
Parametrized Actor-Critic Algorithms for Finite-Horizon MDPs

Mohammed Shahid Abdulla and Shalabh Bhatnagar
Department of Computer Science and Automation,

Indian Institute of Science, Bangalore, INDIA.
email: {shahid,shalabh}@csa.iisc.ernet.in

Abstract— Due to their non-stationarity, finite-horizon
Markov decision processes (FH-MDPs) have one probability
transition matrix per stage. Thus the curse of dimensionality
affects FH-MDPs more severely than infinite-horizon MDPs. We
propose two parametrized ‘actor-critic’ algorithms to compute
optimal policies for FH-MDPs. Both algorithms use the two-
timescale stochastic approximation technique, thus simultane-
ously performing gradient search in the parametrized policy
space (the ‘actor’) on a slower timescale and learning the policy
gradient (the ‘critic’) via a faster recursion. This is in contrast to
methods where critic recursions learn the cost-to-go proper. We
show w.p 1 convergence to a set with the necessary condition for
constrained optima. The proposed parameterization is for FH-
MDPs with compact action sets, although certain exceptions
can be handled. Further, a third algorithm for stochastic
control of stopping time processes is presented. We explain
why current policy evaluation methods do not work as critic
to the proposed actor recursion. Simulation results from flow-
control in communication networks attest to the performance
advantages of all three algorithms.

Keywords

Finite horizon Markov decision processes, reinforce-
ment learning, two timescale stochastic approximation,
actor-critic algorithms.

I. INTRODUCTION

Policy evaluation using parameterized cost-to-go
estimates in Markov Decision Processes (MDPs) are
relevant due to their wide applications in communi-
cation, finance and control where state-spaces of the
systems are typically large. In particular, policy eval-
uation algorithms that approximate the cost-to-go from
each state using linear parameterization have been pro-
posed for the infinite-horizon criteria of average cost
[1] and discounted cost [2] and further for stopping
time problems [3]. A crucial enhancement to the basic
method is pursued in [4]. However, with regard to finite-
horizon total cost MDPs (F-H MDPs), there has not
been any treatment of a similar nature. This may be due
to the convenience that full T− length trajectories can
be simulated in F-H MDPs, without having to resort to
use of the key Poisson equation. Such an advantage is
not available to infinite-horizon MDPs, however, where
parametrized cost-to-go estimates are further employed
to compute the optimal policy using a policy gradient
method (cf. [5]).

For F-H MDPs, a simulation-based solution that
stored the cost-to-go estimates in a look-up table was
proposed in [6]. A key feature of the scheme of [6] is
that online sampling of the states is not necessary, i.e.
simulating an entire trajectory is not required, repeated
simulation of a single transition from each state being
sufficient. However, at issue here is the size of such a

look-up table, since when compared to infinite-horizon
MDPs, the memory requirements in F-H MDPs assume
severity due to the absence of stationarity. A look-up
table of size |S| × T is needed, where T ∈ Z+ is the
length of the finite horizon and assuming that all states
are feasible in all stages. It is this memory requirement
that the proposed algorithms address.

Algorithms for finding optimal policy using Simul-
taneous Perturbation Stochastic Approximation (SPSA)
to estimate the policy gradient while minimizing the
infinite-horizon average-cost, were proposed in [7].
Many F-H MDPs require only a finite-action setting,
but since the closed convex-hull of such an action set
is compact, the algorithm DPAFA of [7] is applicable.

A. Outline of article and Notation
The linear parameterization of policy iterate θk

is considered in Sections II and III and certain key
differences w.r.t. relevant algorithms are also identified.
Presented in Section II is a result that shows convergence
w.p. 1 to a set satisfying necessary conditions of con-
strained optima. Further, Section III reports another al-
gorithm for FH-MDPs with higher storage requirements,
but lesser computation. Section IV considers extension
to the control of stopping-time MDPs. Simulation results
are presented in Section V and we conclude and identify
some future directions in Section VI

For an FH-MDP operating under the k−th policy
iterate θk, the finite-horizon cost-to-go from the l−th
stage onward, Vl(θk, i), is given by:

E{

T−1
∑

m=l

Km(Xm, θk,m(Xm)) + KT (XT)|Xl = i}.

This we abbreviate as Vk,l(i). Here Km(·, ·) denotes the
single stage cost at instant m. Without loss of generality
we assume that the terminal cost KT (XT) = 0, ∀XT ∈
S. In the compact action setting, the action taken accord-
ing to policy iterate θk when state i is observed in stage l

is such that θk,l(i) ∈ Ul,i
∆
=Π

Nl,i

r=1 [al,i(r), bl,i(r)] where
al,i(j) < bl,i(j) ∈ R, ∀i ∈ S. Thus the constraint sets
Ul,i are chosen to be compact rectangles in Rl,i. We
operate under a constraint on the action set:

Assumption 1: Ul,i are s.t. Nl,i = Nl, al,i(r) =
al(r), and bl,i(r) = bl(r), ∀i ∈ S and 1 ≤ r ≤ Nl.

