
Using Knowledge Graphs to Counter Weapons of Mass Destruction

1Johns Hopkins APL Technical Digest, Volume 37, Number 4 (2025), Article 2400429-5 
www.jhuapl.edu/technical-digest

Using Knowledge Graphs to Counter Weapons of 
Mass Destruction

Ray H. Mariner, Timothy P. Lippa, Phillip T. Koshute, David W. Boyce, 
Josef C. Behling, and Michael J. Peters

ABSTRACT
This article describes the development of a data-driven approach to map adversarial activity into 
machine-readable models. Specifically, this approach is grounded in well-structured knowledge 
graphs and uses a semantic representation of domain-specific pathways implementing formal 
ontology and Resource Description Framework (RDF) and Web Ontology Language (OWL). In 
addition, the article describes a web-based application through which a user can interact with 
the underlying knowledge graph. The application also allows for development of analytics that 
use these data to answer questions about adversarial activity.

INTRODUCTION
Many US  government agencies and organizations 

are involved in countering weapons of mass destruction 
(CWMD). While overall goals and specific mission objec-
tives vary, the US government typically requires access 
to experts on WMD production. When experts are not 
readily available, however, especially in operational set-
tings, the government has typically supplemented expert 
knowledge with printed material, such as note cards or 
books. In a field environment, these printed materials 
can be cumbersome to carry and use effectively, espe-
cially for new operators. Additionally, materials are often 
severely outdated because adversaries have evolved their 
tactics, techniques, and procedures (TTPs).

Another factor complicating CWMD missions is 
the lack of a common vocabulary to describe adversary 
TTPs. This, coupled with the many disparate and stove-
piped data systems, makes sharing information difficult. 
As a result, everything from retrieving information to 
developing advanced artificial intelligence and machine 

learning algorithms is inefficient and costly. APL recog-
nized the potential of semantic data models to enable a 
revolutionary shift in CWMD knowledge management 
and analysis.

Based on an Independent Research and Development 
experiment, APL researchers developed a semantic data 
model using domain-specific ontologies. Without ontol-
ogies, analysts typically rely on the natural language to 
describe the world, and natural language lacks the pre-
cision required for machine interpretation. The formal 
representation of knowledge through ontologies allows 
for greater clarity among both individuals and computer 
agents. For instance, consider the difficulty a system 
(or human) would face in understanding the intent of 
the word tank in the following example: “Tanks found 
at grid coordinates x,y, along with heavy-duty press and 
several kilograms of calcium chloride.” Because natu-
ral language is inherently overloaded, this one simple 
example quickly grows in confusion when attempting to 
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describe and model a domain of interest in any detail. 
To address the associated problems described above for 
supporting CWMD missions, APL developed several 
domain-specific ontologies to define and represent the 
relationships between entities within the field of WMD 
agent production.

Existing US Department of Defense and Intelligence 
Community systems provide information (e.g., observa-
tions of entities and events of interest). APL’s semantic 
models allow us to organize and relate this information, 
and the organization and relationships then allow us to 
reliably interpret the information and build analytical 
tools.

In 2009, the US Defense Threat Reduction Agency 
(DTRA) funded the creation of a broader set of CWMD 
adversary models in pursuit of the following objectives:

•	 Characterize threats with meaningful definitions, 
health and safety information, and physical properties

•	 Identify and document adversary TTPs for WMD 
production, weaponization, and employment

•	 Provide a standard vocabulary for CWMD missions

•	 Provide analytical capabilities to aid analysts look-
ing for WMD activity

APL, on behalf of DTRA, created these models and 
developed a comprehensive knowledge graph known as 
the Chemical, Biological, Radiological, Nuclear, Explo-
sive Semantic Framework (CBRNE-SF). This graph con-
tains the information related to processes (actions taken 
by an adversary) and observables (things needed and 
used by an adversary) to perform a specific action in pur-
suit of WMD. Pathways for more than 100 threat agents 
have been modeled, with more than 20,000 observables 
and more than 100,000  multilingual alternative labels 
and synonyms for the observables.

A simple example is presented in Figure 1. The activi-
ties are represented by rectangles, whereas observables 
are in blue type beneath each activity. If someone had 
made fresh orange juice, one could expect to observe 
oranges, a juicer, and a pitcher.

