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Bayesian Statistics: An Introduction for the 
Practicing Reliability Engineer

Carsten H. Botts

ABSTRACT
This article introduces and reviews some of the principles and methods used in Bayesian reliability. 
It specifically discusses methods used in the analysis of success/no-success data and describes a 
simple Monte Carlo algorithm that can be used to calculate the posterior distribution of a system’s 
reliability. This algorithm is especially useful when a system’s reliability is modeled through the reli-
ability of its subcomponents, yet only system-level data are available.

in the Bayesian reliability literature. The efficiency of 
this algorithm is illustrated with an example.

BAYESIAN METHODS
This section introduces the basics of Bayesian prin-

ciples and Bayesian statistical methodology. The most 
effective way to introduce this concept is to contrast it 
with the principles and methodology of classical statis-
tics. The biggest difference between Bayesian and classi-
cal statistics is in how probability is defined. In classical 
statistics, probability is the long-run frequency of an 
event. So for a fixed (and unknown) parameter such as a 
population mean, µ,
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the posterior distribution of a system’s reliability. This algorithm is especially useful when a system’s reliability is modeled through the
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1 Introduction
A common reliability metric of a system is the probability that it will pass, or survive, a stress test. Several tests of the system are

typically necessary to learn about such a probability, but conducting many tests of a sophisticated system may be prohibitively expensive.
Examples of such systems include air-to-air missiles (see [12]) and medical devices (see [4]).

Bayesian statistical methods can help in such a situation, since they make it possible for one to include other types of data (such as
computer simulation experiments or the opinion of a subject-matter expert) into the statistical analysis. Bayesian methods may also be
necessary because many modern systems do not fail during testing. With no failures, it is difficult for classical statistics to accurately
quantify the probability of failure.

This paper first provides a brief and general review of Bayesian methods. Section 3 then discusses how these methods can be used
to learn more about the probability of a system surviving a test. This section concludes by reminding the reader of a straightforward
algorithm for calculating a total system’s reliability once it has been tested. This algorithm is simple, produces an exact answer, and is
not mentioned in the Bayesian reliability literature. The efficiency of this algorithm is illustrated in Section 4.

2 Bayesian methods
In this section we introduce the basics of Bayesian principles and Bayesian statistical methodology. The most effective way to

introduce this concept is to contrast it with the principles and methodology of classical statistics. The biggest difference between Bayesian
and classical statistics is with regard to how probability is defined. In classical statistics, probability is the long-run frequency of an event.
So for a fixed (and unknown) parameter such as a population mean, µ ,

P(3.66 ≤ µ ≤ 4.11) =
{

1 if true
0 if not

. (1)

In words, Equation (1) states that the fixed parameter µ is either in the stated interval or it is not.
Bayesian statisticians think about probability in a different way. In Bayesian statistics, probability is the belief that a statement is true.

So if one believes (based on their experience and/or the data that they have seen) that µ is within the stated interval with 95% probability,
it would be fair to say that

P(3.66 ≤ µ ≤ 4.11) = .95. (2)

The objective and point of Bayesian statistics is to calculate probabilities like the one in Equation (2), and to assure that this calculation
is scientifically respected.

1

.	 (1)

In words, Eq. 1 states that the fixed parameter µ is either 
in the stated interval or it is not.

INTRODUCTION
A common way to measure the reliability of a system 

is to determine the probability that it will pass, or sur-
vive, a stress test. This typically requires several system 
tests, but it may be prohibitively expensive to conduct 
many tests of a sophisticated system, such as an air-to-air 
missile1 or medical device.2

Bayesian statistical methods can help in such a 
situation, since they enable inclusion of other types 
of data (such as computer simulation experiments or 
subject-matter-expert opinions). Bayesian methods may 
also be necessary because many modern systems do not 
fail during testing. With no failures, it is difficult for 
classical statistics to accurately quantify the probability 
of failure.

This article begins by briefly reviewing Bayesian 
methods. It then discusses how these methods can be 
used to learn more about the probability of a system 
surviving a test, and it concludes by describing a 
straightforward algorithm for calculating a total system’s 
reliability once it has been tested. This algorithm is 
simple, produces an exact answer, and is not mentioned 
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Bayesian statisticians think about probability in a dif-
ferent way. In Bayesian statistics, probability is the belief 
that a statement is true. So if one believes (based on 
their experience and/or the data that they have seen) 
that µ is within the stated interval with 95% probability, 
it would be fair to say that
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A common reliability metric of a system is the probability that it will pass, or survive, a stress test. Several tests of the system are

typically necessary to learn about such a probability, but conducting many tests of a sophisticated system may be prohibitively expensive.
Examples of such systems include air-to-air missiles (see [12]) and medical devices (see [4]).

Bayesian statistical methods can help in such a situation, since they make it possible for one to include other types of data (such as
computer simulation experiments or the opinion of a subject-matter expert) into the statistical analysis. Bayesian methods may also be
necessary because many modern systems do not fail during testing. With no failures, it is difficult for classical statistics to accurately
quantify the probability of failure.

This paper first provides a brief and general review of Bayesian methods. Section 3 then discusses how these methods can be used
to learn more about the probability of a system surviving a test. This section concludes by reminding the reader of a straightforward
algorithm for calculating a total system’s reliability once it has been tested. This algorithm is simple, produces an exact answer, and is
not mentioned in the Bayesian reliability literature. The efficiency of this algorithm is illustrated in Section 4.

2 Bayesian methods
In this section we introduce the basics of Bayesian principles and Bayesian statistical methodology. The most effective way to

introduce this concept is to contrast it with the principles and methodology of classical statistics. The biggest difference between Bayesian
and classical statistics is with regard to how probability is defined. In classical statistics, probability is the long-run frequency of an event.
So for a fixed (and unknown) parameter such as a population mean, µ ,

P(3.66 ≤ µ ≤ 4.11) =
{

1 if true
0 if not

. (1)

In words, Equation (1) states that the fixed parameter µ is either in the stated interval or it is not.
Bayesian statisticians think about probability in a different way. In Bayesian statistics, probability is the belief that a statement is true.

So if one believes (based on their experience and/or the data that they have seen) that µ is within the stated interval with 95% probability,
it would be fair to say that

P(3.66 ≤ µ ≤ 4.11) = .95. (2)

The objective and point of Bayesian statistics is to calculate probabilities like the one in Equation (2), and to assure that this calculation
is scientifically respected.

1

.	 (2)

The objective and point of Bayesian statistics is to calcu-
late probabilities like the one in Eq. 2 and to ensure that 
this calculation is scientifically respected.

To calculate such a probability, a Bayesian statisti-
cian begins with a prior distribution. Assuming that the 
unknown parameter of interest is θ, this prior distribu-
tion is typically denoted as π(θ). The prior distribution 
indicates where the user believes the parameter θ to be 
before data are observed or collected. Assume, for exam-
ple, that we purchased a coin at a magic shop. Upon 
the purchase, the shop owner tells us that the coin will 
more often turn up heads than tails. In this case, we 
will let θ = ℙ(H) and define the prior distribution π(θ) 
for all values of θ between 0 and 1. This prior will also 
be more heavily weighted toward values of 1 to indicate 
that, a priori, the coin is expected to turn up heads more 
frequently than tails.

Once the prior is formulated, data are collected. The 
distribution of the data conditioned on a value of θ is 
written as p(x|θ), i.e.,

	

To calculate such a probability, a Bayesian statistician begins with a prior distribution. Assuming the unknown parameter of interest is
θ , this prior distribution is typically denoted as π(θ). The prior distribution indicates where the user believes the parameter θ to be before
data is observed and/or collected. Assume, for example, that we purchased a coin at a magic shop. Upon the purchase, the owner of the
shop tells us that the coin will more often turn up heads than tails. In this case, we will let θ = P(H), and define the prior distribution
π(θ) for all values of θ between 0 and 1. This prior will also be more heavily weighted towards values of 1 to indicate that, a-priori, the
coin is expected to turn up heads more so than tails.

Once the prior is formulated, data is collected. The distribution of the data conditioned on a value of θ is written as p(x|θ), i.e.,

(X1,X2, . . . ,Xn)∼ p(x1,x2,x3, . . . ,xn|θ) = p(x|θ),
where x = (x1,x2, . . . ,xn) . The function p(x|θ) is also referred to as the likelihood of θ .

With the prior and the likelihood, the posterior distribution (typically denoted as π(θ |x)) can be calculated. The posterior is calculated
using Bayes’ rule (see [2]). This calculation is shown below.

π (θ |x) = p(x,θ)
p(x)

=
p(x|θ)π(θ)∫

Θ
p(x|θ)π(θ)dθ

∝ p(x|θ)π(θ), (3)

where Θ is the set of all possible values of θ . The formula given in Eqn (3) makes sense: the posterior is proportional to the prior
distribution of θ (where we thought θ was before collecting data) times the likelihood (where the data suggests θ to be).

In this paper, we focus on how someone can use Bayesian methods to learn more about the probability that a system survives a
test. Subsection 3.1 specifically discusses how Bayesian methods are used to learn about the survival probability of one system, and
Subsection 3.2 discusses the methods necessary to learn about the survival probability of one system composed of multiple subsystems.
The algorithm discussed in Subsection 3.2 is elementary and uses no approximations when calculating its answer.

3 Bayesian methods for Bernoulli experiments
3.1 The Prior and Posterior of One Subsystem

Let us first assume that we are interested in learning about the probability that a system passes an endurance test of some sort. We
will denote this probability as θ , and we will conduct n trials/tests on this system and record X , the number of times (out of the n trials)
that it passes a test.

To do a Bayesian analysis on θ , we begin by specifying a prior distribution for it. A prior often used for the probability of success in
a sequence of success/failure trials is the beta distribution (see [8] and [5]). The beta distribution is specified by two parameters and is
especially convenient in cases such as this since it is a conjugate prior, i.e., it produces a posterior distribution of the same form. The beta
prior takes the form

π (θ) =
Γ(α +β )
Γ(α)Γ(β )

θ α−1 (1−θ)β−1 0 ≤ θ ≤ 1,

where Γ(·) is the gamma function. This prior has mean

Prior Mean =
α

α +β

and variance

Prior Var =
αβ

(α +β )2 (α +β +1)
.

The values of α and β (α,β > 0) are selected to reflect a user’s prior belief. This prior belief is often informed in a variety of ways:
through expert opinion, computer simulation, prior experiments, etc. If one believed that θ is small (less than 0.5), one would set α < β
(making the prior mean less than 0.5). If one believed that θ was large (greater than 0.5), one would set α > β . The confidence in these
prior beliefs is, of course, reflected in the variance of the prior. If one wanted to set the prior mean of θ to be 0.4, he could set α = 2 and
β = 3, making the prior variance 0.04. If one wanted to elevate the confidence in this statement (that the prior mean of θ is 0.4), he could
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,	

where x = (x1, x2, . . . , xn). The function p(x|θ) is also 
referred to as the likelihood of θ.