While this does make the set Ul,i same over all i ∈
S, we claim in Section II that an analogous restriction
is implicit in other parametrization methods proposed in
the literature. Further, θk,l ∈ Ul ≡ Π

|S|
i=1Ul,i and θk ∈

U
∆
=ΠT−1

l=0 Ul where θk is the vector (θk,l)
T−1
l=0 and each

θk,l is the vector (θk,l(i))i∈S , respectively. A projection
operator Pl,i(θk,l(i)) is used to truncate action θk,l(i)
into the above feasible set Ul,i, with analogously defined

Proceedings of the 2007 American Control Conference
Marriott Marquis Hotel at Times Square
New York City, USA, July 11-13, 2007

WeA16.4

1-4244-0989-6/07/$25.00 ©2007 IEEE. 534

operators Pl and P to project into Ul and U , respectively.
The proposed SPSA actor recursion is subject to:

Assumption 2: For i ∈ S, a ∈ Ul,i, 0 ≤ l ≤ T − 1,
and j ∈ S, costs Kl(i, a) and transition probabilities
pl(i, a, j) are continuously differentiable w.r.t. a.
The policy iterate θk is of size |S|×T (taking Nl,i = 1,
∀l, i) which is also the size of the look-up table Vk =
(Vk,l, 1 ≤ l ≤ T − 1)T where Vl,k = (Vl,k(i), 1 ≤ i ≤
|S|)T . Since Nl,i indicates the dimension of the action
at stage l in state i, note that Nl,i > 1 would imply that
size of policy θk is larger than that of the look-up table
Vk.

In the spirit of [2] and related work, the pro-
posed algorithm uses feature vectors φl(i), ∀i ∈ S where
φl(i) ∈ RK , K � |S|. Define the |S| × K matrix
Φl as (φl(i), ∀i ∈ S)T and the feature vector φl(i) for
each stage-state pair l, i as (φl,k(i), 1 ≤ k ≤ K)T .
These features φl - which can be constructed based on
metrics to grade the states - become available every
time the state is encountered and thus do not need
to be stored. Feature vectors of states change with
the stage 0 ≤ l ≤ T − 1, demonstrating an added
complication in FH-MDPs when compared to infinite-
horizon MDPs. Also, we approximate the gradient-
estimate of the cost-to-go 5̃Vk,l = (5̃iVk,l(i), 1 ≤
i ≤ |S|)T using a linear architecture, where,
5̃mVk,l(n) is an estimate of the partial-gradient of
Vk,l(n) w.r.t. θk,l(m). Since Vk,l(i) = Kl(i, θk,l(i)) +
∑

j∈Sl+1
pl(i, θk,l(i), j)Vk,l+1(j), terms 5mVk,l(n),

for m, n 6= i, do not contribute to the update of θk,l(i).
For a parsimonious representation, 5̃Vk,l is projected
using the L2 norm onto the space spanned by columns
of Φl. The orthogonal projection of a vector x ∈ Rs

is ΠΦl
x where ΠΦl

= Φl(Φ
T
l Φl)

−1ΦT
l . Thus 5̃Vk,l is

approximated by ΠΦl
5̃Vk,l. All further treatment makes

two simplifying assumptions, Nl,i = 1, ∀l, i and that any
state can be visited by the process in any stage.

II. FH-MDP ALGORITHM 1
Certain key differences with the algorithms currently

in literature are outlined before the algorithm is pro-
posed, including disadvantages of the proposed scheme:

• The linear parametrization of the cost-to-go in [2],
[5] uses the fact that the vector Vk,l ∈ R|S| (in the
setting of [2], however, the subscript l is irrelevant).
Assumption 1, where Ul ⊂ R|S|, helps us in
similarly parametrizing the actor, i.e., the policy
iterate θk.

• In the proposed algorithm, the critic used is an
estimate of the gradient of the cost-to-go at policy
iterate θk. This gradient estimate in R|S| is then
projected using operator ΠΦl

. As seen in Theorem
1, this is central to showing convergence w.p. 1.

• The critic has the same linear parametrization as
the actor, i.e. both belong to the span of Φl,
although an estimate of the policy-gradient has
no intuitive interpretation. We do not need to link
the two parameterizations as in the scheme of [5].
Therefore, the proposed Algorithm 1 is an actor-
critic implementation with a parametrized actor.

• Due to the compact action setting, two terms from
[8], a) the likelihood ratio term Lu(i, θ), and b)
gradient of reward term 5K(i, θk) are not re-
quired. Avoiding b) helps when one-step transition
costs Kl(Xl, θk,l(Xl), Xl+1) have the destination
state Xl+1 as an argument. We optimize directly
the expected total cost and not the individual cost

samples using perturbation-analysis type schemes
as [8] does. As a result, we do not require con-
straining regularity conditions. While [8] also esti-
mates performance gradient w.r.t. parameter θk (al-
though for the infinite-horizon average-cost case),
we use an explicit stochastic gradient formulation
(viz. SPSA).