Powered by the CBRNE-SF, APL also created a user 
interface for DTRA, which is currently deployed in sev-
eral environments across many federal agencies. The 
application allows the user, or even other systems, to 
access the CBRNE-SF to quickly complete the follow-
ing tasks:

•	 Identify observables using a comprehensive list of 
synonyms and imagery for WMD agents, precursors, 
and equipment to help standardize the vocabulary 
used to describe WMD TTPs

•	 Understand how observables are associated with 
adversary activities related to WMD production, 
weaponization, and employment

•	 Understand health and hazard information on the 
effects of WMD agents and precursors, including 
chemical exposure, biological disease, and symptoms

CBRNE-SF CONSTRUCTION
The CBRNE-SF knowledge base contains the inter-

connected series of actions an adversary would likely 
take when producing, weaponizing, or employing a 
WMD. In many cases, there are several different syn-
thetic approaches to produce a WMD, so the knowledge 
base must contain all possible approaches. The knowl-
edge base is not meant to provide precise step-by-step 
instructions for producing, weaponizing, or employing 
a WMD; instead, it provides a road map to the most 
essential actions that present opportunities for discovery. 
Additionally, it leverages a diverse range of authorita-
tive sources. Subject-matter experts (SMEs) consulted 
online databases, specialized dictionaries, reference 
texts, peer-reviewed journals, and other trusted resources 
to develop each process. Whenever possible, our work-
flows are grounded in, and enriched by, peer-reviewed 
literature.

To codify the steps an adversary would use to carry 
out some activity or set of activities, we developed the 
following lexical constructs: pathways, processes, activi-
ties, observables, and signatures.

A pathway is the interconnected series of actions that 
are performed and lead to some intended outcome. In 
CBRNE-SF, this takes the form of a unidirectional flow-
chart comprising processes and activities.

A process allows for collecting related activities used 
to get to a specific end state. These processes can be 
nested as subprocesses in a bigger overall process.

An activity defines the lowest level of discrete action 
modeled in the pathway. Activities contain all the 
relevant information required for that activity to be 
completed successfully and, subsequently, all the infor-
mation that would allow the activity’s discovery. These 
activities are assembled in processes that themselves can 

Get oranges Juice oranges

Start

Get orange
juice 

concentrate

Orange 
juice

Oranges Juicer, pitcher

Orange juice
concentrate

 Pitcher, spoon,
water

Add water

Figure 1.  Example of the process of making fresh orange juice. 
Observables are listed below each  boxed activity.
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be nested in higher-level processes. Similar to Unified 
Modeling Language (UML),1 we provide constructs in 
the data model that allow for decisions to be made when 
multiple choices are available in carrying out a set of 
activities and also allow capture of activities that can be 
performed asynchronously. Supplemental information, 
such as activity descriptions, references, drawings, and 
illustrations, is also captured and associated as appropri-
ate. Within the CBRNE-SF, processes and activities can 
be reused to gain efficiency in modeling new threats. A 
SME can leverage these previously modeled items con-
taining hundreds or thousands of nodes simply by copy-
ing them. This saves considerable time and standardizes 
the processes for commonly used precursors, as well as 
allows for quick updates to the models as the threat 
landscape changes.

A key innovation for the construction of the data 
model is the idea that the pathways themselves should 
be instantiations of ontological classes. This led to the 
development of a pathway modeling ontology, with the 
resulting behavior that, as the pathways are constructed, 
the processes, activities, decisions, etc., end up as con-
nected nodes in the knowledge graph. This allows for a 
fully interconnected graph that can be easily traversed 
in a query. This enables the kinds of analysis described 
later in this article.

A pathway allows for activities to be associated with 
the set of items, or observables, required to carry out 
the activity successfully, and each of these observables 
in turn can be associated with many signatures (e.g. 
spectral). These signatures are data representations 
of how the observable “appear” when analyzed by a 
specific sensor.

Here, similar to the construction of the pathways, 
each association of an observable to an activity or sig-
nature to observable, expands the knowledge graph by 
creating additional nodes and edges in the data model.  

Observables can most simply be thought of as any-
thing that can be sensed (e.g., smelled, tasted, seen, 
heard, touched). Observables are divided into three dis-
tinct groups:

1.	 Preconditions: Observables that must be present for 
the activity to succeed

2.	 Effects: Observables produced as a result of per-
forming the activity, regardless of whether they are 
detected (Example: A reaction produces chlorine, 
but a mechanism is used to remove the chlorine 
from the waste stream. Chlorine is still called out 
as an effect.)