With the prior and the likelihood, the posterior dis-
tribution, typically denoted as π(θ|x), can be calculated. 
The posterior is calculated using Bayes’s rule.3 This cal-
culation is shown below:
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where Θ is the set of all possible values of θ. The formula 
given in Eq. 3 makes sense: the posterior is proportional 
to the prior distribution of θ (where we thought θ was 
before collecting data) times the likelihood (where the 
data suggests θ to be).

This article focuses on how to use Bayesian meth-
ods to learn more about the probability that a system 
survives a test. The subsection titled The Prior and 
Posterior of One Subsystem specifically discusses how 
Bayesian methods are used to learn about the survival 
probability of one system, and the subsection following 

that one, The Prior and Posterior of the Entire System, 
discusses the methods necessary to learn about the sur-
vival probability of one system composed of multiple 
subsystems. The algorithm discussed in the latter sub-
section is elementary and uses no approximations when 
calculating its answer.

BAYESIAN METHODS FOR BERNOULLI 
EXPERIMENTS
The Prior and Posterior of One Subsystem

Let us first assume that we are interested in learn-
ing about the probability that a system passes an endur-
ance test of some sort. We will denote this probability as 
θ, and we will conduct n trials/tests on this system and 
record X, the number of times (out of the n trials) that 
the system passes a test.

To do a Bayesian analysis on θ, we begin by specify-
ing a prior distribution for it. The beta distribution is 
often used as the prior for the probability of success in 
a sequence of success/failure trials.4,5 The beta distri-
bution is specified by two parameters and is especially 
convenient in cases such as this since it is a conjugate 
prior (i.e., it produces a posterior distribution of the same 
form). The beta prior takes the form
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where Γ( · ) is the gamma function. This prior has mean
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To calculate such a probability, a Bayesian statistician begins with a prior distribution. Assuming the unknown parameter of interest is
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data is observed and/or collected. Assume, for example, that we purchased a coin at a magic shop. Upon the purchase, the owner of the
shop tells us that the coin will more often turn up heads than tails. In this case, we will let θ = P(H), and define the prior distribution
π(θ) for all values of θ between 0 and 1. This prior will also be more heavily weighted towards values of 1 to indicate that, a-priori, the
coin is expected to turn up heads more so than tails.

Once the prior is formulated, data is collected. The distribution of the data conditioned on a value of θ is written as p(x|θ), i.e.,

(X1,X2, . . . ,Xn)∼ p(x1,x2,x3, . . . ,xn|θ) = p(x|θ),
where x = (x1,x2, . . . ,xn) . The function p(x|θ) is also referred to as the likelihood of θ .

With the prior and the likelihood, the posterior distribution (typically denoted as π(θ |x)) can be calculated. The posterior is calculated
using Bayes’ rule (see [2]). This calculation is shown below.

π (θ |x) = p(x,θ)
p(x)

=
p(x|θ)π(θ)∫

Θ
p(x|θ)π(θ)dθ

∝ p(x|θ)π(θ), (3)

where Θ is the set of all possible values of θ . The formula given in Eqn (3) makes sense: the posterior is proportional to the prior
distribution of θ (where we thought θ was before collecting data) times the likelihood (where the data suggests θ to be).

In this paper, we focus on how someone can use Bayesian methods to learn more about the probability that a system survives a
test. Subsection 3.1 specifically discusses how Bayesian methods are used to learn about the survival probability of one system, and
Subsection 3.2 discusses the methods necessary to learn about the survival probability of one system composed of multiple subsystems.
The algorithm discussed in Subsection 3.2 is elementary and uses no approximations when calculating its answer.

3 Bayesian methods for Bernoulli experiments
3.1 The Prior and Posterior of One Subsystem

Let us first assume that we are interested in learning about the probability that a system passes an endurance test of some sort. We
will denote this probability as θ , and we will conduct n trials/tests on this system and record X , the number of times (out of the n trials)
that it passes a test.

To do a Bayesian analysis on θ , we begin by specifying a prior distribution for it. A prior often used for the probability of success in
a sequence of success/failure trials is the beta distribution (see [8] and [5]). The beta distribution is specified by two parameters and is
especially convenient in cases such as this since it is a conjugate prior, i.e., it produces a posterior distribution of the same form. The beta
prior takes the form

π (θ) =
Γ(α +β )
Γ(α)Γ(β )

θ α−1 (1−θ)β−1 0 ≤ θ ≤ 1,

where Γ(·) is the gamma function. This prior has mean

Prior Mean =
α

α +β

and variance

Prior Var =
αβ

(α +β )2 (α +β +1)
.

The values of α and β (α,β > 0) are selected to reflect a user’s prior belief. This prior belief is often informed in a variety of ways:
through expert opinion, computer simulation, prior experiments, etc. If one believed that θ is small (less than 0.5), one would set α < β
(making the prior mean less than 0.5). If one believed that θ was large (greater than 0.5), one would set α > β . The confidence in these
prior beliefs is, of course, reflected in the variance of the prior. If one wanted to set the prior mean of θ to be 0.4, he could set α = 2 and
β = 3, making the prior variance 0.04. If one wanted to elevate the confidence in this statement (that the prior mean of θ is 0.4), he could

2
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The values of α and β (α, β > 0) are selected to reflect 
the user’s prior belief. This prior belief is often informed 
in a variety of ways, such as expert opinion, computer 
simulation, or prior experiments. A user who believes 
that θ is small (<0.5) would set α < β (making the prior 
mean < 0.5). A user who believes that θ is large (>0.5) 
would set α > β. The confidence in these prior beliefs is, 
of course, reflected in the variance of the prior. If a user 
wanted to set the prior mean of θ to 0.4, they could set 
α = 2 and β = 3, making the prior variance 0.04. If a user 
wanted to elevate the confidence in this statement (that 
the prior mean of θ is 0.4), they could adjust the values 
of α and β to α = 20 and β = 30, making the prior vari-
ance 0.004. And if a user knew absolutely nothing about 
θ, they would set α = β = 1, in which case the prior for θ 
is uniform over the interval (0, 1).
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There is no consistent selection of α and β in reliability studies. Leoni et al.6 set α = 3 and β = 1 in one of their 
reliability studies, Burke and Harman7 set α = 7.2 and β = 0.8 in one of their reliability studies, and Martz et al.8 set 
α = 27.3 and β = 0.5. When priors are informed by simulation results or previous experiments, analysts sometimes set

	

adjust the values of α and β to α = 20 and β = 30, making the prior variance 0.004. And if one knew absolutely nothing about θ , he
would set α = β = 1, in which case the prior for θ is uniform over the interval (0,1).

There is no consistent selection of α and β in reliability studies. Leoni et al. (see [10]) set α = 3 and β = 1 in one of their reliability
studies, Burke et al. (see [3]) set α = 7.2 and β = 0.8 in one of their reliability studies, and Martz et al. (see [14]) set α = 27.3 and
β = 0.5. In those cases where priors are informed by simulation results or previous experiments, analysts sometimes set

α = npr · θ̂ pr +1 and β = npr ·
(
1− θ̂ pr)+1,

where θ̂ pr is a prior estimate of θ , and npr is some positive number which represents the confidence the analyst has in the simulation
or experiment informing the prior (see [9]); one can think of npr as the effective sample size which informs the prior. The greater this
effective sample size which informs the prior, the more peaked the prior distribution is near the prior estimate of θ . If no confidence exists
in the simulation informing the prior, then npr = 0 and the prior would be flat.

Figures 1 – 2 illustrate what these prior distributions look like. The prior in Figure 1 puts large probability on low values of θ and
does so by setting the value of α to be significantly less than the value of β . The prior in Figure 2 puts large probability on high values
of θ , and does so by setting the value of β to be smaller than the value of α . Also observe that the prior is much more peaked for small
values of θ in Figure 1 than it is for large values of θ in Figure 2. This is a consequence of the difference in the values between α and β .
The difference is larger for the prior in Figure 1 than it is for the prior in Figure 2.
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Figure 1: The prior π (θ) with α = 2 and β = 10. With this
selection of α and β , the prior is peaked at low values of θ .
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where ˆ θ  pr is a prior estimate of θ, and npr is some positive number that represents the confidence the analyst has in 
the simulation or experiment informing the prior;9 think of npr as the effective sample size that informs the prior. 
The greater this effective sample size that informs the prior, the more peaked the prior distribution is near the prior 
estimate of θ. If no confidence exists in the simulation informing the prior, then npr = 0 and the prior would be flat.

Figures 1 and 2 illustrate what these prior distributions look like. The prior in Figure 1 puts large probability on 
low values of θ and does so by setting the value of α to be significantly less than the value of β. The prior in Figure 2 
puts large probability on high values of θ and does so by setting the value of β to be smaller than the value of α. Also 
observe that the prior is much more peaked for small values of θ in Figure 1 than it is for large values of θ in Figure 2. 
This is a consequence of the difference in the values between α and β. The difference is larger for the prior in Figure 1 
than it is for the prior in Figure 2.

Let us now assume that we observe x successes of the system out of n tests conducted. In this case, the likelihood 
is binomial,
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Figure 2: The prior π (θ) with α = 7 and β = 3. With this
selection of α and β , the prior is peaked at high values of θ .

Let us now assume we observe x successes of the system out of n tests conducted. In this case the likelihood is binomial,

p(x|θ) =
(

n
x

)
θ x (1−θ)n−x ,

making the posterior distribution of θ

π (θ |x) = p(x|θ)π (θ)∫

Θ
p(x|θ)π (θ)dθ

=

(
n
x

)
θ x (1−θ)n−x Γ(α +β )

Γ(α)Γ(β )
θ α−1(1−θ)β−1

∫ 1

0

[(
n
x

)
θ x (1−θ)n−x Γ(α +β )

Γ(α)Γ(β )
θ α−1(1−θ)β−1

]
dθ

. (4)

There is a simple way to calculate the posterior distribution in Equation (4) without having to evaluate the integral in the denominator.
First observe that the expression in the denominator is not a function of θ ; it is a normalizing constant independent of θ , and for this
reason we can write

π (θ |x) ∝ p(x|θ)π (θ) .

Eliminating all multiplicative constants in p(x|θ)π (θ) that do not depend on θ , we get that

π (θ |x) = c ·θ x+α−1 (1−θ)n−x+β−1 ,

where c is some constant such that ∫ 1

0
c ·θ x+α−1 (1−θ)n−x+β−1 dθ = 1.