• The ‘Monte Carlo’ nature of the critic in Algorithm
1 - requiring a (T − l)−length simulated trajectory
until horizon T is reached - is due to this inability
to use the Poisson equation. Regeneration intervals,
i.e. finite length simulated trajectories until a cer-
tain i∗ is hit are also used in [8].

• In model-free algorithms, experimentation with a
computer model of the system grants us liberty
to simulate a (T − l)−length trajectory from any
(stage, state) pair (l, i) even though it is the total
cost-to-go V0,i that is to be minimized. We use this
to good effect in the proposed algorithm. Note that
this assumption is implicit in [6] and [9].

• No Dynamic Programming (DP) results are used
in Algorithm 1. The Poisson equation: Vk,l(Xl) =
E{Kl(Xl, θk,l(Xl))+Vk,l+1(Xl+1)}, is avoided.
Use of ΠΦl+1

Vk,l+1 in place of Vk,l+1 above
renders the equation invalid, although this handicap
is mitigated in Algorithm 2 of Section III later.

• Proposed algorithms only handle Ul,i ≡ Ul,
∀i ∈ S. An analogous restriction holds in, e.g., [5]
since Ui are s.t. |Ui| = u, ∀i ∈ S. For an i ∈ S
where Nl,i < Nl, the proposed algorithm can
yet be modified by adding dummy intervals, and
scaling and translating Ul,i that violate Ul,i ≡ Ul.

We next motivate the proposed algorithm. Similar
to the Dynamic Programming algorithm, we update the
current policy by moving backwards in horizon with
index l from T − 1 to 0 (although, crucially, we do
not use the dynamic programming principle). We use
the compact action set assumption, i.e., θk,l(i) ∈ Ul,i,
and θk,l(i) = Pl,i(〈φl(i), θ̄k,l〉) for the parametrized
policy iterate θ̄k,l ∈ RK . However, the action θk,l(i)
is not used explicitly. Instead, the two-sided SPSA
method perturbs policy iterate θk,l with δk,l∆k,l to
produce policy θ+

k,l(i) = Pl,i(θk,l(i) + δk∆k,l(i)) and
θ−

k,l(i) = Pl,i(θk,l(i)−δk∆k,l(i)) ∀i ∈ S and measures
system performance at these two policies. While δk is a
perturbation parameter that diminishes to zero in order
that the bias w.r.t. the true policy gradient at θk,l vanishes
as k → ∞ (cf. [10]), ∆k,l is such that ∆k,l(i) = ±1
with probability 0.5 each. Policy gradient methods using
SPSA estimates applied to solutions of MDPs are to be
found in [6], [9] and [7].

The evaluation of ΠΦl
5̃Vk,l is undertaken in a man-

ner reminiscent of the LSTD(0) algorithm in [4]. The
projection of Vk,l to the span of Φl is an optimization
problem which LSTD(0) does not solve incrementally,
unlike TD(λ) in [2]. Note that ΠΦl

= Φl(Φ
T
l Φl)

−1ΦT
l

and hence we estimate ΦT
l 5̃Vk,l first by making L � 0

starts from states i chosen uniformly out of S and
simulating trajectory {X+

l , X+
l+1, ..., X

+
T |X+

l = i} us-
ing action θ+

k,l(i) in stage l and state i and policies
θk+1,l+m, m ≥ 1 for stages l + m upto T − 1. We
call the accumulated cost in such a trajectory as K+ and
observe that since the starting state i is chosen uniformly
from S, |S|φl(i)5̃iVk,l(i) is a vector whose mean is
ΦT

l 5̃Vk,l. The K × K matrix (ΦT
l Φl)

−1 is assumed
to be pre-stored but can also be estimated using an
averaging of the K×K matrix iterates φl(i)φ

T
l (i). Anal-

WeA16.4

535

ogously, the simulation to compute K− is performed.
The averaging of the ‘critic’ estimates |S|φl(i)5̃iVk,l(i)
occurs on a faster timescale bk than the scale ak used
to update the ‘actor’ θk,l. This relationship results in the
actor recursion viewing the critic as having equilibrated
to ΦT

l 5̃Vk,l at each update k. In the trajectory, the next
state from X+

t is indicated by the simulation random
variable η(X+

t , θ+
k,t(X

+
t)). While neither θk,l, θ±

k,l nor
θk+1,l may belong to the span of Φl, the availability
of the projection operator Pl makes it possible to im-
plement such policies during simulation. The number
of policy updates M for which the algorithm below is
run is typically decided using some convergence criteria,
making θ̄M the policy parameter output by the algorithm.

The requirements on step-sizes ak and bk are as
follows:

bk, ak > 0, ∀k ≥ 0 ,
∑

k

bk =
∑

k

ak = ∞,

∑

k

bk
2
,
∑

k

ak
2

< ∞, and ak = o(bk).