3.	 Incidentals: Observables that are not absolutely 
required for an activity but are likely to be present 
given what is typically used to conduct the activity 
(Example: In the chemistry domain, many reactions 
are carried out in a fume hood. The fume hood, while 

ideal for safety reasons, is not absolutely required and 
is therefore called out as incidental because it may or 
may not be present. If present, it does provide signifi-
cant clues to the type of activities being conducted.)

Each observable contains the following information 
if available from a vetted source:

•	 Definition/description

•	 Nefarious and legitimate manufacturing uses

•	 English, foreign-language, and language-independent 
alternative labels, synonyms, and colloquialisms

•	 Description of entity relationships (e.g., potential 
uses)

•	 Classification

•	 Source information (e.g., bibliographic citations)

•	 Pictures/illustrations

For biological and chemical entities, the following infor-
mation is also included:

•	 Health and hazard statements, where appropriate

•	 Physical properties, where appropriate

•	 Industrial uses

•	 Cross-references to chemical and biological datasets

•	 Machine-readable identifiers (e.g., Chemical Ab-
stract Service registry numbers)

Observables, like processes and activities, are mod-
eled as instances of classes defined within ontologies 
tailored to specific CBRNE-SF domains. These ontolo-
gies are built using the Resource Description Framework 
(RDF) and the Web Ontology Language (OWL), stan-
dards endorsed by the World Wide Web Consortium 
(W3C).2,3 RDF structures data as a graph composed 
of subject–predicate–object triples, each expressing a 
simple fact (e.g., Bill isFatherOf Steve). These statements 
are linked to form dynamically growing graphs, enabling 
rich semantic modeling, inference, and graph analyt-
ics, capabilities particularly wellsuited for representing 
adversarial activity.

To enhance semantic precision and structure, RDF 
is extended through RDF Schema (RDFS) and OWL, 
which introduce class- and property-based constructs 
for building ontologies. In this framework, classes 
define conceptual entities, and properties express the 
relationships among them, together forming a flex-
ible, machine-readable vocabulary for each domain 
of interest.

The CBRNE-SF knowledge base is fundamentally a 
composition of such ontologies. These are not limited to 
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taxonomic hierarchies; rather, concepts can assert facts 
about other concepts, creating a richly interconnected 
semantic model. To ensure consistency and expressive-
ness across domains, the domain-specific ontologies are 
aligned under foundational upper ontologies. These 
upper ontologies provide additional structure and rigor 
to the knowledge representation, though their detailed 
description lies beyond the scope of this overview.

Combining processes, activities, observables and 
signatures for a single threat agent creates a complex 
data model that a human would have difficulty under-
standing as a whole. However, given the structure of 
the CBRNE-SF, the application interface allows a user 
to easily query the graph in real time to explore com-
plex relationships among observables, activities, and 
processes for WMD production, weaponization, and 
employment. This interface provides deeper insights and 
more comprehensive answers to complex mission-critical 
questions. Figure 2 shows an example of a single threat 
pathway as an illustration of the scale and complexity of 
more than one hundred of these pathways modeled in 
the overall graph.

ANALYTICS ENABLED BY CBRNE-SF
A web application was developed to provide ana-

lysts with an interface to quickly retrieve, explore, 
and query the complex data enabling them to answer 
the most mission-relevant questions with ease. Sev-
eral analytical workflows assist system users as they 

answer mission-critical questions about observables. 
For example:

1.	 What is it?
	– Basic definition
	– Uses and regulations
	– Exposure information
	– Physical characteristics
	– Alternative identification

2.	 What can it be used for?
	– Possible nefarious WMD production routes
	– Possible non-nefarious industrial/commercial 

uses

3.	 What else should I look for?
	– A prioritized list of unique observables to guide 

further search activities
Given the machine-readable knowledge graph, queries 

are returned in real time and dynamically rendered on 
a web page. A user’s primary workflow involves search-
ing for an observable and scrolling through the Details 
page. In another workflow, the user enters observables 
into the Evidence Bag and scrolls through the returned 
output. To give some insight to the information returned 
to an analyst, a few examples are provided below.