The posterior π (θ |x) takes the form of a beta distribution, making

c =
Γ(α +β +n)

Γ(α + x)Γ(β +n− x)
.

4
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making the posterior distribution of θ
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Let us now assume we observe x successes of the system out of n tests conducted. In this case the likelihood is binomial,
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=

(
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)
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There is a simple way to calculate the posterior distribution in Equation (4) without having to evaluate the integral in the denominator.
First observe that the expression in the denominator is not a function of θ ; it is a normalizing constant independent of θ , and for this
reason we can write

π (θ |x) ∝ p(x|θ)π (θ) .

Eliminating all multiplicative constants in p(x|θ)π (θ) that do not depend on θ , we get that

π (θ |x) = c ·θ x+α−1 (1−θ)n−x+β−1 ,

where c is some constant such that ∫ 1

0
c ·θ x+α−1 (1−θ)n−x+β−1 dθ = 1.

The posterior π (θ |x) takes the form of a beta distribution, making

c =
Γ(α +β +n)

Γ(α + x)Γ(β +n− x)
.
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There is a simple way to calculate the posterior distribution in Eq. 4 without having to evaluate the integral in the 
denominator. First observe that the expression in the denominator is not a function of θ; it is a normalizing constant 
independent of θ, and for this reason we can write
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Let us now assume we observe x successes of the system out of n tests conducted. In this case the likelihood is binomial,

p(x|θ) =
(

n
x

)
θ x (1−θ)n−x ,

making the posterior distribution of θ

π (θ |x) = p(x|θ)π (θ)∫
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There is a simple way to calculate the posterior distribution in Equation (4) without having to evaluate the integral in the denominator.
First observe that the expression in the denominator is not a function of θ ; it is a normalizing constant independent of θ , and for this
reason we can write

π (θ |x) ∝ p(x|θ)π (θ) .

Eliminating all multiplicative constants in p(x|θ)π (θ) that do not depend on θ , we get that

π (θ |x) = c ·θ x+α−1 (1−θ)n−x+β−1 ,

where c is some constant such that ∫ 1

0
c ·θ x+α−1 (1−θ)n−x+β−1 dθ = 1.

The posterior π (θ |x) takes the form of a beta distribution, making

c =
Γ(α +β +n)

Γ(α + x)Γ(β +n− x)
.
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Eliminating all multiplicative constants in p(x|θ) π(θ) that do not depend on θ, we get that
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Let us now assume we observe x successes of the system out of n tests conducted. In this case the likelihood is binomial,

p(x|θ) =
(

n
x

)
θ x (1−θ)n−x ,
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There is a simple way to calculate the posterior distribution in Equation (4) without having to evaluate the integral in the denominator.
First observe that the expression in the denominator is not a function of θ ; it is a normalizing constant independent of θ , and for this
reason we can write

π (θ |x) ∝ p(x|θ)π (θ) .

Eliminating all multiplicative constants in p(x|θ)π (θ) that do not depend on θ , we get that

π (θ |x) = c ·θ x+α−1 (1−θ)n−x+β−1 ,

where c is some constant such that ∫ 1

0
c ·θ x+α−1 (1−θ)n−x+β−1 dθ = 1.

The posterior π (θ |x) takes the form of a beta distribution, making

c =
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Figure 1.  The prior π(θ) with α = 2 and β = 10. With this selection 
of α and β, the prior is peaked at low values of θ.
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where c is some constant such that
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Let us now assume we observe x successes of the system out of n tests conducted. In this case the likelihood is binomial,

p(x|θ) =
(

n
x

)
θ x (1−θ)n−x ,

making the posterior distribution of θ

π (θ |x) = p(x|θ)π (θ)∫

Θ
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(
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θ x (1−θ)n−x Γ(α +β )
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]
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There is a simple way to calculate the posterior distribution in Equation (4) without having to evaluate the integral in the denominator.
First observe that the expression in the denominator is not a function of θ ; it is a normalizing constant independent of θ , and for this
reason we can write

π (θ |x) ∝ p(x|θ)π (θ) .

Eliminating all multiplicative constants in p(x|θ)π (θ) that do not depend on θ , we get that

π (θ |x) = c ·θ x+α−1 (1−θ)n−x+β−1 ,

where c is some constant such that ∫ 1

0
c ·θ x+α−1 (1−θ)n−x+β−1 dθ = 1.

The posterior π (θ |x) takes the form of a beta distribution, making

c =
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Γ(α + x)Γ(β +n− x)
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The posterior π(θ|x) takes the form of a beta distribution, making
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Let us now assume we observe x successes of the system out of n tests conducted. In this case the likelihood is binomial,
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There is a simple way to calculate the posterior distribution in Equation (4) without having to evaluate the integral in the denominator.
First observe that the expression in the denominator is not a function of θ ; it is a normalizing constant independent of θ , and for this
reason we can write

π (θ |x) ∝ p(x|θ)π (θ) .

Eliminating all multiplicative constants in p(x|θ)π (θ) that do not depend on θ , we get that

π (θ |x) = c ·θ x+α−1 (1−θ)n−x+β−1 ,

where c is some constant such that ∫ 1

0
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The posterior of θ is thus a beta distribution with parameters αpst and βpst where

	

The posterior of θ is thus a beta distribution with parameters αpst and β pst where

αpst = α + x, and

β pst = β +n− x.

The plots in Figures 3 and 4 show the posteriors corresponding to the priors shown in Figures 1 and 2, respectively. In Figure 3 one
success was observed after ten trials, emphasizing even more that the value of θ is small. Observe how the posterior in this case is more
peaked at small values of θ than the prior was. In Figure 4 two successes were observed in ten trials, indicating that the probability
of success was much smaller than the prior anticipated. Observe how, in this case, the peak of the posterior has significantly shifted to
smaller values of θ .
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Figure 3: The posterior distribution with n = 10, x = 1, α =
2 and β = 10.
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The plots in Figures 3 and 4 show the posteriors corresponding to the priors shown in Figures 1 and 2, respectively. 
In Figure 3, one success was observed after 10 trials, emphasizing even more that the value of θ is small. Observe 
how the posterior in this case is more peaked at small values of θ than the prior was. In Figure 4, two successes were 
observed in 10 trials, indicating that the probability of success was much smaller than the prior anticipated. Observe 
how, in this case, the peak of the posterior has significantly shifted to smaller values of θ.

The Prior and Posterior of the Entire System
Let us now put this problem in the context of one large system that is composed of several subsystems. If all the 

subsystems have to work for the entire system to work, how do the posterior distributions of the subsystem reliabilities 
inform the distribution of the total system’s reliability? And how would testing the entire system (as a whole) affect 
the posterior of the total system reliability? The next two subsections address these questions.

Subsystem Test Sizing
This subsection focuses on how the distributions of the subsystem survival probabilities affect the distribution of 

the total system’s survival probability. If there are S subsystems, and the entire system fails if any one of the subsystems 
fail (i.e., the subsystems work in series), then the success probability of the total system, θTot Sys, is calculated as
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Figure 4: The posterior distribution with n = 10, x = 2, α =
7 and β = 3.

3.2 The Prior and Posterior of the Entire System
We now put this problem in the context of one large system that is composed of several subsystems. If all of the subsystems have to

work for the entire system to work, how do the posterior distributions of the subsystem reliabilities inform the distribution of the total
system’s reliability? And how would testing the entire system (as a whole) affect the posterior of the total system reliability? The next
subsection addresses the first question, and the second question is addressed in Section 3.2.2.

3.2.1 Subsystem Test Sizing

This subsection focuses on how the distributions of the subsystem survival probabilities affect the distribution of the total system’s
survival probability. If there are S subsystems, and the entire system fails if any one of the subsystems fail (i.e., the subsystems work in
series), then the success probability of the total system, θTot Sys, is calculated as

θTot Sys = P(Success of Subsys 1)×P(Success of Subsys 2)×·· ·
×P(Success of Subsys S)

=
S

∏
j=1

θ j, (5)

where θ j is the success probability of the jth subsystem.
If S = 5 and the block diagram of the subsystems is as shown in Figure 14, then the system fails if Subsystem 1, 4, 5, or both 2 and 3

fail. In this case, the success probability of the entire system would be calculated as

θTot Sys = P(Success of Subsys 1)×P(Success of Subsys 2 or 3)×P(Success of Subsys 4)×P(Success of Subsys 5)

= θ1 (θ2 +θ3 −θ2θ3)θ4θ5.

6

	

(5)
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Figure 3.  The posterior distribution with n = 10, x = 1, α = 2, and 
β = 10.
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where θj is the success probability of the jth subsystem.
If S = 5 and the block diagram of the subsystems is as shown in Figure 5, then the system fails if subsystem 1, 4, 5, 

or both 2 and 3 fail. In this case, the success probability of the entire system would be calculated as
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Figure 4: The posterior distribution with n = 10, x = 2, α =
7 and β = 3.

3.2 The Prior and Posterior of the Entire System
We now put this problem in the context of one large system that is composed of several subsystems. If all of the subsystems have to

work for the entire system to work, how do the posterior distributions of the subsystem reliabilities inform the distribution of the total
system’s reliability? And how would testing the entire system (as a whole) affect the posterior of the total system reliability? The next
subsection addresses the first question, and the second question is addressed in Section 3.2.2.

3.2.1 Subsystem Test Sizing

This subsection focuses on how the distributions of the subsystem survival probabilities affect the distribution of the total system’s
survival probability. If there are S subsystems, and the entire system fails if any one of the subsystems fail (i.e., the subsystems work in
series), then the success probability of the total system, θTot Sys, is calculated as

θTot Sys = P(Success of Subsys 1)×P(Success of Subsys 2)×·· ·
×P(Success of Subsys S)

=
S

∏
j=1

θ j, (5)

where θ j is the success probability of the jth subsystem.
If S = 5 and the block diagram of the subsystems is as shown in Figure 14, then the system fails if Subsystem 1, 4, 5, or both 2 and 3

fail. In this case, the success probability of the entire system would be calculated as

θTot Sys = P(Success of Subsys 1)×P(Success of Subsys 2 or 3)×P(Success of Subsys 4)×P(Success of Subsys 5)

= θ1 (θ2 +θ3 −θ2θ3)θ4θ5.

6

	

The value of θTot Sys is thus the product and/or sum of beta random variables. The resulting distribution of a 
random variable such as θTot Sys has been derived in a number of publications, but this distribution is very complicated 
and thus difficult to work with analytically.1,10,11,12,13 The distribution of θTot Sys is easy to work with and understand, 
however, using Monte Carlo methods. Since the posterior distribution of all the components of the system take the 
form of a beta distribution with known parameters, assuming independence of the subsystems, we can easily simulate 
nSim values from the prior distribution of θTot Sys. This requires simulating nSim S-tuples of (θ1, θ2, θ3,..., θS). With each 
simulated S-tuple, we can calculate a value of θTot Sys. The algorithm for generating nSim values of θTot Sys for a system 
in series is given in Procedure 1; that for a system as shown in Figure 5 is given in Procedure 2.

