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Bayesian Statistics: An Introduction for the
Practicing Reliability Engineer

ABSTRACT

Carsten H. Botts

This article introduces and reviews some of the principles and methods used in Bayesian reliability.
It specifically discusses methods used in the analysis of success/no-success data and describes a
simple Monte Carlo algorithm that can be used to calculate the posterior distribution of a system’s
reliability. This algorithm is especially useful when a system’s reliability is modeled through the reli-
ability of its subcomponents, yet only system-level data are available.

INTRODUCTION

A common way to measure the reliability of a system
is to determine the probability that it will pass, or sur-
vive, a stress test. This typically requires several system
tests, but it may be prohibitively expensive to conduct
many tests of a sophisticated system, such as an air-to-air
missile! or medical device.

Bayesian statistical methods can help in such a
situation, since they enable inclusion of other types
of data (such as computer simulation experiments or
subject-matter-expert opinions). Bayesian methods may
also be necessary because many modern systems do not
fail during testing. With no failures, it is difficult for
classical statistics to accurately quantify the probability
of failure.

This article begins by briefly reviewing Bayesian
methods. It then discusses how these methods can be
used to learn more about the probability of a system
surviving a test, and it concludes by describing a
straightforward algorithm for calculating a total system’s
reliability once it has been tested. This algorithm is
simple, produces an exact answer, and is not mentioned
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in the Bayesian reliability literature. The efficiency of
this algorithm is illustrated with an example.

BAYESIAN METHODS

This section introduces the basics of Bayesian prin-
ciples and Bayesian statistical methodology. The most
effective way to introduce this concept is to contrast it
with the principles and methodology of classical statis-
tics. The biggest difference between Bayesian and classi-
cal statistics is in how probability is defined. In classical
statistics, probability is the long-run frequency of an
event. So for a fixed (and unknown) parameter such as a
population mean, y,

1 iftrue (1)

P(3.66 < 34.11):{ 0 ifnot:

In words, Eq. 1 states that the fixed parameter y is either
in the stated interval or it is not.
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Bayesian statisticians think about probability in a dif-
ferent way. In Bayesian statistics, probability is the belief
that a statement is true. So if one believes (based on
their experience and/or the data that they have seen)
that u is within the stated interval with 95% probability,
it would be fair to say that

P(3.66 <p <4.11)=.95. (2)

The objective and point of Bayesian statistics is to calcu-
late probabilities like the one in Eq. 2 and to ensure that
this calculation is scientifically respected.

To calculate such a probability, a Bayesian statisti-
cian begins with a prior distribution. Assuming that the
unknown parameter of interest is 6, this prior distribu-
tion is typically denoted as z(6). The prior distribution
indicates where the user believes the parameter 6 to be
before data are observed or collected. Assume, for exam-
ple, that we purchased a coin at a magic shop. Upon
the purchase, the shop owner tells us that the coin will
more often turn up heads than tails. In this case, we
will let & = P(H) and define the prior distribution 7(0)
for all values of @ between 0 and 1. This prior will also
be more heavily weighted toward values of 1 to indicate
that, a priori, the coin is expected to turn up heads more
frequently than tails.

Once the prior is formulated, data are collected. The
distribution of the data conditioned on a value of @ is
written as p(x|@), i.e.,

(X]aX27“'7Xn) Np(x17x27x3a“'7xn‘6) = p(X|9),

where x = (x, x,, . . ., x,). The function p(x|6) is also
referred to as the likelihood of 6.

With the prior and the likelihood, the posterior dis-
tribution, typically denoted as #(0|x), can be calculated.
The posterior is calculated using Bayes’s rule.? This cal-
culation is shown below:

n (o) = P50

p(x) p(x]0)7(0)d6

o< p(x|0)x(6), ()

where 0 is the set of all possible values of 8. The formula
given in Eq. 3 makes sense: the posterior is proportional
to the prior distribution of 8 (where we thought 8 was
before collecting data) times the likelihood (where the
data suggests 8 to be).

This article focuses on how to use Bayesian meth-
ods to learn more about the probability that a system
survives a test. The subsection titled The Prior and
Posterior of One Subsystem specifically discusses how
Bayesian methods are used to learn about the survival
probability of one system, and the subsection following

o

that one, The Prior and Posterior of the Entire System,
discusses the methods necessary to learn about the sur-
vival probability of one system composed of multiple
subsystems. The algorithm discussed in the latter sub-
section is elementary and uses no approximations when
calculating its answer.

BAYESIAN METHODS FOR BERNOULLI
EXPERIMENTS

The Prior and Posterior of One Subsystem

Let us first assume that we are interested in learn-
ing about the probability that a system passes an endur-
ance test of some sort. We will denote this probability as
0, and we will conduct n trials/tests on this system and
record X, the number of times (out of the n trials) that
the system passes a test.

To do a Bayesian analysis on 6, we begin by specify-
ing a prior distribution for it. The beta distribution is
often used as the prior for the probability of success in
a sequence of success/failure trials.%> The beta distri-
bution is specified by two parameters and is especially
convenient in cases such as this since it is a conjugate
prior (i.e., it produces a posterior distribution of the same
form). The beta prior takes the form

I'(a+pB)

a—1/1_ p\B-1
Mo ? 179

()= 0<06<1,

where I'(-) is the gamma function. This prior has mean

a
Prior Mean = ——
a+f
and variance
a
Prior Var = 5 B .
(a+pB) (a+p+1)

The values of a and § (o, § > 0) are selected to reflect
the user’s prior belief. This prior belief is often informed
in a variety of ways, such as expert opinion, computer
simulation, or prior experiments. A user who believes
that 6 is small (<0.5) would set a < 8 (making the prior
mean < 0.5). A user who believes that @ is large (>0.5)
would set a > 8. The confidence in these prior beliefs is,
of course, reflected in the variance of the prior. If a user
wanted to set the prior mean of 8 to 0.4, they could set
a =2 and 8 = 3, making the prior variance 0.04. If a user
wanted to elevate the confidence in this statement (that
the prior mean of € is 0.4), they could adjust the values
of aand 8 to a = 20 and 8 = 30, making the prior vari-
ance 0.004. And if a user knew absolutely nothing about
6, they would set a = 8 = 1, in which case the prior for 8
is uniform over the interval (0, 1).
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There is no consistent selection of o and § in reliability studies. Leoni et al.® set o« = 3 and § = 1 in one of their
reliability studies, Burke and Harman’ set a = 7.2 and 8 = 0.8 in one of their reliability studies, and Martz et al.8 set

a =273 and 8 = 0.5. When priors are informed by simulation results or previous experiments, analysts sometimes set