Similarly, the perturbation parameter δk is such that
∑

k

ak

δk
= ∞,

∑

k

(

ak

δk

)2

< ∞, and ak

δk
= o(bk).

The proposed algorithm is described next:
• for k = 0, 1, ..., M do: {
• for l = T − 1, ..., 0 do: {
• Critic: for m = 0, 1, ..., L − 1 do: {

– choose start state X+
l = X−

l = i uniformly
from S.

– generate perturbation ∆k,l(i)
– K+ := 0, t := l.
– while t < T do: {

if (t=l)
X+

l+1 := η(i, Pl,i(θk,l(i) + δk∆k,l(i)));
K+ := K++Kl(i, Pl,i(θk,l(i)+δk∆k,l(i)));
else
X+

t+1 := η(X+
t , Pt,i(θk,t(X

+
t)));

K+ := K+ + Kt(X
+
t , Pt,i(θk,t(X

+
t)));

endif
t := t + 1;
}

– K− := 0, t := l.
– while t < T do: {

if (t=l)
X−

l+1 := η(i, Pl,i(θk,l(i) − δk∆k,l(i)));
K− := K− + Kl(i, Pl,i(θk,l(i) −
δk∆k,l(i)));
else
X−

t+1 := η(X−
t , Pt,i(θk,t(X

−
t)));

K− := K− + Kt(X
−
t , Pt,i(θk,t(X

−
t)));

endif
t := t + 1;
}

– rkL+m+1,l := rkL+m,l+

bk

(

|S|

(

K+ − K−

2δk∆k,l(i)

)

φl(i) − rkL+m,l

)

}

• Actor: θ̄k+1,l := (ΦT
l Φl)

−1
ΦT

l ·

Pl

(

Φlθ̄k,l − akΦl(Φ
T
l Φl)

−1
r(k+1)L,l

)

(1)

}
}

We write (1) as: θ̄n+1,l := (ΦT
l Φl)

−1
ΦT

l ·

Pl(Φlθ̄n,l −
an

2δn

(V +
n,l − V

−
n,l) ◦ ∆−1

n,l), (2)

where ◦ stands for component-wise multiplication, in
this case with the vector ∆−1

k,l (this vector, incidentally,
equals ∆k,l due to our choice). The result below shows
that, for a given stage l, the iterates in (1) converge
to a candidate constrained optimum θ∗

l ∈ span(Φl),
discounting the possibility of spurious minima on the
boundary of the feasible action set Ul. We adapt the
algorithm in §5.1.5 of [11] which treats constrained
function minimization using the well known Kiefer-
Wolfowitz algorithm.

Theorem 1: θk,l converges w.p. 1 to a θ∗
l in a set of

points with necessary condition for constrained optima
i.e. {θ∗

l : ΠΦl
5lVl(θ

∗) = 0, θl ∈ Ul; ∀l}, where θ∗ =
(θ∗

0 , θ∗
1 , ..., θ∗

T−1)
T .

Proof We reproduce the algorithm in §5.1.5 of [11] for
clarity and explain the terms:

Xn+1 := Xn − anπ(Xn) [Df(Xn, cn) − βn − ξn]

− kanΦT (Xn)φ(Xn), (3)

where Xn ∈ Rr is the iterate and Df(Xn, cn) is a
finite difference approximation to 5xf(Xn), the gra-
dient at Xn of objective function f : Rr 7→ R.
The bias in such an estimate is represented by βn

whilst ξn is noise with certain conditions, Assumptions
A5.1.1-A5.1.6 of [11] covering these. The constraint
set is denoted as {x : φ(x) = 0

¯
∈ Rs, x ∈ Rr}

where φ(x) ≡ (φ1(x), φ2(x), ..., φs(x))T . Note that
the φ above are not to be confused with feature vec-
tors φl that we use. Further, Φ(Xn) is a matrix s.t.
ΦT (Xn) = (5xφ1(Xn),5xφ2(Xn), ...,5xφs(Xn))
(making ΦT (Xn) an r × s matrix). The matrix π(Xn)
in (3) is obtained from projection (I − π(Xn)) to the
span of the columns of ΦT (Xn), whilst k is an arbitrary
but fixed positive number.