Observable Detail Page Workflow
The observables Details page varies slightly by the 

WMD threat type, but, in general, all Details pages 
contain similar information pulled dynamically from 

Activity to produce oxalic acid in a threat pathway

React oxalic acid with 
phosphorus pentachloride to 

produce oxalyl chloride

Phosphorus
pentachloride

P

Oxalic acid
P

Chemical
reaction vessel

 P

Synthetic
chemistry heater

 P

Oxalyl
chloride 

E

Phosphorus
oxychloride

E

Hydrochloric
acid
 E

Hydrochloric
acid
E

Triethylamine
P

Chemically
resistant PPE

 I

Ventilation
equipment

 I

Figure 2.  Example of a threat pathway within the broader knowledge graph and details of a specific activity.
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CBRNE-SF through queries that traverse the knowl-
edge graph to retrieve the requested information. When 
accessing the Details page for a toxic industrial chemi-
cal (e.g., chlorine gas), the user will see a definition of 
the chemical, as shown in Figure 3. Definitions, typi-
cally written by a SME, provide basic information in an 
easy-to-understand paragraph. They are designed to be 
helpful to nonexperts and provide context for why the 
observable is part of a CWMD knowledge graph.

In the view shown in Figure 4, the user is presented 
with the activities associated with chlorine. These activi-
ties are separated by the function that chlorine plays in 
the activity (e.g., “Activity as precondition”). Chlorine is 
used in 28  activities as a precondition, indicating that 
while chlorine itself is toxic, it is also used as a precursor. 
Chlorine functions as an effect in 21 activities, indicating 
that there are 21 general ways to generate chlorine either 
as the intended product or as an incidental by-product. 
Chlorine functions in one activity as an incidental, 
indicating that it may or may not be present. While not 
shown in the figure, a user can expand each section to 
access a collapsible list of specific activities. The user can 
further click a link to a particular activity to see all of the 
content, such as activity definitions, images, durations, 
reference material, and bibliographic citations.

The CBRNE-SF also contains information on manu-
facturing uses, and similarly, if the observable is on any 
control lists, the lists will be provided in a dedicated 
section. If the user needs more information on other 
observables within a manufacturing industry or on a list, 
they simply need to click the linked text in the relevant 
section to view all of the observables in the CBRNE-SF 
with that industrial use or on that control list.

Information on uses and regulations allows the user to 
understand whether there are dual uses for the observ-
able and whether there any restrictions on its use. This 
information provides critical context and situational 
awareness for the user.

Exposure information
The application also dynamically displays exposure 

information in two sections of the Details page. The 
first section lists information extracted from safety 
data sheets, which are globally standardized documents 
detailing the harmful effects of chemical exposures. 
For all chemical threats and precursors included in the 
CBRNE-SF, such as chlorine, a safety data sheet was 
obtained and the information extracted. Figure 5 shows 
an example of the type of extracted information that is 

Figure 3.  Excerpt from the Details page for the chlorine gas observable.

Figure 4.  Activities associated with chlorine.
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included for each chemical and biological precursor, 
when available.

Physical Properties
The scientific community and the US  government 

have made considerable investments to understand phys-
ical properties of chemical and biological threat agents 
and precursors. Knowledge of these properties is critical 
for certain missions, such as modeling and simulating 
potential releases to assess consequences. Some of these 
data can be found in open sources, such as PubChem,4 
while other data can be found only in restricted gov-
ernment reports. The web application provides the user 
with a single location to access both open-source data 
and US  government-furnished data. Each data point 
has a button indicating where the data originated. For 
instance, Figure 6 displays the boiling point of chlorine, 
as obtained from PubChem.5

While the user can simply view the displayed values 
dynamically returned from the knowledge graph, it is 
also possible to create a custom query that traverses the 
CBRNE-SF to return all chemicals with a certain boil-
ing property.

Alternative Identification
Language is complex, with multiple ways to refer to the 

same object. Chemicals can be described using system 
identifiers and multilingual terms. The CBRNE-SF con-
tains all known system identifiers, such as the Chemical 
Abstracts Service (CAS) registration numbers and refer-
ence numbers for popular open-source databases, such as 
ChemSpider.6

Multilingual terms, like the ones in Figure 7 for chlo-
rine, are typically extracted from data sources such as 
PubChem. All multilingual terms that are encoded 
for a given observable are also searchable. This allows 
the user to access information on an observable with-
out needing to know the name used in the CBRNE-SF. 
As an example, each chemical in the CBRNE-SF has 
a unique URI with alternative label data semantically 
linked as a series of nodes and edges.

Figure 5.  Example of the type of information extracted from a safety data sheet.