a=rnp- O +1 and B =np-(1—6)+1,

where 6" is a prior estimate of 6, and n - is some positive number that represents the confidence the analyst has in
the simulation or experiment 1nf0rm1ng the prior;? think of n__ as the effective sample size that informs the prior.
pr
The greater this effective sample size that informs the prior, the more peaked the prior distribution is near the prior
estimate of 6. If no confidence exists in the simulation informing the prior, then n_ = 0 and the prior would be flat.
Figures 1 and 2 illustrate what these prior distributions look like. The prior in Figure 1 puts large probability on
low values of 8 and does so by setting the value of a to be significantly less than the value of 8. The prior in Figure 2
puts large probability on high values of @ and does so by setting the value of 8 to be smaller than the value of a. Also
observe that the prior is much more peaked for small values of 8 in Figure 1 than it is for large values of 8 in Figure 2.
This is a consequence of the difference in the values between a and 8. The difference is larger for the prior in Figure 1
than it is for the prior in Figure 2.
Let us now assume that we observe x successes of the system out of n tests conducted. In this case, the likelihood
is binomial,

piaio) = (*)or(1-oy,

making the posterior distribution of @

Y\ hxrr L(a+B) ja—1/q_ gip-1
el — n(0) _ 1(x)“’“ O rare® "
/ pisor @0 [1](F)o -0y oot -0~ as

There is a simple way to calculate the posterior distribution in Eq. 4 without having to evaluate the integral in the
denominator. First observe that the expression in the denominator is not a function of @ it is a normalizing constant
independent of 6, and for this reason we can write

7 (6]x) o< p (x[6) 7 (6).

Eliminating all multiplicative constants in p(x|6) z(6) that do not depend on 8, we get that

ﬂ(e‘x) — . grta-l (l _ e)n—x-k—ﬁ—]’

o
< 7] 0
2
o Q|
™ | oV
= ~ 2
i S -
= O =
R C\I - R
o
=
- 0
e
o | o
o S
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0 0

Figure 1. The prior z(0) with o = 2 and 8 = 10. With this selection Figure 2. The prior z(f) with o« = 7 and 8 = 3. With this selection
of a and §3, the prior is peaked at low values of 6. of aand B, the prior is peaked at high values of 6.
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Figure 3. The posterior distribution withn=10,x=1,a =2, and Figure 4. The posterior distribution with n=10,x=2, o« = 7, and
B =10. g=3.

where c is some constant such that
/lc_eerafl (1 - 9)n7x+ﬁ71d9 =1.
0
The posterior z(@|x) takes the form of a beta distribution, making

e I'(a+pB+n)
S T(a+x)T(B+n—x)

The posterior of @ is thus a beta distribution with parameters aPst and P where

o = o+x, and
B™ = B4n—x

The plots in Figures 3 and 4 show the posteriors corresponding to the priors shown in Figures 1 and 2, respectively.
In Figure 3, one success was observed after 10 trials, emphasizing even more that the value of @ is small. Observe
how the posterior in this case is more peaked at small values of & than the prior was. In Figure 4, two successes were
observed in 10 trials, indicating that the probability of success was much smaller than the prior anticipated. Observe
how, in this case, the peak of the posterior has significantly shifted to smaller values of 6.

The Prior and Posterior of the Entire System

Let us now put this problem in the context of one large system that is composed of several subsystems. If all the
subsystems have to work for the entire system to work, how do the posterior distributions of the subsystem reliabilities
inform the distribution of the total system’s reliability? And how would testing the entire system (as a whole) affect
the posterior of the total system reliability? The next two subsections address these questions.

Subsystem Test Sizing

This subsection focuses on how the distributions of the subsystem survival probabilities affect the distribution of
the total system’s survival probability. If there are S subsystems, and the entire system fails if any one of the subsystems
fail (i.e., the subsystems work in series), then the success probability of the total system, 6, Sy is calculated as

Brotsys = [P(Success of Subsys 1) x IP(Success of Subsys 2) x -
xIP (Success of Subsys S)

- Tlen 6
j=1
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Y
OS] S [ 10
A

Figure 5. Flowchart of system composed of five subsystems (Subs), two of which work in parallel.

where 0. is the success probability of the jth subsystem.
If S = 5 and the block diagram of the subsystems is as shown in Figure 5, then the system fails if subsystem 1, 4, 5,
or both 2 and 3 fail. In this case, the success probability of the entire system would be calculated as

Brotsys = [P(Success of Subsys 1) x IP(Success of Subsys 2 or 3) x IP(Success of Subsys 4) x IP(Success of Subsys 5)
0, (92 + 63 — 9293) 0,065.

The value of O, Sys 18 thus the product and/or sum of beta random variables. The resulting distribution of a
random variable such as 6. ¢ - has been derived in a number of publications, but this distribution is very complicated
and thus difficult to work with analytically. 10111213 The distribution of O svs 18 €asy to work with and understand,
however, using Monte Carlo methods. Since the posterior distribution of all the components of the system take the
form of a beta distribution with known parameters, assuming independence of the subsystems, we can easily simulate
ng,,,, values from the prior distribution of 6 g .. This requires simulating ng, = S-tuples of (0, 8,, 65,..., 65). With each
simulated S-tuple, we can calculate a value of gTot Sy The algorithm for generating ng;  values of O, Sys for a system
in series is given in Procedure 1; that for a system as shown in Figure 5 is given in Procedure 2.

Figures 612 illustrate how the posterior distributions of subsystem reliability affect the distribution of 6. Sys:
In the simulations performed, we assumed that the entire system was composed of three subsystems (S = 3) an

Procedure 1: Simulating ngj, values of Bry sys when the subsystems work in series

input : 7 (6)|x1),7(62]x2),...,m(Os|xs), and ngin, where x; is the number of successes of subsystem i
. gD (2) (nsim)
output. eTot Sys? 6Tot Sys>* eTotS Sys
for i < 1 to ngj,, do
(@)
6Tot Sys 1

for j < 1toSdo
Generate O;i) ~ 1 (6;]x;)

Bl sys < Brursys 6

Procedure 2: Simulating ng;jy, values of Ory sys when the five subsystems work as shown in Figure 14 (series and parallel)

input : 7w (0;|x1),7m(62]x2),..., 7w (Os|xs), and nsim, where x; is the number of successes of subsystem i
.o (2) (nsim)
Output. eTot Sys’ GT()[ Sys?* eTotS gys

for i + 1 to ng;, do
0\ ~ (6 x2)
6y ~ 1 (65]x3)
6.) «— 6" + 6" — 6. 6}

213

G’E‘f))t Sys A 92%

for j € {1,4,5} do
Generate GJ@ ~ 1 (0j]x;)

ol (i) MY

Tot Sys — eTot Sys " Yj -
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— Prior
— Posterior: n, =2, x, =2
o — Posterior: n, =11, x, =10
S
2 o |
o <
[=
(1]
[a]
o _|
(qV)
Q|
o

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6. The prior and posterior of the first subsystem with
a=5andf=2.

that these subsystems worked in series. The priors of
the three subsystems are shown in black in Figures 6-8.
The subsystems are then tested with n; = 2, n, = 5, and
ny = 4, where n_ is the number of times the jth subsystem
is tested. The resulting posteriors are shown in red in
Figures 68, and 10,000 draws from the resulting distri-
bution of O, g . are shown in Figure 9. The subsystems
were also testeé at n; = 11, n, = 14, and ny = 12, and
the corresponding posteriors are shown in blue in Fig-
ures 6-8. Observe that these posteriors are more peaked
(more informed) than the others since the sample sizes
are larger. The distribution of 6, Sys corresponding to
these larger sample sizes is shown in Figure 10. Observe
how the variance of this posterior is smaller than that
shown in Figure 9; this is because the subsystem sample
sizes are larger.