Figures 6–12 illustrate how the posterior distributions of subsystem reliability affect the distribution of θTot Sys. 
In the simulations performed, we assumed that the entire system was composed of three subsystems (S = 3) and 

Subs1

Subs2

Subs3

Subs4 Subs5

Figure 5.  Flowchart of system composed of five subsystems (Subs), two of which work in parallel.

Subsystem 1

Subsystem 2

Subsystem 3

Subsystem 4 Subsystem 5

Figure 5: Flow chart of system composed of five subsystems, two of which work in parallel.

The value of θTot Sys is thus the product and/or sum of beta random variables. The resultilng distribution of a random variable such as
θTot Sys has been derived in a number of publications, but this distribution is very complicated and thus difficult to work with analytically
(see [7], [13], [12], [16], and [17]). The distribution of θTot Sys is easy to work with and understand, however, using Monte Carlo methods.

Since the posterior distribution of all the components of the system take the form of a beta distribution with known parameters,
assuming independence of the subsystems, we can easily simulate nSim values from the prior distribution of θTot Sys. This requires
simulating nSim S-tuples of (θ1,θ2,θ3, . . . ,θS). With each simulated S-tuple, we can calculate a value of θTot Sys. The algorithm for
generating nSim values of θTot Sys for a system in series is given in Procedure 1; that for a system as shown in Figure 14 is given in
Procedure 2.

Procedure 1: Simulating nSim values of θTot Sys when the subsystems work in series

input : π (θ1|x1) ,π (θ2|x2) , . . . ,π (θS|xS) , and nSim, where xi is the number of successes of subsystem i
output: θ (1)

Tot Sys,θ
(2)
Tot Sys, . . . ,θ

(nSim)
Tot Sys

for i ← 1 to nSim do
θ (i)

Tot Sys ← 1
for j ← 1 to S do

Generate θ (i)
j ∼ π (θ j|x j)

θ (i)
Tot Sys ← θ (i)

Tot Sys ·θ
(i)
j .

Figures 6 – 12 illustrate how the posterior distributions of subsystem reliability affect the distribution of θTot Sys. In the simulations
performed, we assumed the entire system was composed of three subsystems (S = 3) and that these subsystems worked in series. The
priors of the three subsystems are shown in black in Figures 6 – 8. The subsystems are then tested with n1 = 2, n2 = 5, and n3 = 4, where
n j is the number of times the jth subsystem is tested. The resulting posteriors are shown in red in Figures 6 – 8, and 10,000 draws from
the resulting distribution of θTot Sys are shown in Figure 9. The subsystems were also tested at n1 = 11, n2 = 14, and n3 = 12, and the
corresponding posteriors are shown in blue in Figures 6 – 8. Observe that these posteriors are more peaked (more informed) than the
others since the sample sizes are larger. The distribution of θTot Sys corresponding to these larger sample sizes is shown in Figure 10.
Observe how the variance of this posterior is smaller than that shown in Figure 9; it should be since the subsystem sample sizes are larger.

7

Procedure 2: Simulating nSim values of θTot Sys when the five subsystems work as shown in Figure 14 (series and parallel)

input : π (θ1|x1) ,π (θ2|x2) , . . . ,π (θS|xS) , and nSim, where xi is the number of successes of subsystem i
output: θ (1)

Tot Sys,θ
(2)
Tot Sys, . . . ,θ

(nSim)
Tot Sys

for i ← 1 to nSim do
θ (i)

2 ∼ π (θ2|x2)

θ (i)
3 ∼ π (θ3|x3)

θ (i)
2|3 ← θ (i)

2 +θ (i)
3 −θ (i)

2 ·θ (i)
3

θ (i)
Tot Sys ← θ (i)

2|3
for j ∈ {1,4,5} do

Generate θ (i)
j ∼ π (θ j|x j)

θ (i)
Tot Sys ← θ (i)

Tot Sys ·θ
(i)
j .
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Figure 6: The prior and posterior of the first subsystem with
α = 5, and β = 2.
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that these subsystems worked in series. The priors of 
the three subsystems are shown in black in Figures 6–8. 
The subsystems are then tested with n1 = 2, n2 = 5, and 
n3 = 4, where nj is the number of times the jth subsystem 
is tested. The resulting posteriors are shown in red in 
Figures 6–8, and 10,000 draws from the resulting distri-
bution of θTot Sys are shown in Figure 9. The subsystems 
were also tested at n1 = 11, n2 = 14, and n3 = 12, and 
the corresponding posteriors are shown in blue in Fig-
ures 6–8. Observe that these posteriors are more peaked 
(more informed) than the others since the sample sizes 
are larger. The distribution of θTot Sys corresponding to 
these larger sample sizes is shown in Figure 10. Observe 
how the variance of this posterior is smaller than that 
shown in Figure 9; this is because the subsystem sample 
sizes are larger.

Total System Test Sizing
Let us now investigate how testing the entire system 

(and not just its individual components) affects the pos-
terior distribution of θTot Sys. Updating the prior distri-
bution of θTot Sys given test results on the total system 
is more challenging than updating the subcomponent 
values of θ because, in this case, the original distribu-
tion of θTot Sys is not a beta distribution. Recall that the 
prior distribution of θTot Sys was analytically challenging 
to work with and, as a result, was obtained using Monte 
Carlo methods. It is not uncommon for practitioners 
to approximate this prior with another (perhaps beta) 
distribution1,11,14,15,16,17 to make the posterior analysis 
simpler and more convenient. Others redefine the priors 
of the independent components entirely just so the prior 
of the total system’s reliability is analytically tractable. 
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Figure 6.  The prior and posterior of the first subsystem with 
α = 5 and β = 2.
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Zoh et al.,18 for example, set the priors of the compo-
nents to negative log-gamma distributions, yet they still 
had to execute complicated Markov chain Monte Carlo 
methods to do posterior analysis of the total system.

These workarounds and approximations to make 
posterior analysis easier are not necessary. This article 
describes a simple and quick Monte Carlo method that 
updates the prior distribution of θTot Sys after testing the 
entire system. This method is a simple application of the 
algorithm proposed by Rubin.19 Rubin observed that a 
sample from the posterior distribution of a parameter 
can be obtained by first generating values from its prior 
and then generating data conditioned on these sampled 
values. Those values of the parameter for which the gen-
erated data match the observed data follow the posterior 
distribution.

To apply this algorithm in our case, we begin by writ-
ing the posterior for θTot Sys as 

	

3.2.2 Total System Test Sizing

We now investigate how testing the entire system (and not just its individual components) affects the posterior distribution of θTot Sys.
Updating the prior distribution of θTot Sys given test results on the total system is more challenging than updating the subcomponent values
of θ because, in this case, the original distribution of θTot Sys is not a beta distribution. Recall that the prior distribution of θTot Sys was
analytically challenging to work with and, as a result, was obtained using Monte Carlo methods. It is not uncommon for practitioners
to approximate this prior with another (perhaps Beta) distribution (see [1], [6], [11], [12], [13] and [18]) to make the posterior analysis
simpler and more convenient. Others redefine the priors of the independent components entirely just so the prior of the total system’s
reliability is analytically tractable. Zoh et al. (see [19]), for example, set the priors of the components to negative log-gamma distributions,
yet they still had to execute complicated Markov chain Monte Carlo methods to do posterior analysis of the total system.

These workarounds and approximations to make posterior analysis easier are not necessary! In this paper we alert the reader
of a simple and quick Monte Carlo method which updates the prior distribution of θTot Sys after testing the entire system. This method
is a simple application of the algorithm proposed by Rubin (see [15]). Rubin observed that a sample from the posterior distribution of a
parameter can be obtained by first generating values from its prior and then generating data conditioned on these sampled values. Those
values of the parameter for which the generated data match the observed data follow the posterior distribution.

To apply this algorithm in our case, we begin by writing the posterior for θTot Sys as

π
(
θTot Sys|xTS

)
∝ p

(
xTS|θTot Sys

)
π
(
θTot Sys

)
,

where

p
(
xTS|θTot Sys

)
=

(
nTS

xTS

)
θ xTS

Tot Sys
(
1−θTot Sys

)nTS−xTS , (6)

nTS and xTS are the number of tests (and successes) of the total system. Given that x∗TS successes have been observed from nTS trials
of the total system, we sample from the posterior π

(
θTot Sys|xTS = x∗TS

)
by first simulating from the prior of θTot Sys, π

(
θTot Sys

)
.1 We

then condition on these sampled values of θTot Sys to generate candidate values of xTS from the likelihood shown in Equation (6). The
simulated values of θTot Sys for which the likelihood generates xTS = x∗TS are then considered to be an exact sample from the posterior.
The details of this algorithm (assuming the subsystems work in series2) are given below in Procedure 3.

Procedure 3: Simulating nSim values of θTot Sys from π
(
θTot Sys|xTS = x∗TS

)

input : π (θ1|x1) ,π (θ2|x2) , . . . ,π (θS|xS) ,nSim,nTS,x∗TS

output: θ (1)
Tot Sys,θ

(2)
Tot Sys, . . . ,θ

(nSim)
Tot Sys

i ← 1
while i < nSim do

θ (i), cand
Tot Sys ← 1

for j ← 1 to S do
Generate θ (i)

j ∼ π (θ j|x j)

θ (i), cand
Tot Sys ← θ (i), cand

Tot Sys ·θ (i)
j .

Generate xTS ∼ Binomial
(

nTS,θ
(i), cand
Tot Sys

)
.

if xTS = x∗TS then
θ (i)

Tot Sys ← θ (i), cand
Tot Sys

i ← i+1

1An algorithm similar to the ones shown in Procedure 1 or Procedure 2 could be used to sample from the prior, π
(
θTot Sys

)
.

2Minor changes to the first ‘for’ loop of the algorithm would be necessary if the subsystems did not work in series.
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nTS and xTS are the number of tests (and successes) of the total system. Given that x∗TS successes have been observed from nTS trials
of the total system, we sample from the posterior π

(
θTot Sys|xTS = x∗TS

)
by first simulating from the prior of θTot Sys, π

(
θTot Sys

)
.1 We

then condition on these sampled values of θTot Sys to generate candidate values of xTS from the likelihood shown in Equation (6). The
simulated values of θTot Sys for which the likelihood generates xTS = x∗TS are then considered to be an exact sample from the posterior.
The details of this algorithm (assuming the subsystems work in series2) are given below in Procedure 3.