Figure 6.  Example of physical property data from PubChem.
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	 Xr = –log(Fr),	 (1)

where Fr is the resource’s prevalence (i.e., the proportion 
of processes in which r appears). This weight is equiva-
lent to the resource’s “self-information.”8

Step 7 in the algorithm computes a similarity score 
for each process with respect to the observed evidence 
set. The similarity score for each process is computed as

	 Wp = TOVERLAP/(TOVERLAP + α*TEVIDENCE-ONLY +	
	 β*TPROCESS-ONLY).	 (2)

In Eq.  2, parameter  α determines the size of the 
penalty for resources from the evidence set that do not 
appear in process p. Parameter β determines the size of 
the penalty for resources in p that were not recorded 
within the evidence set.

Set Similarity Algorithm for Evidential Reasoning
A user is able to look for threat agent production 

processes associated with the set of entered observables. 
The application traverses the knowledge graph and pres-
ents a table of processes ordered by a calculated similar-
ity score. In set theory, this similarity score is called a 
weighted Tversky index.7 Similarity scores are described 
in more detail below.

Algorithm Overview
Figure 8 summarizes the steps involved in the 

process-ranking algorithm.
The three sets described in step 4 are related to the 

overlap of the observed resources within an Evidence 
Bag and the resources within a given process. Given an 
evidence set E and process p, three sets of resources must 
be identified:

1.	 The overlap set contains all of the resources that 
appear in E and either appear directly in p or are an 
instance of a resource that appears in p.

2.	 The evidence-only set contains resources that are in 
E but are not in p.

3.	 The process-only set contains resources that are in 
p but not in E.

These sets are illustrated in Figure 9.
In step 3, each resource r is given a weight Xr that is 

inversely related to its prevalence

Input: Evidence

Output: Highest-scoring
process

1. Compare observed resources  
    with each threat process in 
    the knowledge base

2. Identify the processes in 
    which at least one
    observed resource appears

3. Compute self-information weights for
    • each observed resource; and
      • all resources in processes in which 
  an observed resource appears

4. For each process, place   
    observed resources in   
    one of the three sets

5. Add the self-information 
   weights in each set

6. Calculate the weighted
    Tversky index (”similarity
    score”) for each process

7. Identify the process 
    with the greatest
    similarity score

Figure 8.  Steps involved in the process-ranking algorithm.

Resources from
the process

Process-
only set

Overlap set
Evidence-
only set

Resources from
the evidence

Overlap set

Figure 9.  Sets of resources.

Figure 7.  Example of multilingual terms in the CBRNE-SF.
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weight is –log(1/3)  =  1.099. Similarly, if a resource 
appears in two of three processes, its weight is  
–log(2/3) = 0.405. If a resource appears in all three 
processes, its weight is –log(3/3) = –log(1) = 0.

The process with the greatest similarity score is 
ranked the highest and can be considered the most 
likely. The score for each process is determined from the 
scores of the resources within that process, the scores 
of the resources within the 
given set of evidence, and 
the extent to which these 
sets of resources overlap.

Example Computations
To demonstrate the evi-

dence algorithm, consider 
the following example for 
making iced tea, lemonade, 
and orange juice. Figures 10 
and 11 each contain a single 
process, as does Figure 1 
shown earlier. Blue boxes 
indicate activity nodes, and 
blue type outside the boxes 
describes resources used 
in the activities. In this 
example, α and β are both 
set to 0.5, suggesting that 
it is equally important for a 
resource to be missing from 
the Evidence Bag or from a 
process.

Each time evidence is 
collected, the observables 
are compared with the 
resources in each process, 
and a corresponding score 
is assigned to each process. 
The steps enumerated below 
correspond to the algorithm 
description in Figure 8.

•	 Evidence set = {cup, ice 
cube tray, pitcher, sugar}.

•	 Steps 1 and 2: The 
resources within this 
evidence set overlap 
with the iced tea, lem-
onade, and orange juice 
processes. Therefore, 
weights must be calcu-
lated for all resources in 
these processes.

•	 Step 3: Table 1 provides 
the weights for each 
resource that appears in 
at least one process. If a 
resource appears in one 
of three processes, its 

Get ice

Start

Freezer  Ice, ice cube 
tray, water

Get freezer

Get tea  Brew 
tea

Freeze water

Mix tea
and ice

Iced tea

 Tea bags  Kettle, stove,
water

 Pitcher,
spoon

Ice

Figure 10.  Iced tea process example.