— Prior
— Posterior: n,

=4, X, =
— Posterior: n, =1

2,x=10

Density
2.0 3.0 4.0
|

1.0

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8. The prior and posterior of the third subsystem with
a=2andf=2.

Total System Test Sizing

Let us now investigate how testing the entire system
(and not just its individual components) affects the pos-
terior distribution of Sys Updating the prior distri-
bution of O Sys given test results on the total system
is more challenging than updating the subcomponent
values of 8 because, in this case, the original distribu-
tion of O, gys iSOt 2 beta distribution. Recall that the
prior distribution of O Sys WS analytically challenging
to work with and, as a result, was obtained using Monte
Carlo methods. It is not uncommon for practitioners
to approximate this prior with another (perhaps beta)
distribution " L4151617 6 make the posterior analysis
simpler and more convenient. Others redefine the priors
of the independent components entirely just so the prior
of the total system’s reliability is analytically tractable.

Frequency
300 400 500
| | |
II
1]

200
|

100
|

0.0

0.2

T
0.4

T
0.6

0.8

1.0

o
S
— Prior
— Posterior: n,=5,x,=5
— Posterior: 1, =14, x,=13
o
S
>
% 9
c <
[}
[a]
o
N
o
S-
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
[’)

Figure 7. The prior and posterior of the second subsystem with

a=3andf=2.

o

0

Tot Sys

Figure 9. The resulting distribution of 6
and n; =4.

Tot Sys whenn, =2,n,=5,
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Frequency
200 300 400
| | |

100
|

7]

Tot Sys

Figure 10. The resulting distribution of @
n,=14, and ny=12.

Tot Sys when n, = 11,

Zoh et al.!® for example, set the priors of the compo-
nents to negative log-gamma distributions, yet they still
had to execute complicated Markov chain Monte Carlo
methods to do posterior analysis of the total system.

These workarounds and approximations to make
posterior analysis easier are not necessary. This article
describes a simple and quick Monte Carlo method that
updates the prior distribution of 6, Sys after testing the
entire system. This method is a simple application of the
algorithm proposed by Rubin.!® Rubin observed that a
sample from the posterior distribution of a parameter
can be obtained by first generating values from its prior
and then generating data conditioned on these sampled
values. Those values of the parameter for which the gen-
erated data match the observed data follow the posterior
distribution.

Frequency
100 200 300 400 500 600

0
L

I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

0.

Tot Sys

Figure 11. The resulting distribution of 6.
n,=5n;=4,andn; =4

Tot Sys when n, = 2,
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Frequency
200 300 400
| | |

100
|

ol b

[ T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
0.

Tot Sys

Figure 12. The resulting distribution of @
ny,=14,n,=12, and Nt =7

Tot Sys when n, = 11,

To apply this algorithm in our case, we begin by writ-
ing the posterior for 6, Sys S

T (el"ol Sys‘xTS) <p (xTS|91"01 Sys) T (91"01 Sys),

where
nrs " _
P (1500t 5y5) = (sz>9%3’§ sys (1= Bror sys) "™, (6)

and npg and xg are the number of tests (and successes)
of the total system. Given that x—T-S successes have been
observed from npg trials of the total system, we sample
from the posterior (6, Sys|xTS = x—*rs) by first simulat-
ing from the prior of 6, Sy (01, 5.0 (An algorithm
similar to the ones shown in Procedure 1 or 2 could
be used to sample from the prior, z(6, Sys).) We then
condition on these sampled values of 6 gys tO gener-
ate candidate values of xpg from the likelihood shown
in Eq. 6. The simulated values of 6, gys for which the
likelihood generates xq = x—?s are then considered to
be an exact sample from the posterior. The details of
this algorithm (assuming the subsystems work in series;
minor changes to the first “for” loop of the algorithm
would be necessary if the subsystems did not work in
series) are given in Procedure 3.

The plots in Figures 11 and 12 show how the distribu-
tion of Op, 5o changes when tests on the entire system
are executed. The plot in Figure 11 shows how the dis-
tribution of O Sys changes from the distribution in
Figure 9 when four successes are observed out of four
tests on the entire system. Observe that with this extra
evidence of success, the distribution of -, ¢ - shifts to
the right. The same story is told in Figure 12. It shows
how the distribution of O Sys changes from the dis-
tribution in Figure 10 when five successes are observed
out of seven tests on the entire system. This distribution
moves to the right and is also more peaked.

F
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if XTS = x}s then

(i) (i), cand
eTot Sys = 6Tot Sys
L i+i+1

input H (91 |x1) , T (92|x2) RPN 7'5(95|X5) ,nSim,nTs,xifs
o) @ (1$im)
output. eTot Sys? eTot Sys?* " eTots Sys
i1
while i < ngj,, do
(i), cand
6Tot Sys 1
for j < 1toSdo
Generate 9;1) ~ 7 (6;x;)
(i), cand (i), cand (i)
| 6Tot Sys — 6Tot Sys 'Gj .
Generate xs ~ Binomial (nTs, 9%2{ ;;l:d) .

Procedure 3: Simulating ngin values of Oy sys from 7 (O sys|xrs = Xpg)

It is critical to understand the distinction between
the two examples discussed above. In the first case
(with the resulting distribution of O Sys shown in
Figure 11), the total system was tested four times and
four successes were observed. Because the system works
in series, a successful test of the entire system implies a
successful test of each component. The posterior distri-
bution of O, Sys CAN thus easily be calculated by simply
updating the posteriors of the system’s three compo-
nents and then applying Procedure 1. This is not true
for the second example (with the resulting distribution
of O, Sys shown in Figure 12). Recall that in the second
example, the entire system was tested seven times, but
only five successes were observed. Since it is not clear
which component(s) failed (causing the failure of the
entire system), the posteriors of the components cannot
be updated, and Procedure 1 cannot be applied. In this
case, Procedure 3 is necessary in calculating the poste-
rior of O, Sys°

Subs,

O—>| Subs, |—>| Subs, |—>| Subs, |_>

Figure 13. Flowchart of system composed of m subsystems working in series.