We shall use the SPSA gradient estimate
5̃Vn,l

4
=E

(

1
2δn

(V +
n,l − V −

n,l) ◦ ∆−1
n,l|θn

)

in place
of the [·] in (3). This is because replacing cn with
δn and using Lemma 1 of [10], the requirements in
A5.1.11 of [11] are satisfied. We now rewrite (3)
replacing iterates Xn with θn,l as follows: θn+1,l :=

θn,l − an

[

π(θn,l)5̃lVn,l

]

− kanΦT (θn,l)φ(θn,l). (4)

The subscript l will distinguish our notation from the Φ
and φ of (3) as we perform the following substitutions.
The constraint set here is {θl : (I − ΠΦl

)θl = 0}, indi-
cating that θl ∈ span(Φl). Similarly ΦT (θl) can be seen
to be (I −ΠΦl

)T , ∀θl. Observe that if θn,l ∈ span(Φl)
then φ(θn,l) = 0 canceling the last term in the RHS of
(4). Further, π(θn,l) is s.t. (I−π(θn,l)) : R|S| −→ R|S|

is a projection to the span of the columns of ΦT , the
symmetry of I−ΠΦl

meaning that π(θn,l) = ΠΦl
, ∀θn.

Thus the recursion is now simplified to:

θ̄n+1,l = θ̄n,l − an

[

ΠΦl
5̃lVn,l

]

.

Observe that pre-multiplying the ‘actor’ with Φl in
the proposed algorithm (1) yields the above equation.
To conclude, the ODE evolution is also constrained to
within Ul, via a transformed projection operator handled
in, e.g., Theorem 1 of [7]. 2

WeA16.4

536

III. FH-MDP ALGORITHM 2: DP PRINCIPLE

As before, the policy element θl,k is parametrized,
i.e. it belongs to the span of Φl, 0 ≤ l ≤ T − 1
requiring K×T memory. We will require two |S|−sized
look-up vectors, V 1 and V 2. For each index k of the
algorithm, stages l = T − 1, T − 2, ..., 0, and all
states i ∈ S we generate the random variable ∆k,l(i)
from the set {+1,−1} w.p. 0.5 each. Compute actions
Pl(〈φl(i), θk,l〉 ± δk∆k,l(i)) (call these θ±

k,l(i)), and
simulate a transition using these actions to states η+

l and
η−

l , respectively, of the (l+1)−th stage. The array V 1 is
interpreted as the vector of (l+1)−th stage costs-to-go,
therefore 5̃iVk,l(i) =

1

2δk

∆−1
k,l (i)

(

Kl(i, θ
+
k,l(i), η

+
l) + V

1(η+
l)

− Kl(i, θ
−
k,l(i), η

−
l) − V

1(η−
l)

)

,

and we proceed further as in the critic recursion of the
Algorithm 1, i.e. by scaling the vector φl(i) with the
term |S|5̃iVk,l(i). In addition, we simulate ηl using
θk,l(i) = Pl(〈φl(i), θl〉) and update V 2(i) using cost-
to-go estimate Kl(i, θk,l(i), ηl) + V 1(ηl) in a recursion
with stepsize bk. After the actor update, we assign V 2

to V 1 and set V 2 to the zero vector 0
¯
. This algorithm

is described next:
• for k = 0, 1, ..., M do: {
• Initialize V 1 := 0

¯
• for l = T − 1, ..., 0 do: {
• Critic: for m = 0, 1, ..., L − 1 do: {
• choose i ∈ S uniformly, do: {

– generate ∆k,l(i)
– X+

l+1 := η(i, Pl,i(θk,l(i) + δk∆k,l(i)));
K+ := Kl(i, Pl,i(θ

+
k,l(i))) + V 1(X+

l+1);

– X−
l+1 := η(i, Pl,i(θk,l(i) − δk∆k,l(i)));

K− := Kl(i, Pl,i(θ
−
k,l(i))) + V 1(X−

l+1);

– Xl+1 := η(i, Pl,i(θk,l(i)));
K := Kl(i, Pl,i(θk,l(i))) + V 1(Xl+1);

– V 2(i) := V 2(i) + bk(K − V 2(i));
– rkL+m+1,l := rkL+m,l+

bk

(

|S|

(

K+ − K−

2δk∆k,l(i)

)

φl(i) − rkL+m,l

)

}
}

• Actor: θ̄k+1,l := (ΦT
l Φl)

−1
ΦT

l ·

Pl

(

Φlθ̄k,l − akΦl(Φ
T
l Φl)

−1
r(k+1)L,l

)

• Flip: V 1 := V 2 and V 2 := 0
¯

.
}
}

The advantage here is in the reduced simulation
load: O(T) instead of O(T 2) in the previous algorithm.
There is an increased memory requirement vis-a-vis the
Algorithm 1, since we need additional 2|S| memory than
previously. Thus, this method is suitable for FH-MDPs
where T ≥ 2 and actor parametrization may be permit-
ted with only a tolerable loss in performance. Also note
that the iterated backward flow l = T − 1, T − 2, ..., 0
of the proposed algorithm prevents parallelization of the
algorithm, unlike analogous methods in [6].