Freezer  Ice, 
Ice cube tray, 

water

Get 
lemons

 Juice
 lemons

 Lemonade 
powder

 Pitcher,
water

 Get
 ice

 Spoon

 Mix lemonade 
and ice

 Get
 sugar

 Lemonade

 Get 
freezer

 Freeze 
water

 Get lemonade 
powder

 Start
 Ice

 Add
 water

 Lemons  Sugar Cup,
juicer

Figure 11.  Lemonade process example.

Table 1.  Weights by resource for example

Resource

Appears in

Resource  
Prevalence Weight

Iced Tea  
Process

Lemonade  
Process

Orange Juice 
Process

Cup ✓ 1/3 1.099
Freezer ✓ ✓ 2/3 0.405
Ice ✓ ✓ 2/3 0.405
Ice cube tray ✓ ✓ 2/3 0.405
Juicer ✓ ✓ 2/3 0.405
Kettle ✓ 1/3 1.099
Lemonade powder ✓ 1/3 1.099
Lemons ✓ 1/3 1.099
Orange juice concentrate ✓ 1/3 1.099
Oranges ✓ 1/3 1.099
Pitcher ✓ ✓ ✓ 3/3 0
Spoon ✓ ✓ ✓ 3/3 0
Stove ✓ 1/3 1.099
Sugar ✓ 1/3 1.099
Tea bags ✓ 1/3 1.099
Water ✓ ✓ ✓ 3/3 0
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CWMD resource. It is poised to support next-generation 
generative artificial intelligence and large language 
model capability. The CBRNE-SF has contributed to 
DTRA’s position as a locus of authority for CBRNE 
ontologies, enabling tighter integration of and interop-
erability within the broader US  government CWMD 
mission space.

ACKNOWLEDGMENTS: We thank our former APL colleague 
Ryan Carr for the idea for the iced tea and lemonade 
examples.

•	 Step 4: The resources that appear in the evidence 
are compared separately with each process.

	– For the iced tea process, the resources that appear 
both in the evidence set and the process (overlap 
set) are {ice cube tray, pitcher}. The resources that 
appear in the evidence but not in the iced tea 
process (evidence-only set) are {cup, sugar}. The 
resources that appear in the iced tea process but 
not in the evidence (process-only set) are {freezer, 
ice, kettle, spoon, stove, tea bags, water}.

	– For the lemonade process, the overlap set is {cup, 
ice cube tray, pitcher, sugar}; the evidence-only 
set is the empty set (i.e., there are no resources in 
this set); and the process-only set is {freezer, ice, 
juicer, lemonade powder, lemons, spoon, water}.

	– For the orange juice process, the overlap set is 
{pitcher}; the evidence-only set is {cup, ice cube 
tray, sugar}; and the process-only set is {juicer, 
orange juice concentrate, oranges, spoon, water}.

•	 Step 5: Table 2 provides the total weight for each 
set. These totals are obtained from the sum of the 
weights of the resources in each set. For instance, 
the weight for the overlap set in the iced tea process 
is 0.405 (ice cube tray) + 0 (pitcher) = 0.405. Since 
the pitcher resource appears in all three processes, 
its weight is 0 (i.e., it does not provide any informa-
tion on which process is most similar to be active).

•	 Step 6: Given α = β = 0.5, the similarity scores for 
each process are calculated as follows:

	– WIT = 0.405 / (0.405 + 0.5*2.197 + 0.5*4.107) = 0.114
	– WLM = 2.603 / (2.603 + 0.5*0 + 0.5*3.414) = 0.604
	– WOJ = 0 / (0 + 0.5*2.603 + 0.5*2.603) = 0

•	 Step 7: WLM  =  0.604 is greater than WIT or WOJ 
(i.e., the lemonade process has the greatest similarity 
score). Therefore, the lemonade process is identified 
as the most similar.

CONCLUSION
APL has worked with the US government for more 

than 15 years to create the most comprehensive set of 
CBRNE ontologies to enable CWMD missions world-
wide. As a machine-readable representation of reality, 
the CBRNE-SF is continuing its evolution as a shared 

Table 2.  Weights for each set (from example 1)

Process

Set

Overlap Evidence-Only Process-Only

Iced tea 0.405 2.197 4.107
Lemonade 2.603 0 3.414
Orange juice 0 2.603 2.603
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