EXAMPLE

This example illustrates the efficiency of Rubin’s algo-
rithm when calculating total system reliability. Consider
two types of systems/fault trees, each with m different
types of components. The first fault tree works in series,
and in the second, every other component operates in
series. Figures 13 and 14 illustrate these fault trees.

The efficiency of Rubin’s algorithm is demonstrated
with a Monte Carlo study. We initially place Beta(a,f)
priors on all the components with a = 999 and 8 = 0.5.
(Such priors assume a prior reliability mean of 0.9995,
which is not uncommon for highly reliable systems.) For
each system/fault tree, and for a specific value of m, n,
(the number of trials for subsystem j) and x, (the number
of successful trials for subsystem j) can then be simulated.
The number of trials is simulated from a Poisson(A = 5)
distribution, and the number of successful trials is simu-
lated from a binomial distribution with parameters n

—>| Subs |_>| Subs |—>O

Subs,

Subs,

O—

Subs,

Subs,

} B

Subs,

Figure 14. Flowchart of system composed of m subsystems with every other subsystem working in series.
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Table 1. Average time (in seconds) to generate 10,000
values from the posterior of the total system’s reliability

m Fault Tree 1 Fault Tree 2
10 0.16 0.16
20 0.30 0.31
30 045 046
40 0.62 0.62
50 0.76 0.77

and p = afla + B) = 999/(999 + 0.5). With these simu-
lated test sizes, and assuming that the entire system is
tested twice (with both tests being a success), the time it
took to generate 10,000 draws from the posterior of the
total system’s reliability can be calculated. Table 1 shows
the results of doing this 100 times and calculating the
average time it took to generate these posterior values
for m = 10, 20, 30, 40, and 50.

It is clear from Table 1 that this algorithm efficiently
calculates the posterior of the total system’s reliability.

CONCLUSION

This article reviews some of the methodologies
related to Bayesian reliability. It initially focuses on suc-
cessffailure data of systems and their subsystems. The
article specifically addresses how the number of subsys-
tem (or total system) tests affects the reliability of the
entire system. It also presents a simple and efficient
Monte Carlo method that can be employed to update
the prior of a total system’s reliability when only data
from the total system are available.
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Tracking Methods for Converted
Radar Measurements

Alexander J. Pei

ABSTRACT

Target tracking is a critical component in defense and airspace protection. To provide awareness
of potential enemy threats through target tracking, dynamic states are repeatedly updated based
on observations. Because common dynamic models of moving objects typically use Cartesian
coordinates, target tracking systems typically use this coordinate system as well. This presents a
statistical challenge, however, when observations are recorded with different coordinate systems.
This is the case with radar measurements, which use spherical coordinates (range, bearing, and
elevation) instead of Cartesian coordinates (x, y, z). The main problem is integrating the statistics of
new measurements with a priori state estimates to provide an updated a posteriori estimate. This
article focuses on a converted-measurement approach to compute descriptive Cartesian statistics
from spherical measurements for updates in a linear tracking system. Converted-measurement
tracking, compared with mixed-coordinate tracking, can facilitate multisensor fusion in complex
sensor networks. Various converted-measurement methods were evaluated, including Taylor
approximations, unscented transforms, and debiased statistical methods, in a simple tracking
scenario. Tracking performance varied across these three methods depending on the geometry
of the scenario, so users of converted-measurement methods should evaluate the performance of
each method for their given domain and application.

INTRODUCTION

Airspace protection starts with a comprehensive
understanding of the potential threats. This involves
understanding not only the location of objects but also
how the objects’ motion evolves over time, enabling
differentiation between a fastmoving missile and a
slow-moving weather balloon, for example. Track-
ing a moving object involves real-time updates to its
dynamic states. A dynamic model, typically expressed in
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Cartesian coordinates and described by Newton’s equa-
tions of motion, is used to model and predict the trajec-
tory of an object.

Tracking using Kalman filtering techniques iteratively
compares the predicted dynamic state of the trajectory
with measurements of the dynamic states to update the
state estimation at a particular time.! A common chal-
lenge is that the measurements of the dynamic states

F
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are not direct; rather, they r=230.0

r=72.5

r=115.0 r=157.5 r=200.0

are indirect measurements
of the true dynamic state
through some physical phe-
nomenon. Radar measure-
ments are a classic example
of indirect measurements )l

y (m)

F S

A %
%X x

x %

of Cartesian coordinates.
Instead of directly measur-
ing Cartesian coordinates,
radars provide range, bear-
ing, and elevation (RBE)
through the reflection of
transmitted radio waves off the target object.?

Integrating indirect measurements to update the
estimated dynamic state is not a trivial problem. With
limited measurements, it might not be possible to com-
pletely observe the dynamic states; for instance, if a
radar provides only range and bearing, the z-coordinate
cannot be inferred.> Additionally, the nature of the
indirect measurement modality, specifically function
mapping the states to these measurements, plays a cru-
cial role in the measurements’ integration into state esti-
mation by the tracker. This is because tracking is done
in a statistical framework, where there is uncertainty
associated with each estimated state. Both the ensemble
of predicted measurement uncertainties and the actual
measurement uncertainties contribute to the overall
uncertainty in the estimated state.

Herein lies the problem: If the states and measure-
ments are in different coordinate systems, the uncer-
tainty of the updated state may not be well defined.
Figure 1 highlights the nature of this problem, where
points are drawn from a Gaussian distribution in
spherical coordinates and converted to Cartesian coor-
dinates. In Cartesian space, the resulting distribution
of points no longer forms an ellipse, indicating that it
cannot be accurately represented by a Gaussian distri-
bution. As a result, traditional linear tracking tech-
niques cannot be applied, and the state estimation is
no longer optimal.

This problem can be resolved using extended Kalman
filters (EKF), unscented Kalman filters (UKF), or par-
ticle filters (PF) to handle the nonlinearity introduced
by the spherical-to-Cartesian-coordinate transforma-
tion.1> A critical aspect of these filtering techniques is
the calculation of the innovation, which is the differ-
ence between the predicted measurement and the actual
measurement. This method of tracking is referred to
as mixed-coordinate tracking since the dynamic state
space and the measurement space are both maintained
throughout the update equations. An alternative
method is converted-measurement tracking, where the
measurements are converted to the coordinate system
the state space uses, allowing for linear Kalman filtering
(assuming that the transition function is linear).4

69=0.1,0=0.

o

x (m)

Figure 1. Effect of spherical-to-Cartesian-coordinate transformation at varying ranges. ¢, = 5,

Regardless of the tracking method, the problem of
transforming the statistics of random variables from
one coordinate system to another persists. Although
mixed-coordinate tracking is a valid method, prac-
tical constraints may limit its usage. In general,
mixed-coordinate methods require greater computa-
tional power to handle nonlinearities.® In addition,
multisensor fusion and integration may be easier in a
converted-measurement framework, where multiple
nonlinear observations are abstracted away before mea-
surement fusion. For example, the potential location of
a target from a bistatic radar is an ellipse around the
transmitter and receiver pair. Although this measure-
ment is not informative by itself, multiple bistatic radars
can localize a target through the intersection of ellipses
and provide a single measurement of the target location
in Cartesian coordinates to update the tracker.” Figure 2
shows a hypothetical scenario fusing both monostatic
and bistatic radar measurements to update a track after
converting both to Cartesian coordinates.