We describe briefly another algorithm with reduced
simulation load conceived of on the same lines. For

each stage l moving backwards from T − 1 to 0, |S|
times we pick a state i ∈ S uniformly, simulating
L transitions each using perturbed actions θ+

k,l(i)and
θ−

k,l(i), respectively. Note that we first choose i and then
simulate 2L transitions from i, rather than pick states L
times (and simulate 3 transitions from each, making for
a total of 3L) as was done in the previous algorithm.
We update two scalars V + and V − in the manner of
V 2(i) above, using K+ and K−, respectively, in place
of K. After these L updates each of V ±, we update the
parametrized policy-gradient r using estimate V +−V−

2δk∆k,l(i)
,

followed by the assignment V 2(i) := V + + V −. This
last step uses Assumption 2 and the analysis of SPSA
(cf. [10]), by which we have E(V + + V −|θk, k) =
2Vk,l(i) + O(δ2

k).

IV. ALGORITHM 3: STOPPING TIME PROBLEM

To motivate the algorithm, we introduce the stopping
time problem and discuss how current policy evaluation
algorithms are unsuitable as critic recursions for the
SPSA-based policy-gradient methods proposed for all
three algorithms. Consider a finite-state stopping time
MDP where the actions applied in each state of the
trajectory {X0, X1, ..., Xτ(θk,i)|X0 = i} ∈ S use
policy θk = (θk(j), j ∈ S)T , k ≥ 0, stopping time
τ(θk, i) being a random variable. The cost-to-go is given
by Vk(i) = E

(

∑τ(θk,i)−1

n=0
K(Xn, θk(Xn))|X0 = i

)

for all i ∈ S. Due to the setting, θk(i) ∈
Ui ≡ ΠNi

m=1[ai(m), bi(m)] for ai(m) < bi(m) and,
similar to the operators Pl,i and Pl earlier (but with-
out a subscript indicating stage), there exist projection
operators Pi and P into corresponding Ui and U . For
ease of exposition, assume that the policy iterate θk is
not parametrized. Policy gradient methods used in [6],
[9] and [7] would suggest a policy update iteration:

θk+1 := P (θk −
ak

2δk

(V +
k − V

−
k) ◦ ∆−1

k) (5)

where V ±
k = (V (θ±

k , j), ∀j ∈ S)T . Note that, in prac-
tice, noisy estimates of V ±

k will be used.
Now assume that we parameterize the V ±

k in (5):
V (θ±

k , i) = 〈φ(i), r±k 〉, where r±k ∈ RK for K � |S|,
and φ(i) is the feature vector of state i ∈ S. Algorithms
that apply the methods of TD-(λ) and its variant (cf.
[2], and [1]) or LSTD-(λ) (cf. [4]) for policy evaluation
are candidates to estimate the critic terms V ±

k . Such a
policy evaluation has been applied to an autonomous
stopping time problem (viz. a Markov Reward Process
where only the stopping decision has to be taken in
each state) in [3]. In contrast, here we have controls
θk(i) in each state i ∈ S. When combined with the
SPSA-type policy update (5), the above methods of
policy evaluation have a potential flaw. Consider the
|S| × K matrix Φ = (φ(i), 1 ≤ i ≤ |S|)T and V +

k =
V (θ+

k) indicating cost-to-go for perturbed policy iterate
θ+

k . Policy evaluation methods perform a projection of
V +

k using a linear operator Π
Φ,θ

+

k

to a point W in
the span of Φ, minimizing a weighted Euclidean norm
∑|S|

i=1
π

θ
+

k

(i)(V +
k (i) − W (i))2, the weights π

θ
+

k

being
stationary probabilities of visiting state i under policy
θ+

k . In [2] there is a further bounded error w.r.t. W
which is presently ignored. Thus, the projection operator
depends on the policy θ+

k through the weights π
θ
+

k

(i).
These concerns result in (5) being θk+1 :=

P (θk −
ak

2δk

(Π
Φ,θ

+

k

V
+

k − Π
Φ,θ

−

k

V
−

k) ◦ ∆−1
k),

WeA16.4

537

which performs gradient descent to a policy θ∗ that
minimizes ΠΦ,θV (θ), not V (θ) component-wise. In
contrast, the ideal analog of (5) would be:

θk+1 := P (θk −
ak

2δk

(ΠΦV
+

k − ΠΦV
−

k) ◦ ∆−1
k),

where the projection operator ΠΦ is independent of the
policy iterates θk.

The algorithm of Section II extends, and we do not
provide a detailed description. The key difference is that,
per iteration k, L trajectories from each i ∈ S are sim-
ulated. Such trajectories - simulated until stopping time
is hit - could be long, with differing stop times τ(θ+

k , i)
and τ(θ−

k , i). Compare this with the algorithm of Section
II that requires precisely T − l length trajectories for the
l−th stage, or of Section III that uses single transitions.
Further, an analog of Assumption 1 is required here:
Ni = N , ai(m) = a(m), and bi(m) = b(m), ∀i ∈ S.