Procedure 3: Simulating nSim values of θTot Sys from π
(
θTot Sys|xTS = x∗TS

)

input : π (θ1|x1) ,π (θ2|x2) , . . . ,π (θS|xS) ,nSim,nTS,x∗TS

output: θ (1)
Tot Sys,θ

(2)
Tot Sys, . . . ,θ

(nSim)
Tot Sys

i ← 1
while i < nSim do

θ (i), cand
Tot Sys ← 1

for j ← 1 to S do
Generate θ (i)

j ∼ π (θ j|x j)

θ (i), cand
Tot Sys ← θ (i), cand

Tot Sys ·θ (i)
j .

Generate xTS ∼ Binomial
(

nTS,θ
(i), cand
Tot Sys

)
.

if xTS = x∗TS then
θ (i)

Tot Sys ← θ (i), cand
Tot Sys

i ← i+1

1An algorithm similar to the ones shown in Procedure 1 or Procedure 2 could be used to sample from the prior, π
(
θTot Sys

)
.

2Minor changes to the first ‘for’ loop of the algorithm would be necessary if the subsystems did not work in series.
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,	 (6)

and nTS and xTS are the number of tests (and successes) 
of the total system. Given that x* 

TS successes have been 
observed from nTS trials of the total system, we sample 
from the posterior π(θTot Sys|xTS = x* 

TS) by first simulat-
ing from the prior of θTot Sys, π(θTot Sys). (An algorithm 
similar to the ones shown in Procedure  1 or 2 could 
be used to sample from the prior, π(θTot Sys).) We then 
condition on these sampled values of θTot Sys to gener-
ate candidate values of xTS from the likelihood shown 
in Eq. 6. The simulated values of θTot Sys for which the 
likelihood generates xTS  =  x* 

TS are then considered to 
be an exact sample from the posterior. The details of 
this algorithm (assuming the subsystems work in series; 
minor changes to the first “for” loop of the algorithm 
would be necessary if the subsystems did not work in 
series) are given in Procedure 3.

The plots in Figures 11 and 12 show how the distribu-
tion of θTot Sys changes when tests on the entire system 
are executed. The plot in Figure 11 shows how the dis-
tribution of θTot Sys changes from the distribution in 
Figure  9 when four successes are observed out of four 
tests on the entire system. Observe that with this extra 
evidence of success, the distribution of θTot Sys shifts to 
the right. The same story is told in Figure 12. It shows 
how the distribution of θTot Sys changes from the dis-
tribution in Figure 10 when five successes are observed 
out of seven tests on the entire system. This distribution 
moves to the right and is also more peaked.
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Figure 10.  The resulting distribution of θTot Sys when n1 = 11, 
n2 = 14, and n3 = 12.
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Figure 11.  The resulting distribution of θTot Sys when n1 = 2, 
n2 = 5, n3 = 4, and nTS = 4.
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Figure 12.  The resulting distribution of θTot Sys when n1 = 11, 
n2 = 14, n3 = 12, and nTot = 7.
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It is critical to understand the distinction between 
the two examples discussed above. In the first case 
(with the resulting distribution of θTot Sys shown in 
Figure 11), the total system was tested four times and 
four successes were observed. Because the system works 
in series, a successful test of the entire system implies a 
successful test of each component. The posterior distri-
bution of θTot Sys can thus easily be calculated by simply 
updating the posteriors of the system’s three compo-
nents and then applying Procedure 1. This is not true 
for the second example (with the resulting distribution 
of θTot Sys shown in Figure 12). Recall that in the second 
example, the entire system was tested seven times, but 
only five successes were observed. Since it is not clear 
which component(s) failed (causing the failure of the 
entire system), the posteriors of the components cannot 
be updated, and Procedure 1 cannot be applied. In this 
case, Procedure 3 is necessary in calculating the poste-
rior of θTot Sys.

EXAMPLE
This example illustrates the efficiency of Rubin’s algo-

rithm when calculating total system reliability. Consider 
two types of systems/fault trees, each with m different 
types of components. The first fault tree works in series, 
and in the second, every other component operates in 
series. Figures 13 and 14 illustrate these fault trees.

The efficiency of Rubin’s algorithm is demonstrated 
with a Monte Carlo study. We initially place Beta(α,β) 
priors on all the components with α = 999 and β = 0.5. 
(Such priors assume a prior reliability mean of 0.9995, 
which is not uncommon for highly reliable systems.) For 
each system/fault tree, and for a specific value of m, nj 
(the number of trials for subsystem j) and xj (the number 
of successful trials for subsystem j) can then be simulated. 
The number of trials is simulated from a Poisson(λ = 5) 
distribution, and the number of successful trials is simu-
lated from a binomial distribution with parameters nj 

3.2.2 Total System Test Sizing

We now investigate how testing the entire system (and not just its individual components) affects the posterior distribution of θTot Sys.
Updating the prior distribution of θTot Sys given test results on the total system is more challenging than updating the subcomponent values
of θ because, in this case, the original distribution of θTot Sys is not a beta distribution. Recall that the prior distribution of θTot Sys was
analytically challenging to work with and, as a result, was obtained using Monte Carlo methods. It is not uncommon for practitioners
to approximate this prior with another (perhaps Beta) distribution (see [1], [6], [11], [12], [13] and [18]) to make the posterior analysis
simpler and more convenient. Others redefine the priors of the independent components entirely just so the prior of the total system’s
reliability is analytically tractable. Zoh et al. (see [19]), for example, set the priors of the components to negative log-gamma distributions,
yet they still had to execute complicated Markov chain Monte Carlo methods to do posterior analysis of the total system.

These workarounds and approximations to make posterior analysis easier are not necessary! In this paper we alert the reader
of a simple and quick Monte Carlo method which updates the prior distribution of θTot Sys after testing the entire system. This method
is a simple application of the algorithm proposed by Rubin (see [15]). Rubin observed that a sample from the posterior distribution of a
parameter can be obtained by first generating values from its prior and then generating data conditioned on these sampled values. Those
values of the parameter for which the generated data match the observed data follow the posterior distribution.

To apply this algorithm in our case, we begin by writing the posterior for θTot Sys as

π
(
θTot Sys|xTS

)
∝ p

(
xTS|θTot Sys

)
π
(
θTot Sys

)
,

where

p
(
xTS|θTot Sys

)
=

(
nTS

xTS

)
θ xTS

Tot Sys
(
1−θTot Sys

)nTS−xTS , (6)

nTS and xTS are the number of tests (and successes) of the total system. Given that x∗TS successes have been observed from nTS trials
of the total system, we sample from the posterior π

(
θTot Sys|xTS = x∗TS

)
by first simulating from the prior of θTot Sys, π

(
θTot Sys

)
.1 We

then condition on these sampled values of θTot Sys to generate candidate values of xTS from the likelihood shown in Equation (6). The
simulated values of θTot Sys for which the likelihood generates xTS = x∗TS are then considered to be an exact sample from the posterior.
The details of this algorithm (assuming the subsystems work in series2) are given below in Procedure 3.

Procedure 3: Simulating nSim values of θTot Sys from π
(
θTot Sys|xTS = x∗TS

)

input : π (θ1|x1) ,π (θ2|x2) , . . . ,π (θS|xS) ,nSim,nTS,x∗TS

output: θ (1)
Tot Sys,θ

(2)
Tot Sys, . . . ,θ

(nSim)
Tot Sys

i ← 1
while i < nSim do

θ (i), cand
Tot Sys ← 1

for j ← 1 to S do
Generate θ (i)

j ∼ π (θ j|x j)

θ (i), cand
Tot Sys ← θ (i), cand

Tot Sys ·θ (i)
j .

Generate xTS ∼ Binomial
(

nTS,θ
(i), cand
Tot Sys

)
.

if xTS = x∗TS then
θ (i)

Tot Sys ← θ (i), cand
Tot Sys

i ← i+1

1An algorithm similar to the ones shown in Procedure 1 or Procedure 2 could be used to sample from the prior, π
(
θTot Sys

)
.

2Minor changes to the first ‘for’ loop of the algorithm would be necessary if the subsystems did not work in series.
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Figure 13.  Flowchart of system composed of m subsystems working in series.

Subs1

Subs2

Subs2

Subs3

Subs4

Subs4

· · ·

Figure 14.  Flowchart of system composed of m subsystems with every other subsystem working in series.
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and pj = α/(α + β) = 999/(999 + 0.5). With these simu-
lated test sizes, and assuming that the entire system is 
tested twice (with both tests being a success), the time it 
took to generate 10,000 draws from the posterior of the 
total system’s reliability can be calculated. Table 1 shows 
the results of doing this 100 times and calculating the 
average time it took to generate these posterior values 
for m = 10, 20, 30, 40, and 50.

It is clear from Table 1 that this algorithm efficiently 
calculates the posterior of the total system’s reliability.

CONCLUSION
This article reviews some of the methodologies 

related to Bayesian reliability. It initially focuses on suc-
cess/failure data of systems and their subsystems. The 
article specifically addresses how the number of subsys-
tem (or total system) tests affects the reliability of the 
entire system. It also presents a simple and efficient 
Monte Carlo method that can be employed to update 
the prior of a total system’s reliability when only data 
from the total system are available.
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Tracking Methods for Converted 
Radar Measurements

Alexander J. Pei

ABSTRACT
Target tracking is a critical component in defense and airspace protection. To provide awareness 
of potential enemy threats through target tracking, dynamic states are repeatedly updated based 
on observations. Because common dynamic models of moving objects typically use Cartesian 
coordinates, target tracking systems typically use this coordinate system as well. This presents a 
statistical challenge, however, when observations are recorded with different coordinate systems. 
This is the case with radar measurements, which use spherical coordinates (range, bearing, and 
elevation) instead of Cartesian coordinates (x, y, z). The main problem is integrating the statistics of 
new measurements with a priori state estimates to provide an updated a posteriori estimate. This 
article focuses on a converted-measurement approach to compute descriptive Cartesian statistics 
from spherical measurements for updates in a linear tracking system. Converted-measurement 
tracking, compared with mixed-coordinate tracking, can facilitate multisensor fusion in complex 
sensor networks. Various converted-measurement methods were evaluated, including Taylor 
approximations, unscented transforms, and debiased statistical methods, in a simple tracking 
scenario. Tracking performance varied across these three methods depending on the geometry 
of the scenario, so users of converted-measurement methods should evaluate the performance of 
each method for their given domain and application.

Cartesian coordinates and described by Newton’s equa-
tions of motion, is used to model and predict the trajec-
tory of an object.