Convert to
Cartesian

Monostatic
easurements

Fuse and
update track

Convert to
Cartesian

Bistatic
measurements

Figure 2. Hypothetical multisensor system tracking a target using
both (1) monostatic and (2) bistatic radar measurements. After
conversion to Cartesian coordinates, the resulting state estimates
and uncertainties can be fused to simultaneously update a track.
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This article presents converted-measurement meth-
ods for radar tracking applications. First it shows that
converting spherical to Cartesian coordinates introduces
a bias in the converted measurements and describes how
these biases can be accounted for. It then presents three
ways to propagate the spherical statistics to Cartesian
statistics: debiased measurements, Taylor approxima-
tions, and unscented transforms. The three methods
were tested in a simple tracking scenario to highlight
the strengths and weaknesses of each in practice.

BACKGROUND

Linear State Estimation

Consider a dynamical system with a linear transition
function F and linear observation function H:

Ty = Foxp + wy, (1
yr = Hay, + vy )

The Kalman filter update equations provide an opti-
mal estimate (in the mean-squared error sense) of the
state variables &, as well as the uncertainties associ-
ated with these estimates. The a priori and a posteriori
estimates of the state variables at time k are denoted
and & with covariance matrices P}, and P}. These two
state estimates represent the optimal estimation of the
state variables before and after an observation is made
at time k. The model process noise and measurement
noise variables w;, and v are zero-mean with covariance
matrices Q, and R,. The optimality is contingent on the
following critical assumptions: Both the transition and
observation functions are linear, and the state and noise
variables are normally distributed. These assumptions
yield the Kalman filter update equations':

z, =Fzx; | A)

- =FP/_F' +Q “)

Sy = HP,H' + R, (5)
K, =P, H'S,! (6)

x =z + Ki(yr — Hey) (7
P/ = (I- K,H)P; ®)

Eq. 3 shows how the a priori estimate & is calculated
by propagating the a posteriori estimate from the previ-
ous time point through the linear transition function.
The covariance of this state estimate is given in Eq. 4,
which incorporates the uncertainties propagated from
the previous time point using the transition function
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(FP; _{FT) along with the process noise of the system
Q;. The resulting &, can also be thought of as the pre-
dicted state variable at time k and can be used to gener-
ate the predicted measurement Hay, via the observation
function. The covariance of the predicted measurement
S, is given in Eq. 5 and accounts for the uncertainties
of the predicted measurement and the measurement
noise. The Kalman gain in Eq. 6 determines how much
weight the measurement g, should have when updating
the state estimate. For illustration purposes, consider
the case where the state is one-dimensional and H= 1.
The Kalman gain is the ratio of variances between the
a priori state estimate variance and the predicted mea-
surement variance. A higher Kalman gain places greater
weight on the innovation term g, — Hay, when calculat-
ing the a posteriori state estimate in Eq. 7. The cova-
riance of the a posteriori estimate in Eq. 8 is a scaled
version of the a priori covariance, where the scale is
determined by the relative values of the a priori noise
and the measurement noise.

It is useful to reiterate that the a priori covariance
matrix Pj :=E [(@), — x} )(wp — @) "] reflects the
uncertainty in the estimation of the true state variable.
The same definition holds for the a posteriori state esti-
mate; however, this estimate will have lower uncertainty
since it incorporated the information received from
the measurement. If the a priori states and covariance
matrices are normally distributed, the resulting updated
a posteriori states and covariances will also be normally
distributed, and the estimates will remain optimal.’

Linear State Transition with Nonlinear Observation

If the strict linear assumptions about the transition
function or observation functions are violated, the sta-
tistics for the state estimates are no longer normally
distributed, and the Kalman filter update equations do
not provide an optimal estimate. The remainder of this
article assumes a linear state transition function with a
nonlinear observation function:

L1 = FiEk + wy, (9)
Yr = h(xg) + vy (10)

This is common in radar tracking applications, where
the dynamic models typically use a Cartesian coordi-
nate system and the measurements use a spherical coor-
dinate system. The function h(-) converts the predicted
state vector into a predicted measurement. This poses
an issue: The Kalman filter considers the uncertainties
from the predicted state and the measurement (as shown
in Eq. 5), and this fusion is not trivial if these uncer-
tainties are not expressed using the same coordinate
system. Mixed-coordinate systems handle this problem
in a variety of ways. EKFs make a linear approximation
to the observation function and subsequently use linear
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Kalman filter update equations.” This approximation can suffer if the observation function is highly nonlinear. UKFs
use an unscented transform (UT) to estimate the statistics of the transformed random variable through the observa-
tion function by using a set of carefully selected and weighted points.!® PFs use sampling to calculate the posterior
distribution of the state after new information is acquired in a Bayesian framework.’ In linear Kalman filtering, the
posterior distribution (specifically the evidence term) is tractable and has a closed-form solution. Thus, it is theoreti-
cally possible to achieve optimal nonlinear filtering using PFs, given an infinite number of samples.

DEBIASED CONVERTED MEASUREMENTS

Converted-measurement techniques deal with the nonlinearity in Eq. 2 by converting the measurements to the
same coordinate system the state space uses. However, converting measurements from spherical to Cartesian coor-
dinates introduces an unintentional bias, as shown in Figure 3. The following section contains equations from Lerro
and Bar-Shalom, and a full derivation for the equations can be found in the original paper. An abridged version is
presented here for readability, alongside figures for visualization. Consider a measurement with range 7 and bearing 6.
The measured range and bearing can be thought of as the true underlying measurements with additive noise:

Tm =T+ U (11)

Om =049 (12)

where 7, and 6, are the measured range and bearing, and v, and v, are the zero-mean additive noise terms with
variance 0'72, and 0'5. The converted measurements can then be expressed as deviations away from the true Cartesian

position:
Ty, = T + Vg = Ty, COS O,y (13)

Ym = Y + Uy = Ty sin by, (14)

where z and y are the true Cartesian coordinates with additive noise v, and v,. The goal is to properly model the
statistics of v, and v, to use during the Kalman filter update equations. The mean value of the errors are:

Elv,] = rcos (e /% — 1) (15)