V. SIMULATION RESULTS

We consider a continuous time queuing model of
flow control. This problem is related to Available Bit
Rate (ABR) or Unspecified Bit Rate (UBR) explicit-
rate flow control in ATM networks. An ATM source
permits three broad categories of connections: ABR,
UBR and Constant Bit Rate (CBR). ATM sources can
infer that certain CBR connections will be established
and will commence sending at a specific time-of-day, e.g.
business connections begin at 9 AM and close by 6 PM.
When a ABR or UBR connection establishment occurs
outside these hours, the free bandwidth is available only
for a finite horizon of time, i.e. until 9 AM the following
day. The ATM source must clear the network by the time
the CBR connections are established again. ATM Forum
specifications do not require such flow-control, however
tuning ABR rates with closed-loop feedback (e.g. using
the proprietary Cisco ForeSight algorithm) help in better
throughput at the ATM sources.

We assume that the source has a finite buffer of size
B < ∞ and packets are fed by both an uncontrolled
Poisson arrival stream (representing CBR) of rate λu =
0.2, and a controlled Poisson process (indicating ABR)
of rate λc(t) at instant t > 0. Service times are i.i.d.,
exponentially distributed with rate 2.0. The queue length
process {Xt, t > 0} at the node is observed every T̃

instants, for some T̃ > 0, upto the instant T̃ T , where T
is the terminating stage. Say Xl denotes the queue length
at instant lT̃ , 0 ≤ l ≤ T . The ABR connection is then
signaled, and it starts sending packets at rate λc(Xl)
during the interval [lT̃ , (l + 1)T̃). We use B = 1000
and T = 5, and designate the ‘target states’ T̂l as evenly
spaced states within the queue i.e., T̂l = B − l+1

T+1
B

that shift to 0 as the stage l increases from 0 to 5.
Thus, T̂1 = 666, T̂2 = 500, T̂3 = 333, T̂4 = 166 and
T̂5 = 0, respectively. The one-step transition cost under
a given policy θ is taken as Kl(Xl, θl(Xl), Xl+1) =
∣

∣Xl+1 − T̂l+1

∣

∣ with KT (i) = 0, ∀i ∈ S. This function
penalizes deviations from the target states T̂l+1. The goal
is to maximize throughput in the early stages (l small),
while as l increases, the goal steadily shifts towards
minimizing the queue length and hence the delay as one
approaches T .

We used an order 3 polynomial approximation,
implying storage of K = 4 coefficients. The feature
vector φl(i) = (φl,k(i), 1 ≤ k ≤ K)T for each state i

Method Time in sec. Deviation State
Approximate DP 3090 0 -

Algorithm 1 3923 31.67 532
Algorithm 2 2264 30.94 87

TABLE I: Performance of FH-MDP algorithms

Method Time in sec. Deviation State
Value Iteration 3095 0 -
Algorithm 3 3500 138.49 956

TABLE II: Performance of Stopping-time algorithm

was:

φl,k(i) =

(

1.0 +
i − T̂l

T̂l

)k−1

. (6)

The averaging parameter L was 50, implying 50 starts
from each (state, stage) pair. We used δk = k−0.167,
bk = k−0.55 whilst the actor stepsize ak was (klnk)−1.
We computed matrices (ΦlΦl)

−1 needed in (1) before
the algorithm commenced. To apply the DP algorithm,
we discretized the interval [0.05, 4.5] to obtain 25
equally spaced actions in each state. The transition
matrix PT̃ was computed using the method of [12, §6.8],
which does not scale well in |S| or |Ul,i|, hence the
modest values of |S| = 1000 and |Ul,i| = 25. The
computation time incurred in this matrix computation is
included in the comparison of Table I. Note, however,
that the proposed algorithms require far less memory,
as PT̃ storage is eliminated. A comparison of the cost-
to-go from each state upon using the three policies
is shown in Figure 2, these match each other for the
most part. In Table I, ‘Deviation’ corresponds to max-
imum deviation from the costs-to-go of Approximate
DP observed in Figure 2 and ‘State’ indicates the state
at which this deviation was observed. All costs-to-go
shown are obtained from 104 independent sample tra-
jectories {X0, X1, ..., X5} for each initial state X0 = i
and with a different initial seed. As seen in Figure 1, as
the stage l increases, the optimal policy shifts to the left
because of the form of the cost function. All code was
run on a Pentium III computer and was written in the C
programming language.

For the case of optimal control of stopping time
processes, the algorithm proposed in Section IV is im-
plemented on a finite buffer of size B = 1000. After
starting from a state X0 = i, the first time that the
set of states {dB

3
e, dB

3
e + 1, ..., d 2B

3
e} of this buffer is

hit by the queue-length process Xt is the stopping time
τ(θn, i), for a system operating under policy θn. The
cost incurred until τ(θn, i) is the sum of the one-step
transition costs K(Xt, θn(Xt), Xt+1) =

∣

∣Xt+1 −
B
2

∣

∣

where 0 ≤ t ≤ τ(θn, i). The feature vectors φk(i)
used are just as (6), ∀i ∈ S and 1 ≤ k ≤ 4, with the
modification that T̂l = B