Tracking using Kalman filtering techniques iteratively 
compares the predicted dynamic state of the trajectory 
with measurements of the dynamic states to update the 
state estimation at a particular time.1 A common chal-
lenge is that the measurements of the dynamic states 

INTRODUCTION
Airspace protection starts with a comprehensive 

understanding of the potential threats. This involves 
understanding not only the location of objects but also 
how the objects’ motion evolves over time, enabling 
differentiation between a fast-moving missile and a 
slow-moving weather balloon, for example. Track-
ing a moving object involves real-time updates to its 
dynamic states. A dynamic model, typically expressed in 
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are not direct; rather, they 
are indirect measurements 
of the true dynamic state 
through some physical phe-
nomenon. Radar measure-
ments are a classic example 
of indirect measurements 
of Cartesian coordinates. 
Instead of directly measur-
ing Cartesian coordinates, 
radars provide range, bear-
ing, and elevation (RBE) 
through the reflection of 
transmitted radio waves off the target object.2

Integrating indirect measurements to update the 
estimated dynamic state is not a trivial problem. With 
limited measurements, it might not be possible to com-
pletely observe the dynamic states; for instance, if a 
radar provides only range and bearing, the z-coordinate 
cannot be inferred.3 Additionally, the nature of the 
indirect measurement modality, specifically function 
mapping the states to these measurements, plays a cru-
cial role in the measurements’ integration into state esti-
mation by the tracker. This is because tracking is done 
in a statistical framework, where there is uncertainty 
associated with each estimated state. Both the ensemble 
of predicted measurement uncertainties and the actual 
measurement uncertainties contribute to the overall 
uncertainty in the estimated state.

Herein lies the problem: If the states and measure-
ments are in different coordinate systems, the uncer-
tainty of the updated state may not be well defined.4 
Figure 1 highlights the nature of this problem, where 
points are drawn from a Gaussian distribution in 
spherical coordinates and converted to Cartesian coor-
dinates. In Cartesian space, the resulting distribution 
of points no longer forms an ellipse, indicating that it 
cannot be accurately represented by a Gaussian distri-
bution. As a result, traditional linear tracking tech-
niques cannot be applied, and the state estimation is 
no longer optimal.

This problem can be resolved using extended Kalman 
filters (EKF), unscented Kalman filters (UKF), or par-
ticle filters (PF) to handle the nonlinearity introduced 
by the spherical-to-Cartesian-coordinate transforma-
tion.1,5 A critical aspect of these filtering techniques is 
the calculation of the innovation, which is the differ-
ence between the predicted measurement and the actual 
measurement. This method of tracking is referred to 
as mixed-coordinate tracking since the dynamic state 
space and the measurement space are both maintained 
throughout the update equations.4 An alternative 
method is converted-measurement tracking, where the 
measurements are converted to the coordinate system 
the state space uses, allowing for linear Kalman filtering 
(assuming that the transition function is linear).4

Regardless of the tracking method, the problem of 
transforming the statistics of random variables from 
one coordinate system to another persists. Although 
mixed-coordinate tracking is a valid method, prac-
tical constraints may limit its usage. In general, 
mixed-coordinate methods require greater computa-
tional power to handle nonlinearities.6 In addition, 
multisensor fusion and integration may be easier in a 
converted-measurement framework, where multiple 
nonlinear observations are abstracted away before mea-
surement fusion. For example, the potential location of 
a target from a bistatic radar is an ellipse around the 
transmitter and receiver pair. Although this measure-
ment is not informative by itself, multiple bistatic radars 
can localize a target through the intersection of ellipses 
and provide a single measurement of the target location 
in Cartesian coordinates to update the tracker.7 Figure 2 
shows a hypothetical scenario fusing both monostatic 
and bistatic radar measurements to update a track after 
converting both to Cartesian coordinates.8

r = 30.0 r = 72.5 r = 115.0 r = 157.5 r = 200.0

y 
(m

)

x (m)

Figure 1.  Effect of spherical-to-Cartesian-coordinate transformation at varying ranges. σr = 5, 
σθ = 0.1, θ = 0.

Monostatic
measurements

Convert to
Cartesian

Fuse and
update track

1 2

1

Bistatic
measurements

Convert to
Cartesian2

Figure 2.  Hypothetical multisensor system tracking a target using 
both (1) monostatic and (2) bistatic radar measurements. After 
conversion to Cartesian coordinates, the resulting state estimates 
and uncertainties can be fused to simultaneously update a track.
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This article presents converted-measurement meth-
ods for radar tracking applications. First it shows that 
converting spherical to Cartesian coordinates introduces 
a bias in the converted measurements and describes how 
these biases can be accounted for. It then presents three 
ways to propagate the spherical statistics to Cartesian 
statistics: debiased measurements, Taylor approxima-
tions, and unscented transforms. The three methods 
were tested in a simple tracking scenario to highlight 
the strengths and weaknesses of each in practice.

BACKGROUND
Linear State Estimation

Consider a dynamical system with a linear transition 
function FF and linear observation function HH:

	 xk+1 = Fxk +wk 	 (1)

	 yk = Hxk + vk 	 (2)

The Kalman filter update equations provide an opti-
mal estimate (in the mean-squared error sense) of the 
state variables xxkk, as well as the uncertainties associ-
ated with these estimates. The a priori and a posteriori 
estimates of the state variables at time kk are denoted xxkk 

_
 

and xxkk + with covariance matrices PPkk 
_
 and PPkk +. These two 

state estimates represent the optimal estimation of the 
state variables before and after an observation is made 
at time kk. The model process noise and measurement 
noise variables wwkk and vvkk are zero-mean with covariance 
matrices QQkk and RRkk. The optimality is contingent on the 
following critical assumptions: Both the transition and 
observation functions are linear, and the state and noise 
variables are normally distributed. These assumptions 
yield the Kalman filter update equations1:

	 x−
k = Fx+

k−1	 (3)

	 P−
k = FP+

k−1F
⊤ +Qk 	 (4)

	 Sk = HP−
k H

⊤ +Rk 	 (5)

	 Kk = P−
k H

⊤S−1
k 	 (6)

	 x+
k = x−

k +Kk(yk −Hx−
k )	 (7)

	 P+
k = (I−KkH)P−

k 		 (8)

Eq. 3 shows how the a priori estimate xxkk 
_
 is calculated 

by propagating the a posteriori estimate from the previ-
ous time point through the linear transition function. 
The covariance of this state estimate is given in Eq. 4, 
which incorporates the uncertainties propagated from 
the previous time point using the transition function 

(FPFPkk +- 1- 1FF
⊤) along with the process noise of the system 

QQkk. The resulting xxkk 
_
 can also be thought of as the pre-

dicted state variable at time kk and can be used to gener-
ate the predicted measurement HHxxkk 

_
 via the observation 

function. The covariance of the predicted measurement 
SSkk is given in Eq. 5 and accounts for the uncertainties 
of the predicted measurement and the measurement 
noise. The Kalman gain in Eq. 6 determines how much 
weight the measurement yykk should have when updating 
the state estimate. For illustration purposes, consider 
the case where the state is one-dimensional and HH = 1 = 1. 
The Kalman gain is the ratio of variances between the 
a priori state estimate variance and the predicted mea-
surement variance. A higher Kalman gain places greater 
weight on the innovation term yykk – HHxxkk 

_
 when calculat-

ing the a posteriori state estimate in Eq.  7. The cova-
riance of the a posteriori estimate in Eq.  8 is a scaled 
version of the a priori covariance, where the scale is 
determined by the relative values of the a priori noise 
and the measurement noise.

It is useful to reiterate that the a priori covariance 
matrix 

It is useful to reiterate that the a priori covariance matrix
P−

k := E
[
(xk − x−

k )(xk − x−
k )

⊤] reflects the uncertainty in the estimation of the true  reflects the 
uncertainty in the estimation of the true state variable. 
The same definition holds for the a posteriori state esti-
mate; however, this estimate will have lower uncertainty 
since it incorporated the information received from 
the measurement. If the a priori states and covariance 
matrices are normally distributed, the resulting updated 
a posteriori states and covariances will also be normally 
distributed, and the estimates will remain optimal.5

Linear State Transition with Nonlinear Observation
If the strict linear assumptions about the transition 

function or observation functions are violated, the sta-
tistics for the state estimates are no longer normally 
distributed, and the Kalman filter update equations do 
not provide an optimal estimate. The remainder of this 
article assumes a linear state transition function with a 
nonlinear observation function:

	 xk+1 = Fxk +wk 	 (9)

	 yk = h(xk) + vk	 (10)

This is common in radar tracking applications, where 
the dynamic models typically use a Cartesian coordi-
nate system and the measurements use a spherical coor-
dinate system. The function hh( ( · )) converts the predicted 
state vector into a predicted measurement. This poses 
an issue: The Kalman filter considers the uncertainties 
from the predicted state and the measurement (as shown 
in Eq.  5), and this fusion is not trivial if these uncer-
tainties are not expressed using the same coordinate 
system. Mixed-coordinate systems handle this problem 
in a variety of ways. EKFs make a linear approximation 
to the observation function and subsequently use linear 

http://www.jhuapl.edu/techdigest


A. J. Pei

Johns Hopkins APL Technical Digest, Volume 38, Number 1 (2025), Article 2503437 
www.jhuapl.edu/technical-digest4

Kalman filter update equations.9 This approximation can suffer if the observation function is highly nonlinear. UKFs 
use an unscented transform (UT) to estimate the statistics of the transformed random variable through the observa-
tion function by using a set of carefully selected and weighted points.10 PFs use sampling to calculate the posterior 
distribution of the state after new information is acquired in a Bayesian framework.5 In linear Kalman filtering, the 
posterior distribution (specifically the evidence term) is tractable and has a closed-form solution. Thus, it is theoreti-
cally possible to achieve optimal nonlinear filtering using PFs, given an infinite number of samples.

