*
1 0/0/0 0.508132 0.22/0.33/-0.07 0.508132 0/60
0 0/0/0 0.493240 0.89/0.82/-0.12 0.495783 500

orig 0/0/0 0.545601 1.31/0.61/-0.3 0.553674 700~
avhrr 1311 3 0/0/0 0.728088 0.03/-0.24/0.03 0.728088 0/400

(1/0/0) 2 0/0/0 0.710181 0.10/-0.38/0.02 0.710181 0/400
1 0/0/0 0.690711 0.09/-0.22/-0.11 0.690711 0/12
0 0/0/0 0.672312 0.75/-1.29/-0.05 0.672734 177/400*

orig 0/0/0 0.644073 1.05/-0.90/-0.02 0.655385 367/500
avhrr 1322 3 0/0/0 0.621460 0.02/-0.001/0.46 0.621460 0/400

(0/-1/0) 2 0/0/0 0.616881 0.04/-0.07/-0.15 0.616881 0/400
1 0/0/0 0.605167 0.14/-0.26/-0.000 0.605167 0/400
0 0/0/0 0.589438 0.21/-0.26/0.05 0.589438 0/105

orig 0/0/0 0.595403 0.54/-0.80/0.08 0.605295 500 ~
avhrr 1411 3 0/0/0 0.155454 0.06/-0.12/0.15 0.155454 0/400

(0/-1/0) 2 0/0/0 0.175088 0.08/-0.22/0.15 0.175088 0/400
1 0/0/0 0.176979 0.13/-0.47/0.01 0.176979 144/265
0 0/0/0 0.169303 0.10/-0.96/0.02 0.195345 132/500

orig 0/-2/0 0.300815 0.07/-2.01/-0.03 0.300815 0/400
avhrr 1488 3 0/0/0 0.659720 0.03/-0.04/-0.38 0.659720 0/400

(2/3/0) 2 0/0/0 0.637544 0.02/-0.01/-0.43 0.637544 0/100
1 0/0/0 0.607426 0.56/0.22/0.06 0.607407 298/400
0 1/0/0 0.589391 1.06/0.40/0.003 0.589391 0/400

orig 2/1/0 0.571891 2.54/1.74/0.10 0.580913 400 ~

Table 6
Summary of Results using Daubechies wavelets on the AVHRR Dataset

Mutual Information
(up to 500 iterations)

AVHRR image Manual
Registration

(Tx/Ty/�)

Optimizing
(Tx/Ty/�)

MI-value

126 0/0/0 -0.42/-0.22/-0.01 1.637575
127 -1/-1/0 -1.50/-0.82/-0.03 1.014969
129 -3/-1/0 -2.57/-0.66/0.07 0.841950
133 0/-1/0 -0.26/-1.23/-0.01 1.386609

1244 1/0/0 0.76/-0.32/-0.07 0.654045
1300 2/0/0 2.71/0.7/-0.03 1.290954
1311 1/0/0 0.86/-0.37/-0.03 1.137582
1322 0/-1/0 0.58/-1.04/-0.04 1.725832
1411 0/-1/0 -0.05/-1.82/-0.10 1.173493
1488 2/3/0 2.82/3.08/0.01 1.613441

Correlation
(up to 700 iterations)

126 0/0/0 -0.32/-0.87/-0.02 0.597129
127 -1/-1/0 -1.37/-1.65/0.05 0.408933~
129 -3/-1/0 -1.94/-1.339/0.26 0.355661~
133 0/-1/0 0.13/-1.75/0.07 0.574968~

1244 1/0/0 0.73/0.35/0.16 0.290349
1300 2/0/0 1.31/0.61/-0.3 0.553674
1311 1/0/0 1.05/-0.90/-0.02 0.655385
1322 0/-1/0 0.54/-0.80/0.08 0.605295~



1411 0/-1/0 0.07/-2.01/-0.03 0.300815
1488 2/3/0 2.74/1.97/0.12 0.582691~
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