2
, ∀1 ≤ l ≤ T . To speed up

the first hit-time, we used µ = 2.0 as a lower bound
for states i ≤ B

2
during the execution of the algorithm,

meaning that λc ∈ [2.0, 4.5]. Similarly, we used 2.0 as
the upper bound for states i > B

2
resulting in Ui =

[0.05, 2.0] for such states. Figure 3 shows the policy
computed using the value iteration (VI) algorithm where
knowledge of the transition probabilities is required. The
VI algorithm converged to optimal V (θ∗, i), ∀i ∈ S in
50 iterations, to which we add the time required to
compute the PT̃ transition matrices. The total cost is
compared in Figure 4, the costs-to-go for both policies

WeA16.4

538

being very similar, whilst performance is compared in
Table II.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 200 400 600 800 1000

R
at

e

States

Policies

Stage 1
Stage 3
Stage 5

Fig. 1: Optimal Policy using Approximate DP

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

To
ta

l C
os

t

States

FH-MDP Total Cost

using DP
Algorithm 1
Algorithm 2

Fig. 2: Comparison of Finite-Horizon costs-to-go

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 200 400 600 800 1000

R
at

e

States

Policies

Stage 1
Stage 3
Stage 5

Fig. 3: Optimal Policy using value iteration

VI. CONCLUSIONS

We proposed two parameterized actor-critic algo-
rithms for F-H MDPs. The parameterization requires
constant storage: viz.

(

2K + K2
)

× T , where K �
|S|, although the more efficient second algorithm needs
additional 2|S| storage. This contrasts with [6], where at
least 2|S| × T is needed, even assuming there are only
two feasible actions per state. On the other hand, the
proposed algorithms have time requirements O(0.5T 2)
and O(3T) compared to O(2T) or O(T) in [6]. An
extension of the algorithm to the stopping time problem
was discussed in Section IV, and we identified why
current policy evaluation schemes do not produce critic

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000

To
ta

l C
os

t

States

Total Cost Comparison

using VI
using Proposed Algorithm

Fig. 4: Comparison of costs till stopping-time

estimates suitable for an SPSA policy-gradient method.
One solution to the high simulation load in Algorithm 1
lies in using one-simulation SPSA estimates, a method
adopted (for the look-up table case) in [9]. Also, al-
gorithms currently under investigation aim to reduce
the variance encountered in the one-simulation SPSA
gradient estimate by re-using past estimates of V +

k,l.

Acknowledgments
This work was supported in part by Grant no.

SR/S3/EE/43/2002-SERC-Engg from the Department of
Science and Technology, Government of India.

REFERENCES

[1] J. Tsitsiklis and B. Van Roy, “Average Cost Temporal–
Difference Learning,” Automatica, vol. 35, no. 11, pp.
1799–1808, 1999.

[2] ——, “An Analysis of Temporal–Difference Learning
with Function Approximation,” IEEE Transactions on
Automatic Control, vol. 42, no. 5, pp. 674–690, 1997.

[3] ——, “Optimal Stopping of Markov Processes: Hilbert
Space Theory, Approximation Algorithms, and an Ap-
plication to Pricing High-Dimensional Financial Deriva-
tives,” IEEE Transactions on Automatic Control, vol. 44,
no. 10, pp. 1840–1851, 1999.

[4] J. Boyan, “Least–squares Temporal Difference Learning,”
in Proceedings of the Sixteenth International Conference
(ICML) on Machine Learning, 1999, pp. 49–56.

[5] V. Konda and J. Tsitsiklis, “Actor–Critic Algorithms,”
SIAM Journal on Control and Optimization, vol. 42, no. 4,
pp. 1143–1166, 2003.

[6] S. Bhatnagar and M. Abdulla, “Reinforcement learning
based algorithms for finite horizon markov decision pro-
cesses,” Submitted, 2005.

[7] M. Abdulla and S. Bhatnagar, “Reinforcement learn-
ing based algorithms for average cost markov decision
processes,” Accepted for publication in Discrete Event
Dynamical Systems, 2006.

[8] P. Marbach and J. Tsitsiklis, “Simulation-Based Optimiza-
tion of Markov Reward Processes,” IEEE Transactions on
Automatic Control, vol. 46, no. 2, pp. 191–209, 2001.

[9] S. Bhatnagar and M. S. Abdulla, “An actor-critic al-
gorithm for finite horizon markov decision processes,”
in Proceedings of the 45th IEEE-CDC, Dec 11-13, San
Diego, CA, USA, 2006.

[10] J. Spall, “Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation,” IEEE
Transactions on Automatic Control, vol. 37, no. 1, pp.
332–341, 1992.

[11] H. Kushner and D. Clark, Stochastic Approximation Meth-
ods for Constrained and Unconstrained Systems. New
York: Springer Verlag, 1978.

[12] S. Ross, Introduction to Probability Models, 7/e. San
Diego, CA: Academic Press, 2000.

WeA16.4

539