DEBIASED CONVERTED MEASUREMENTS
Converted-measurement techniques deal with the nonlinearity in Eq. 2 by converting the measurements to the 

same coordinate system the state space uses. However, converting measurements from spherical to Cartesian coor-
dinates introduces an unintentional bias, as shown in Figure 3. The following section contains equations from Lerro 
and Bar-Shalom,4 and a full derivation for the equations can be found in the original paper. An abridged version is 
presented here for readability, alongside figures for visualization. Consider a measurement with range rr and bearing θ. 
The measured range and bearing can be thought of as the true underlying measurements with additive noise:

	 rm = r + vr 	 (11)

	 θm = θ + vθ 	 (12)

where rrmm and θmm are the measured range and bearing, and vvrr and vvθ are the zero-mean additive noise terms with 
variance σrr 2 and σθ 2. The converted measurements can then be expressed as deviations away from the true Cartesian 
position:

	 xm = x+ vx = rm cos θm
ym = y + vy = rm sin θm

	 (13)

	
xm = x+ vx = rm cos θm
ym = y + vy = rm sin θm	 (14)

where xx and yy are the true Cartesian coordinates with additive noise vvxx and vvyy. The goal is to properly model the 
statistics of vvxx and vvyy to use during the Kalman filter update equations. The mean value of the errors are:

	 E[vx] = r cos θ(e−σ2
θ/2 − 1)

E[vy] = r sin θ(e−σ2
θ/2 − 1)

	 (15)

	

E[vx] = r cos θ(e−σ2
θ/2 − 1)

E[vy] = r sin θ(e−σ2
θ/2 − 1)	 (16)

with variances and covariances:

	 σ2
x = r2e−σ2

θ

[
cos2 θ(cosh(σ2

θ)− 1) + sin2 θ sinh(σ2
θ)
]
+ σ2

re
−σ2

θ

[
cos2 θ cosh(σ2

θ) + sin2 θ sinh(σ2
θ)
]

[
+ σ2

re
−σ2

θ

	 (17)

	

[
cos2 θ(cosh(σ2

θ)− 1) + sin2 θ sinh(σ2
θ)
]
+ σ2

re
−σ2

θ

σ2
y = r2e−σ2

θ

[
sin2 θ(cosh(σ2

θ)− 1) + cos2 θ sinh(σ2
θ)
]
+ σ2

re
−σ2

θ

[
sin2 θ cosh(σ2

θ) + cos2 θ sinh(σ2
θ)
]

W

	 (18)

y 
(m

)

x (m) x (m)

Cartesian coordinates
2,000

1,000

0

–1,000
–1,000 –950 –900 –60 –50 –40 –30 –20

Converted measurements

Converted true mean
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Figure 3.  Converted-measure-
ment bias. Ten thousand sample 
points for a given range and 
bearing were drawn, with a bear-
ing of π and σθ = 0.1, σr = 5. Each 
sample point was converted to xx 
and yy coordinates using xx = r cos 
θ and yy = r sin θ. The true mean 
was converted and compared 
with the calculated sample mean 
of the transformed points. Left, 
r = 1,000 m. Right, r = 50 m. The 
bias offset is more dramatic at 
farther ranges.
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σxy = sin θ cos θe−2σ2

θ

[
σ2
r + r2(1− eσ

2
θ )
]
	

(19)

There are a few important points about the statistics of the Cartesian errors. The first is that Eqs. 15 and 16 show 
that the expectation of the errors is nonzero; this is an issue for Kalman filtering, which assumes zero-mean errors. 
The second is that the Cartesian errors are coupled since changes in range or bearing affect both variances in Carte-
sian. This is also demonstrated by the fact that the cross-covariance of vvxx and vvyy is nonzero. Cross-covariance between 
xx and yy can make decoupled tracking11 difficult, which is desirable for easier tuning and computational needs. These 
equations also quantify how uncertainties in xx and yy increase as a function of range for a given bearing value, as 
shown by the rr2 term in Eq. 17, 18, and 19.

Finally, and perhaps most importantly, the statistics of the Cartesian errors depend on the true range and bearing, 
which are obviously not acquirable in realistic tracking scenarios. Instead, the same process can be repeated but using 
the measured range and bearing as proxies for the true range and bearing. The expected value of the errors given the 
measurements is:

	 E[vx | rm, θm] = rm cos θm(e
−σ2

θ − e−σ2
θ/2)

E[vy | rm, θm] = rm sin θm(e
−σ2

θ − e−σ2
θ/2)

	 (20)

	

E[vx | rm, θm] = rm cos θm(e
−σ2

θ − e−σ2
θ/2)

E[vy | rm, θm] = rm sin θm(e
−σ2

θ − e−σ2
θ/2)	 (21)

Thus, the debiased corrected coordinate conversion is:

	 x̃m = xm − E[vx | rm, θm]
ỹm = ym − E[vy | rm, θm]

	 (22)

	
x̃m = xm − E[vx | rm, θm]
ỹm = ym − E[vy | rm, θm]	 (23)
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Figure 4.  The variances and covariances of the true and debiased error with σr = 5 and σθ = 0.1. Left plots show the variance values for 
the true error. Middle plots show the variance values for the debiased error. Right plots show the difference in variance between the left 
and right plots. Variance in all dimensions increases as a function of range because of the rr2 term, which results from angle errors being 
amplified at farther ranges. For a given range value, there are peaks and troughs in variances as a function of bearing.

http://www.jhuapl.edu/techdigest


A. J. Pei

Johns Hopkins APL Technical Digest, Volume 38, Number 1 (2025), Article 2503437 
www.jhuapl.edu/technical-digest6

with variances and covariances:

	
σ̃2
x =r2me

−2σ2
θ

[
cos2 θm(cosh 2σ

2
θ − cosh σ2

θ) + sin2 θm(sinh 2σ
2
θ − sinh σ2

θ)
]

+ σ2
re

−2σ2
θ

[
cos2 θm(2 cosh 2σ

2
θ − cosh σ2

θ) + sin2 θm(2 sinh 2σ
2
θ − sinh σ2

θ)
]	 (24)

	
σ̃2
y =r2me

−2σ2
θ

[
sin2 θm(cosh 2σ

2
θ − cosh σ2

θ) + cos2 θm(sinh 2σ
2
θ − sinh σ2

θ)
]

+ σ2
re

−2σ2
θ

[
sin2 θm(2 cosh 2σ

2
θ − cosh σ2

θ) + cos2 θm(2 sinh 2σ
2
θ − sinh σ2

θ)
]	 (25)

	 σ̃2
xy = sin θm cos θme

−4σ2
θ

[
σ2
r + (r2m + σ2

r)(1− eσ
2
θ )
]
	 (26)

These equations provide an unbiased coordinate conversion to be used in a linear tracking regime. Figure 4 shows 
the variances using the true range and bearing values as well as the variances of the unbiased estimate using the mea-
sured range and bearing values. The expected value of the biased and debiased errors is shown in Figure 5. Increased 
areas of uncertainty for the measurements result in a noisier, less smooth track.

TAYLOR APPROXIMATION OF THE SPHERICAL-TO-CARTESIAN TRANSFORM
Converting spherical measurements to Cartesian involves a nonlinear transformation as follows:

	 x = r cos θ	 (27)

	 y = r sin θ 	 (28)

Let ff(yy) denote the function, which maps the measurement vector yy containing the range and azimuth measure-
ments to Cartesian coordinates. The notation with the scalar yy is the Cartesian coordinate, whereas the vector yy is 
the vector containing the observed spherical measurements. A local linear approximation around yy perturbed around 
the mean by the noise values is as follows:
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Figure 5.  Expected value of the measurement conversion errors for xx (left plots) and yy 
(right plots) dimension before (top plots) and after (bottom plots) debiasing. Expected 
errors also increase as a function of range and vary sinusoidally as a function of bearing. 
Note the scale differences in the color axis.
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y =

[
r
θ

]
=

[
rm − qr
θm − qθ

]

q =

[
qr
qθ

]
= y − ym

f(y) ≈ f(ym) + J× (y − ym)
		

(29)

	
J =

[
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

] ∣∣∣∣
r=rm,θ=θm

=

[
cos(θm) −rm sin(θm)
sin(θm) rm cos(θm)

]

	
(30)

where JJ denotes the Jacobian matrix containing the partial derivatives of ff( · ) with respect to the spherical variables 
evaluated around the fixed point. The covariance of the measurement can then be written as:

                  PCart := E
[
(f(y)− E[f(y)])(f(y)− E[f(y)])⊤

]
	 (31)

	  ≈ E
[
(J× (y − ym)− E[J× (y − ym)])(J× (y − ym)− E[J× (y − ym)])

⊤]
[
(Jq − E[Jq])(Jq − E[Jq])⊤

]
[ ⊤] ⊤

� (32)

                            
≈ E

[
(J× (y − ym)− E[J× (y − ym)])(J× (y − ym)− E[J× (y − ym)])

⊤]

= E
[
(Jq − E[Jq])(Jq − E[Jq])⊤

]
[ ⊤] ⊤

� (33)

                            

(J× (y − ym)− E[J× (y − ym)])(J× (y − ym)− E[J× (y − ym)])
⊤

[
(Jq − E[Jq])(Jq − E[Jq])⊤

]

= JE
[
(q − E[q])(q − E[q])⊤

]
J⊤ � (34)

                             := JPSphereJ
⊤� (35)

where PPSphereSphere is the measurement covariance matrix for the range and bearing uncertainties. After applying this 
transformation, the measurements and descriptive statistics thereof are in Cartesian coordinates, and traditional 
linear Kalman filtering can be used. Note when calculating the innovation, which is the difference between the pre-
dicted state and the converted measurement, either the linear approximation to ff(yy) or the true nonlinear conversion 
can be used.

Even though the expected value of the errors E[ [ ff((yy) ) – ff((yymm)])] = E[[JJ × (× (yy  – yymm)])] = 0, large errors in the linear 
approximation can occur at large ranges or with noisy bearing measurements and can cause biases in the estimation. 
This is shown in Figure 6, where the nonzero-mean errors in the approximation increase as a function of range. Simi-
lar to the debiased measurement, the errors also vary as a function of the bearing angle.