E[v,] = rsinf(e =7/ — 1) (16)

with variances and covariances:

02 =r2e % [cos? §(cosh(cj) — 1) + sin® @ sinh(07)] + o2e™% [cos® f cosh(o7) + sin® O sinh(o)]  (17)
o) = r2e =% [sin® f(cosh(oj) — 1) + cos® fsinh(o7)] + ole % [sin® 0 cosh(o7) + cos® Osinh(oy)]  (18)

Cartesian coordinates Figure 3. Converted-measure-
1 i i i i ment bias. Ten thousand sample

© Converted measurements points for a given range and
{ Converted true mean bearing were drawn, with a bear-
1,000 X Sample mean i ing of zand oy = 0.1, 6, = 5. Each
sample point was converted to x
and y coordinates using z = r cos
6 and y = r sin 0. The true mean
| (e —————— O 1 was converted and compared
90 00 54 with the calculated sample mean
of the transformed points. Left,
) ) . . . . r = 1,000 m. Right, r = 50 m. The
-1,000 -950 -900 -60 -50 -40 -30 -20 bias offset is more dramatic at

z (m) z (m) farther ranges.

2,000 T T

y (m)

oo ©

-1,000
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. _ 952 2
04y = Sin f cos fe 2% [af +73(1 — e"e)} (19)

There are a few important points about the statistics of the Cartesian errors. The first is that Egs. 15 and 16 show
that the expectation of the errors is nonzero; this is an issue for Kalman filtering, which assumes zero-mean errors.
The second is that the Cartesian errors are coupled since changes in range or bearing affect both variances in Carte-
sian. This is also demonstrated by the fact that the cross-covariance of v, and v, is nonzero. Cross-covariance between
z and y can make decoupled tracking!! difficult, which is desirable for easier tuning and computational needs. These
equations also quantify how uncertainties in £ and y increase as a function of range for a given bearing value, as
shown by the 7 term in Eq. 17, 18, and 19.

Finally, and perhaps most importantly, the statistics of the Cartesian errors depend on the true range and bearing,
which are obviously not acquirable in realistic tracking scenarios. Instead, the same process can be repeated but using
the measured range and bearing as proxies for the true range and bearing. The expected value of the errors given the
measurements is:

El[vy | 7, Om] = 7 cOs Hm(e_"g - 6_5‘3/2) (20)

E[vy | 7, Om] = 7 sin Hm(e_“'f3 — 6_03/2) (21)

Thus, the debiased corrected coordinate conversion is:

T = T — Elvg | 7, O] (22)

(23)

g L 04
0.2
_ 80 0
£ 60 -0.2
~
40 . -0.4
Difference -0.6
20
0 2 4 6

0 2 4 6 0 2 4 6
0 (radians) 0 (radians) 0 (radians)

80
100 w L] ] ]o4

60 0.2
_#0 0

40 E g0 -0.2
~

20 40 -0.4

Difference -0.6
0 20
0 2 4 6 0 2 4 6 0 2 4 6
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30
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0 20
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o

Figure 4. The variances and covariances of the true and debiased error with ¢, = 5 and 6y = 0.1. Left plots show the variance values for
the true error. Middle plots show the variance values for the debiased error. Right plots show the difference in variance between the left
and right plots. Variance in all dimensions increases as a function of range because of the 72 term, which results from angle errors being
amplified at farther ranges. For a given range value, there are peaks and troughs in variances as a function of bearing.
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with variances and covariances:

52 =12,¢72% [cos? 0, (cosh 202 — cosh 62) + sin? 6, (sinh 207 — sinh o7)] 04
+ o2 %% [cos? ,,,(2 cosh 207 — cosh 07) + sin® 6,,(2sinh 207 — sinh 07)]

o =2 e 2% [sin® 6, (cosh 205 — cosh 07) + cos® B, (sinh 205 — sinh 07)] 25)
+ 0% %% [sin® 6,,, (2 cosh 207 — cosh 07) + cos® 0, (2 sinh 207 — sinh 07|

G2, = sinf,, cos O,ne 278 [03 +(r2, +02)(1— e”g)] (26)

These equations provide an unbiased coordinate conversion to be used in a linear tracking regime. Figure 4 shows
the variances using the true range and bearing values as well as the variances of the unbiased estimate using the mea-
sured range and bearing values. The expected value of the biased and debiased errors is shown in Figure 5. Increased
areas of uncertainty for the measurements result in a noisier, less smooth track.

100 0.4 0.4
_ 80 0.2 0.2
£
< 60 0 0

40 -0.2 -0.2
E[v,] biased 04 E[v,] biased 04
200 2 4 6 4 6
6 (radians) 0 (radians)
0.4
0.2
0
-0.2
E[v,] debiased E[v,] debiased
20 0 5 4 6 -0.4 20 0 5 4 6 -0.4
0 (radians) 6 (radians)

Figure 5. Expected value of the measurement conversion errors for z (left plots) and y
(right plots) dimension before (top plots) and after (bottom plots) debiasing. Expected
errors also increase as a function of range and vary sinusoidally as a function of bearing.
Note the scale differences in the color axis.

TAYLOR APPROXIMATION OF THE SPHERICAL-TO-CARTESIAN TRANSFORM

Converting spherical measurements to Cartesian involves a nonlinear transformation as follows:

T =r71cosf 27
y =rsinf (28)

Let f(y) denote the function, which maps the measurement vector ¢ containing the range and azimuth measure-
ments to Cartesian coordinates. The notation with the scalar y is the Cartesian coordinate, whereas the vector g is
the vector containing the observed spherical measurements. A local linear approximation around y perturbed around
the mean by the noise values is as follows:
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9o
F) = f) + I % (Y — ) (29)
3_9: oz cos(0,,)  —7y, sin(fy,)
J - [% %] r=Tm,0=0m - |:Sin(9m) T'm COS(em) (30)

where J denotes the Jacobian matrix containing the partial derivatives of f(-) with respect to the spherical variables
evaluated around the fixed point. The covariance of the measurement can then be written as:

Peu = E[(f(y) — Ef (v))) (f(y) — E[f(y)])] G

~E[(I X (y—yn) —ET X (¥ —y)) (I X (Y —ym) —E[J x (y —yu)))'] (32)

=E[(Jg - E[Jq])(Jg —E[Jq)])'] (33)

= JE [(¢ — Elg])(g —Elg))T] " (34)

= JPsphered | (35)

where Pgiere i the measurement covariance matrix for the range and bearing uncertainties. After applying this

transformation, the measurements and descriptive statistics thereof are in Cartesian coordinates, and traditional
linear Kalman filtering can be used. Note when calculating the innovation, which is the difference between the pre-
dicted state and the converted measurement, either the linear approximation to f(y) or the true nonlinear conversion
can be used.

Even though the expected value of the errors E[f(y) — f(ym)] =FE[J % (y- ym)] = 0, large errors in the linear
approximation can occur at large ranges or with noisy bearing measurements and can cause biases in the estimation.
This is shown in Figure 6, where the nonzero-mean errors in the approximation increase as a function of range. Simi-
lar to the debiased measurement, the errors also vary as a function of the bearing angle.

UNSCENTED TRANSFORM

As mentioned, the issue is the lack of knowledge of the statistics of the transformed random variable f(g). One
heuristic Monte Carlo approach is to sample a large number of points from the normal distribution My, PSphere) and
apply the nonlinear observation
function f() to each of the points.
This approach is similar to PFs in
the sense that the propagation of
points captures the statistics of the
transformation through the func-
tion. The mean and covariance : Elv,] Taylor
of all the resulting samples‘cgn be 20 5 2 5 20 ) 5 4 5
used as a proxy for the statistics of 0 (radians) 0 (radians)

f(@) to update the linear Kalman

filter equations. This approach is

Figure 6. Expected value of the Taylor series approximation error for z (left) and y (right)
computationally limited, since the 6,.=5and 6y = 0.1. A Monte Carlo approach was used to calculate the expected error
number of required points increases by sampling 10,000 points in the spherical coordinate system and calculating the average
exponentially with the number of  error between the true z and y point and the converted points. These errors follow a pat-
state variables in order to suffi-  ternsimilarto thatof the expected errors in the debiased approach; however, the axis of the
ciently sample the state space. color bar is larger for the Taylor approximation.
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The UT typically used in
UKFs takes a similar approach
but carefully selects the sampled
points to efficiently calculate
the statistics of the transformed
random variable. Let L be
the number of variables in y.
A matrix ) of 2L + 1 sigma
points J; (each the size of the

0.4 0.4
0.2 0.2
0 0
-0.2 -0.2
E[v,] unscented 04 E[v,] unscented 04
200 2 4 6 200 2 4 6

0 (radians) 0 (radians)

state vector) is constructed to
sample the state space. The
sigma points are passed through
the observation function, after
which the sample mean and covariance of the trans-
formed points are used as an estimate for the statistics of
f(y). Using the equations specified by Simon,! the sigma
points are calculated as follows:

Figure 7. Expected value of the UT error for  (left) and y (right) with 6, = 5 and 6, = 0.1. The
expected error matches the patterns and values of the true bias error.

variable up to the second order. This means that the
terms up to the second order in the Taylor series expan-
sion of the mean and covariance of f(y) are equal to
those estimated using the UT.10 The variety of UT for-
mulations differ in how they calculate the sigma points

o=y B6)  and their respective weights. Depending on a priori

o ' . assumptions about the distribution’s spread after trans-

Vi=y+ VLA, ref{l.. L} (37  formation, it may be desirable to introduce parameters

. that adjust the scaling of A, to reflect an expansion or

Viwi =y~ VLA, ie{l,.... L} (38)  contraction of the sigma points’ distribution around

the mean.® Other algorithms!© use more or fewer sigma

where Py, o = AAT and A, is the ith column of A.  points than 2L + 1, and this may be helpful with differ-

To understand how the sigma points are calculated,
consider the 1D case where there is one state variable
(L = 1). The covariance matrix is thus a scalar value,
and the square root of it gives the standard deviation.
The two sigma points are then *1 standard deviation
around the mean value. In higher dimensions, consider
the case where P ere 152 diagonal matrix. This means
that the eigendecomposition of Py pere = QAQT is equal
to the Cholesky decomposition!? Pspnere = AAT. Thus
the columns of A are the eigenvectors of Pgppere. As a
result, each pair of sigma points symmetric about the
mean (since it is plus and minus around the mean) is
in equal and opposite directions along the axes of the
ellipsoid defined by the original probability distribution.
Loosely summarized, the characteristics of the original
distribution are captured through the placement of these
points along principal the axes of the ellipsoid defined
by the covariance matrix.

The mean and covariance of f(g) are then estimated

by:

ent computational limitations and requirements.

The bias of the UT is shown in Figure 7 and closely
matches the bias of the true transformation. This is con-
sistent with the UT’s design, which aims to match the
first moment of the nonlinear function.

COMPARISON OF CONVERTED-MEASUREMENT
METHODS

Area of Uncertainty

The covariance structure for the Taylor and UT are
similar to the covariance structure for the true error
statistics. However, the area of uncertainty determined
by the covariance matrix varies between the methods.
Figure 8 shows the area of uncertainty for the meth-
ods presented. Notably, the UT and Taylor approxi-
mation are biased away from the mean of the true
measurement.

Covariance containment of the measurements is crit-

X = f() (39) ical to successful tracking. Figure 9 shows the areas of

ol uncertainty as a function of range for the three methods

5= 1 Z Py (40)  and true statistics. (Varying 6 did not affect the area of

2L +1 — ! uncertainty for a fixed range value.) The figure shows

that the area of uncertainty for the Taylor approxima-

T - T tion and UT is less than the true statistics. This can

Par = oL+ 1 ; (X — ) (X; — ) (41)  make the tracker more susceptible to outliers and can

where Z is the converted measurement in Cartesian
using the UT. This particular formulation of the UT
matches the moments of the transformed random

o

lead to losing a track. On the other hand, the debiased
area of uncertainty is larger than the true statistics. This
can make the tracker more robust to outliers but can also
lead to slow responsiveness to new measurements.
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%xx% X "
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Figure 8. Areas of uncertainty of the covariance matrices for each of the four methods cov-
ered. The scattered points are the 10,000 measurements taken from a distribution of r = 1,000,
0=rand o, =5, 0y=0.1. The four areas of uncertainties defined by a 95% confidence interval
are shown around the mean value determined by the respective transformation method. Note

the bias offsets from the UT and Taylor approximations away from the true mean.

Tracking Performance

We tested the debiased, Taylor approximation, EKF,
and UT methods against the true statistics in a suite of
tracking scenarios. A 2D simulated trajectory started at
(100 km, 100 km) with an initial x-velocity of 50 m/s and
y-velocity of 100 m/s, with a constant velocity dynamic
model and 6,, = 1 according to Blackman and Popoli.!?
Simulated range and bearing measurements were gener-
ated from the ENU (east, north, up) coordinates with
random noise of 6, = 25 and 6 = 1°. A total of 1,000 tra-
jectories were simulated for 200 s. An example trajectory
is shown in Figure 10. Perfect dynamic model match-
ing and measurement association was assumed for these

simulations. The initial track state for each method was
initialized identically; the first two measurements were
converted to ENU, and the difference in position over
the difference in time was used for the initial velocity.
The initial position covariance was set to the position
covariance of the second measurement, and the velocity
covariance was calculated using (P, + Pz)/(At)z, where
P, and P, are the converted RBE to ENU measurement
covariances using the Taylor approximation.