UNSCENTED TRANSFORM
As mentioned, the issue is the lack of knowledge of the statistics of the transformed random variable ff(yy). One 

heuristic Monte Carlo approach is to sample a large number of points from the normal distribution N((yy, PPSphereSphere)) and 
apply the nonlinear observation 
function ff( · ) to each of the points. 
This approach is similar to PFs in 
the sense that the propagation of 
points captures the statistics of the 
transformation through the func-
tion. The mean and covariance 
of all the resulting samples can be 
used as a proxy for the statistics of 
ff(yy) to update the linear Kalman 
filter equations. This approach is 
computationally limited, since the 
number of required points increases 
exponentially with the number of 
state variables in order to suffi-
ciently sample the state space.
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Figure 6.  Expected value of the Taylor series approximation error for xx (left) and yy (right) 
with σr = 5 and σθ = 0.1. A Monte Carlo approach was used to calculate the expected error 
by sampling 10,000 points in the spherical coordinate system and calculating the average 
error between the true xx and yy point and the converted points. These errors follow a pat-
tern similar to that of the expected errors in the debiased approach; however, the axis of the 
color bar is larger for the Taylor approximation.
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The UT typically used in 
UKFs takes a similar approach 
but carefully selects the sampled 
points to efficiently calculate 
the statistics of the transformed 
random variable. Let LL be 
the number of variables in yy. 
A matrix Y of 2LL + 1 sigma 
points Yii (each the size of the 
state vector) is constructed to 
sample the state space. The 
sigma points are passed through 
the observation function, after 
which the sample mean and covariance of the trans-
formed points are used as an estimate for the statistics of 
ff(yy). Using the equations specified by Simon,1 the sigma 
points are calculated as follows:

Y0 = y (36)

(37)

(38)

(36)

	  Yi = y +
√
LAi i ∈ {1, . . . , L}

i ∈ {1, . . . , L}
� (37)

(36)

i ∈ {1, . . . , L} (37)

YL+i = y −
√
LAi i ∈ {1, . . . , L} (38)� (38)

where PPSphereSphere = AAAA⊤ and AAii is the iith column of AA.
To understand how the sigma points are calculated, 
consider the 1D case where there is one state variable 
(LL = 1). The covariance matrix is thus a scalar value, 
and the square root of it gives the standard deviation. 
The two sigma points are then ±1 standard deviation 
around the mean value. In higher dimensions, consider 
the case where PPSphereSphere is a diagonal matrix. This means 
that the eigendecomposition of PPSphereSphere = QQΛQQ⊤ is equal
to the Cholesky decomposition12 PPSphereSphere = AAAA⊤. Thus
the columns of AA are the eigenvectors of PPSphereSphere. As a 
result, each pair of sigma points symmetric about the 
mean (since it is plus and minus around the mean) is 
in equal and opposite directions along the axes of the 
ellipsoid defined by the original probability distribution. 
Loosely summarized, the characteristics of the original 
distribution are captured through the placement of these 
points along principal the axes of the ellipsoid defined 
by the covariance matrix.

The mean and covariance of ff(yy) are then estimated 
by:

Xi = f(Yi) (39)

x̄ =
1

2L+ 1

2L∑
i=0

Xi
(40)

PCart =
1

2L+ 1

2L∑
i=0

(Xi − x̄) (Xi − x̄)⊤� (41)

where xx − is the converted measurement in Cartesian
using the UT. This particular formulation of the UT 
matches the moments of the transformed random 

variable up to the second order. This means that the 
terms up to the second order in the Taylor series expan-
sion of the mean and covariance of ff(yy) are equal to 
those estimated using the UT.1,6 The variety of UT for-
mulations differ in how they calculate the sigma points 
and their respective weights. Depending on a priori 
assumptions about the distribution’s spread after trans-
formation, it may be desirable to introduce parameters 
that adjust the scaling of AAii to reflect an expansion or 
contraction of the sigma points’ distribution around 
the mean.6 Other algorithms10 use more or fewer sigma 
points than 2LL + 1, and this may be helpful with differ-
ent computational limitations and requirements.

The bias of the UT is shown in Figure 7 and closely 
matches the bias of the true transformation. This is con-
sistent with the UT’s design, which aims to match the 
first moment of the nonlinear function.

COMPARISON OF CONVERTED-MEASUREMENT 
METHODS
Area of Uncertainty

The covariance structure for the Taylor and UT are 
similar to the covariance structure for the true error 
statistics. However, the area of uncertainty determined 
by the covariance matrix varies between the methods. 
Figure 8 shows the area of uncertainty for the meth-
ods presented. Notably, the UT and Taylor approxi-
mation are biased away from the mean of the true 
measurement.

Covariance containment of the measurements is crit-
ical to successful tracking. Figure 9 shows the areas of 
uncertainty as a function of range for the three methods 
and true statistics. (Varying θ did not affect the area of 
uncertainty for a fixed range value.) The figure shows 
that the area of uncertainty for the Taylor approxima-
tion and UT is less than the true statistics. This can 
make the tracker more susceptible to outliers and can 
lead to losing a track. On the other hand, the debiased 
area of uncertainty is larger than the true statistics. This 
can make the tracker more robust to outliers but can also 
lead to slow responsiveness to new measurements.
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Tracking Performance
We tested the debiased, Taylor approximation, EKF, 

and UT methods against the true statistics in a suite of 
tracking scenarios. A 2D simulated trajectory started at 
(100 km, 100 km) with an initial x-velocity of 50 m/s and 
y-velocity of 100 m/s, with a constant velocity dynamic 
model and σmm = 1 according to Blackman and Popoli.13 
Simulated range and bearing measurements were gener-
ated from the ENU (east, north, up) coordinates with 
random noise of σrr = 25 and σθ = 1°. A total of 1,000 tra-
jectories were simulated for 200 s. An example trajectory 
is shown in Figure  10. Perfect dynamic model match-
ing and measurement association was assumed for these 

simulations. The initial track state for each method was 
initialized identically; the first two measurements were 
converted to ENU, and the difference in position over 
the difference in time was used for the initial velocity. 
The initial position covariance was set to the position 
covariance of the second measurement, and the velocity 
covariance was calculated using (PP1 + PP2)/(∆tt)2, where 
PP1 and PP2 are the converted RBE to ENU measurement 
covariances using the Taylor approximation.

The simulated data were tracked using the equations 
specified in this article via a built-in Kalman filter in 
MATLAB, but the measurement means and covariances 
were adjusted according to the converted-measurement 
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method. For the Taylor approximation, measurements 
were converted using Eqs.  13 and 16, and Eq.  35 was 
used for the covariance of the approximation. Tracking 
performance was evaluated using the normalized estima-
tion error squared calculation (NEES) and root mean 
square error. NEES was calculated for each time point 
and averaged across all time points and all runs. The 
results are shown in Figures 11 and 12.

DISCUSSION
Tracking using radar measurements is a challenging 

statistical problem because of the nonlinearities intro-
duced by using spherical coordinate measurements for 
observations while using a Cartesian coordinate system 
for the dynamic model. The spherical coordinates can be 
retained in their original form to be tracked using EKF/
UKFs and PFs in a mixed-coordinate regime or converted 
to Cartesian coordinates in a converted-measurement 
regime. Both approaches have their benefits. This 

article details three converted-measurement techniques 
to address the nonlinear tracking problem: debiased coor-
dinate conversions, Taylor series approximation, and UT. 
Each of these methods converts the spherical coordinate 
measurements to Cartesian coordinates and attempts to 
describe the uncertainties after propagation through the 
coordinate transform. The performance of these meth-
ods was explored in a simple tracking scenario.

Converting range and bearing measurements intro-
duced a bias in Cartesian coordinates; that is, the errors 
between the converted measurements and the true point 
in Cartesian coordinates were nonzero. When used in 
tracking, this violates the Kalman filter’s assumption 
that the errors are zero-mean. All three methods exhib-
ited nonzero errors (though the debiased measurements 
had much smaller biases) in a similar characteristic pat-
tern, where the magnitude of Cartesian errors increased 
as a function of range. This makes sense, since errors 
in bearing are amplified at farther ranges. For example, 
a point travels a greater distance around a circle at a 
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farther radius for a given angle difference. For a given 
range, Cartesian errors varied sinusoidally as a function 
of bearing. The peak xx error occurred at θ = π, while the 
peak yy error occurred at θ = π/2. These values both cor-
responded to when cos θ and sin θ were at their respec-
tive maximums, thus amplifying their uncertainties 
when converting to Cartesian via rr cos θ and rr sin θ. 
The errors of the UT and the true conversion were simi-
lar in magnitude, in agreement with the UT’s matching 
of the first and second moments of the nonlinear func-
tion it is approximating.1 Although the Taylor approxi-
mation matched the pattern, it had an overall larger 
magnitude of errors, suggesting the importance of the 
ignored higher-order terms.

The variances of the errors increased with range and 
followed a sinusoidal pattern. While only the variance 
patterns for the debiased conversion in Figure  4 are 
presented, both the Taylor approximation and the UT 
showed similar patterns. Contrary to what was briefly 
suggested in the original paper,4 the difference between 
the true and debiased variances did not always strictly 
increase in the debiased case; instead, it varied sinusoi-
dally. The individual debiased variances (each entry in 
the covariance matrix) were initially expected to be con-
sistently greater, considering they incorporate the mea-
surement uncertainties. However, the analysis revealed 
that the area of uncertainty was indeed larger in the 
debiased case across different ranges and bearings. The 
area of uncertainty as a function of ranges and bearings 
for each method was further investigated. Notably, vary-
ing the bearing while keeping the range constant did not 
alter the area of uncertainty. The debiased area of uncer-
tainty was larger than the true uncertainty, whereas the 
UT and Taylor approximation yielded smaller areas. The 
relative size of the uncertainty area, larger or smaller 
compared with the true distribution, is not inherently 
advantageous or disadvantageous; it depends on the spe-
cific application. A larger uncertainty area makes the 
filter less responsive to accurate measurements but more 
resilient to outliers. Qualitatively, the UT most closely 
matched the true distribution of uncertainty, as illus-
trated in Figure 9.

The conversion methods’ performance was tested in 
the simulated tracking scenario. Notably, the EKF and 
the UT performed best. Despite the debiasing proce-
dure, the debiased converted-measurement method suf-
fered at farther ranges in RMS error. This is potentially 
due to the Gaussian assumption of the noise failing at 
longer ranges. The UT can better match the true covari-
ance, which may be more important than correcting for 
the bias. There was no significant improvement in com-
bining the UT with the debiased measurements. This 
may suggest that improvements in NEES and RMS error 
using the UT are due to the more accurate covariance 
estimation, since the UT retains the bias in the non-
linear conversion as a result of the moment matching. 

Interestingly, the position NEES for the debiased mea-
surements outperformed the EKF. This was due to an 
observed bias in the EKF at further ranges. We empha-
size that the improvement in error using the EKF over 
the debiased method is geometry dependent. The non-
linearity using the EKF suffers at closer ranges, whereas 
the nonlinearity using the debiased method suffers at 
farther ranges. This is shown in the appendix. An inter-
esting follow-up would be to find the particular range 
and angle error values where one method would benefit 
over the other.

CONCLUSION
Tracking using radar measurements can be difficult 

because of the nonlinear coordinate transfer between 
Cartesian and spherical coordinates. This article over-
views radar tracking methods that convert the spherical 
radar measurements to Cartesian coordinates to use in a 
linear tracking framework. Three methods were used to 
propagate the statistical uncertainties into the Cartesian 
space: debiased coordinate conversion, Taylor approxi-
mation, and UT. The UT outperformed the other meth-
ods in a particular tracking scenario, while the EKF and 
debiased coordinate conversion demonstrated varying 
performances as a function of geometry.
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APPENDIX.  TRACKING SCENARIO AT CLOSER RANGE
The initial position was set to (1 km, 1 km) and σθ was set to 0.1°. Results show that the EKF performed 

worse than the other methods (Figure 13).
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Figure 13.  Average RMS error for the tracking methods as a function of time. Left, position RMS error; right, velocity RMS error.
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