The simulated data were tracked using the equations
specified in this article via a built-in Kalman filter in
MATLAB, but the measurement means and covariances
were adjusted according to the converted-measurement

x104 x10°
5 T T T T l 1.30 T T T T
/ Simulated trajectory

—o— True 1.25 T B
€ 4| |-=- Debiased A | Co T
2 ~&- Taylor / 1.20 4
'% Unscented /d
T 3r 1151 -
8 _
g E
- ~110F .
o 2k
P
< 1.05F S i
X 4
o 1k 100k +- Track i

. e Measurements
0.95 1 1 1 1
0 &= 0.9 1.0 11 1.2 1.3 1.4
0 200 400 600 800 1,000

Figure 9. Area of uncertainty as in Figure 8 plotted as a function
of range for the four methods.
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x (m)

Figure 10. xy plot of the simulated trajectory in ENU coordinates.
The track is moving farther away from the origin (0,0), toward the
top right corner of the plot.
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Figure 11. Average root mean square error for the different tracking methods as a function of time. Left, position errors; right, velocity

errors.
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Figure 12. Average NEES for the different tracking methods as a function of time. Left, position NEES; right, velocity NEES.

method. For the Taylor approximation, measurements
were converted using Egs. 13 and 16, and Eq. 35 was
used for the covariance of the approximation. Tracking
performance was evaluated using the normalized estima-
tion error squared calculation (NEES) and root mean
square error. NEES was calculated for each time point
and averaged across all time points and all runs. The
results are shown in Figures 11 and 12.

DISCUSSION

Tracking using radar measurements is a challenging
statistical problem because of the nonlinearities intro-
duced by using spherical coordinate measurements for
observations while using a Cartesian coordinate system
for the dynamic model. The spherical coordinates can be
retained in their original form to be tracked using EKF/
UKEFs and PFs in a mixed-coordinate regime or converted
to Cartesian coordinates in a converted-measurement
regime. Both approaches have their benefits. This

0

article details three converted-measurement techniques
to address the nonlinear tracking problem: debiased coor-
dinate conversions, Taylor series approximation, and UT.
Each of these methods converts the spherical coordinate
measurements to Cartesian coordinates and attempts to
describe the uncertainties after propagation through the
coordinate transform. The performance of these meth-
ods was explored in a simple tracking scenario.
Converting range and bearing measurements intro-
duced a bias in Cartesian coordinates; that is, the errors
between the converted measurements and the true point
in Cartesian coordinates were nonzero. When used in
tracking, this violates the Kalman filter’s assumption
that the errors are zero-mean. All three methods exhib-
ited nonzero errors (though the debiased measurements
had much smaller biases) in a similar characteristic pat-
tern, where the magnitude of Cartesian errors increased
as a function of range. This makes sense, since errors
in bearing are amplified at farther ranges. For example,
a point travels a greater distance around a circle at a
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farther radius for a given angle difference. For a given
range, Cartesian errors varied sinusoidally as a function
of bearing. The peak z error occurred at = x, while the
peak g error occurred at @ = /2. These values both cor-
responded to when cos 6 and sin 6 were at their respec-
tive maximums, thus amplifying their uncertainties
when converting to Cartesian via 7 cos @ and 7 sin 6.
The errors of the UT and the true conversion were simi-
lar in magnitude, in agreement with the UT’s matching
of the first and second moments of the nonlinear func-
tion it is approximating.! Although the Taylor approxi-
mation matched the pattern, it had an overall larger
magnitude of errors, suggesting the importance of the
ignored higher-order terms.

The variances of the errors increased with range and
followed a sinusoidal pattern. While only the variance
patterns for the debiased conversion in Figure 4 are
presented, both the Taylor approximation and the UT
showed similar patterns. Contrary to what was briefly
suggested in the original paper,* the difference between
the true and debiased variances did not always strictly
increase in the debiased case; instead, it varied sinusoi-
dally. The individual debiased variances (each entry in
the covariance matrix) were initially expected to be con-
sistently greater, considering they incorporate the mea-
surement uncertainties. However, the analysis revealed
that the area of uncertainty was indeed larger in the
debiased case across different ranges and bearings. The
area of uncertainty as a function of ranges and bearings
for each method was further investigated. Notably, vary-
ing the bearing while keeping the range constant did not
alter the area of uncertainty. The debiased area of uncer-
tainty was larger than the true uncertainty, whereas the
UT and Taylor approximation yielded smaller areas. The
relative size of the uncertainty area, larger or smaller
compared with the true distribution, is not inherently
advantageous or disadvantageous; it depends on the spe-
cific application. A larger uncertainty area makes the
filter less responsive to accurate measurements but more
resilient to outliers. Qualitatively, the UT most closely
matched the true distribution of uncertainty, as illus-
trated in Figure 9.

The conversion methods’ performance was tested in
the simulated tracking scenario. Notably, the EKF and
the UT performed best. Despite the debiasing proce-
dure, the debiased converted-measurement method suf-
fered at farther ranges in RMS error. This is potentially
due to the Gaussian assumption of the noise failing at
longer ranges. The UT can better match the true covari-
ance, which may be more important than correcting for
the bias. There was no significant improvement in com-
bining the UT with the debiased measurements. This
may suggest that improvements in NEES and RMS error
using the UT are due to the more accurate covariance
estimation, since the UT retains the bias in the non-
linear conversion as a result of the moment matching.
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Interestingly, the position NEES for the debiased mea-
surements outperformed the EKF. This was due to an
observed bias in the EKF at further ranges. We empha-
size that the improvement in error using the EKF over
the debiased method is geometry dependent. The non-
linearity using the EKF suffers at closer ranges, whereas
the nonlinearity using the debiased method suffers at
farther ranges. This is shown in the appendix. An inter-
esting follow-up would be to find the particular range
and angle error values where one method would benefit
over the other.

CONCLUSION

Tracking using radar measurements can be difficult
because of the nonlinear coordinate transfer between
Cartesian and spherical coordinates. This article over-
views radar tracking methods that convert the spherical
radar measurements to Cartesian coordinates to use in a
linear tracking framework. Three methods were used to
propagate the statistical uncertainties into the Cartesian
space: debiased coordinate conversion, Taylor approxi-
mation, and UT. The UT outperformed the other meth-
ods in a particular tracking scenario, while the EKF and
debiased coordinate conversion demonstrated varying
performances as a function of geometry.
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APPENDIX. TRACKING SCENARIO AT CLOSER RANGE

The initial position was set to (I km, 1 km) and o, was set to 0.1°. Results show that the EKF performed
worse than the other methods (Figure 13).
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Figure 13. Average RMS error for the tracking methods as a function of time. Left, position RMS error; right, velocity RMS error.
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