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ABSTRACT

Josef C. Behling, and Michael J. Peters

This article describes the development of a data-driven approach to map adversarial activity into
machine-readable models. Specifically, this approach is grounded in well-structured knowledge
graphs and uses a semantic representation of domain-specific pathways implementing formal
ontology and Resource Description Framework (RDF) and Web Ontology Language (OWL). In
addition, the article describes a web-based application through which a user can interact with
the underlying knowledge graph. The application also allows for development of analytics that
use these data to answer questions about adversarial activity.

INTRODUCTION

Many US government agencies and organizations
are involved in countering weapons of mass destruction
(CWMD). While overall goals and specific mission objec-
tives vary, the US government typically requires access
to experts on WMD production. When experts are not
readily available, however, especially in operational set-
tings, the government has typically supplemented expert
knowledge with printed material, such as note cards or
books. In a field environment, these printed materials
can be cumbersome to carry and use effectively, espe-
cially for new operators. Additionally, materials are often
severely outdated because adversaries have evolved their
tactics, techniques, and procedures (TTDs).

Another factor complicating CWMD missions is
the lack of a common vocabulary to describe adversary
TTPs. This, coupled with the many disparate and stove-
piped data systems, makes sharing information difficult.
As a result, everything from retrieving information to
developing advanced artificial intelligence and machine
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learning algorithms is inefficient and costly. APL recog-
nized the potential of semantic data models to enable a
revolutionary shift in CWMD knowledge management
and analysis.

Based on an Independent Research and Development
experiment, APL researchers developed a semantic data
model using domain-specific ontologies. Without ontol-
ogies, analysts typically rely on the natural language to
describe the world, and natural language lacks the pre-
cision required for machine interpretation. The formal
representation of knowledge through ontologies allows
for greater clarity among both individuals and computer
agents. For instance, consider the difficulty a system
(or human) would face in understanding the intent of
the word tank in the following example: “Tanks found
at grid coordinates x,y, along with heavy-duty press and
several kilograms of calcium chloride.” Because natu-
ral language is inherently overloaded, this one simple
example quickly grows in confusion when attempting to

%



http://www.jhuapl.edu/technical-digest

R. H. Mariner et al.

describe and model a domain of interest in any detail.
To address the associated problems described above for
supporting CWMD missions, APL developed several
domain-specific ontologies to define and represent the
relationships between entities within the field of WMD
agent production.

Existing US Department of Defense and Intelligence
Community systems provide information (e.g., observa-
tions of entities and events of interest). APLs semantic
models allow us to organize and relate this information,
and the organization and relationships then allow us to
reliably interpret the information and build analytical
tools.

In 2009, the US Defense Threat Reduction Agency
(DTRA) funded the creation of a broader set of CWMD

adversary models in pursuit of the following objectives:

e Characterize threats with meaningful definitions,
health and safety information, and physical properties

® Identify and document adversary TTPs for WMD

production, weaponization, and employment
* Provide a standard vocabulary for CWMD missions

® Provide analytical capabilities to aid analysts look-
ing for WMD activity

APL, on behalf of DTRA, created these models and
developed a comprehensive knowledge graph known as
the Chemical, Biological, Radiological, Nuclear, Explo-
sive Semantic Framework (CBRNE-SF). This graph con-
tains the information related to processes (actions taken
by an adversary) and observables (things needed and
used by an adversary) to perform a specific action in pur-
suit of WMD. Pathways for more than 100 threat agents
have been modeled, with more than 20,000 observables
and more than 100,000 multilingual alternative labels
and synonyms for the observables.

A simple example is presented in Figure 1. The activi-
ties are represented by rectangles, whereas observables
are in blue type beneath each activity. If someone had
made fresh orange juice, one could expect to observe
oranges, a juicer, and a pitcher.

—»| Getoranges |—»|Juice oranges|——

Oranges Juicer, pitcher Orange
Start juice
O= =0
Get orange
> juice —» Add water —
concentrate
Orange juice Pitcher, spoon,
concentrate water

Figure 1. Example of the process of making fresh orange juice.
Observables are listed below each boxed activity.

o

Powered by the CBRNE-SF, APL also created a user
interface for DTRA, which is currently deployed in sev-
eral environments across many federal agencies. The
application allows the user, or even other systems, to
access the CBRNE-SF to quickly complete the follow-
ing tasks:

e Identify observables using a comprehensive list of
synonyms and imagery for WMD agents, precursors,
and equipment to help standardize the vocabulary

used to describe WMD TTDPs

e Understand how observables are associated with
adversary activities related to WMD production,
weaponization, and employment

e Understand health and hazard information on the
effects of WMD agents and precursors, including
chemical exposure, biological disease, and symptoms

CBRNE-SF CONSTRUCTION
The CBRNE-SF knowledge base contains the inter-

connected series of actions an adversary would likely
take when producing, weaponizing, or employing a
WMD. In many cases, there are several different syn-
thetic approaches to produce a WMD), so the knowledge
base must contain all possible approaches. The knowl-
edge base is not meant to provide precise step-by-step
instructions for producing, weaponizing, or employing
a WMD; instead, it provides a road map to the most
essential actions that present opportunities for discovery.
Additionally, it leverages a diverse range of authorita-
tive sources. Subjectmatter experts (SMEs) consulted
online databases, specialized dictionaries, reference
texts, peer-reviewed journals, and other trusted resources
to develop each process. Whenever possible, our work-
flows are grounded in, and enriched by, peerreviewed
literature.

To codify the steps an adversary would use to carry
out some activity or set of activities, we developed the
following lexical constructs: pathways, processes, activi-
ties, observables, and signatures.

A pathway is the interconnected series of actions that
are performed and lead to some intended outcome. In
CBRNE-SF, this takes the form of a unidirectional flow-
chart comprising processes and activities.

A process allows for collecting related activities used
to get to a specific end state. These processes can be
nested as subprocesses in a bigger overall process.

An activity defines the lowest level of discrete action
modeled in the pathway. Activities contain all the
relevant information required for that activity to be
completed successfully and, subsequently, all the infor-
mation that would allow the activity’s discovery. These
activities are assembled in processes that themselves can
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be nested in higher-level processes. Similar to Unified
Modeling Language (UML),! we provide constructs in
the data model that allow for decisions to be made when
multiple choices are available in carrying out a set of
activities and also allow capture of activities that can be
performed asynchronously. Supplemental information,
such as activity descriptions, references, drawings, and
illustrations, is also captured and associated as appropri-
ate. Within the CBRNE-SF, processes and activities can
be reused to gain efficiency in modeling new threats. A
SME can leverage these previously modeled items con-
taining hundreds or thousands of nodes simply by copy-
ing them. This saves considerable time and standardizes
the processes for commonly used precursors, as well as
allows for quick updates to the models as the threat
landscape changes.

A key innovation for the construction of the data
model is the idea that the pathways themselves should
be instantiations of ontological classes. This led to the
development of a pathway modeling ontology, with the
resulting behavior that, as the pathways are constructed,
the processes, activities, decisions, etc., end up as con-
nected nodes in the knowledge graph. This allows for a
fully interconnected graph that can be easily traversed
in a query. This enables the kinds of analysis described
later in this article.

A pathway allows for activities to be associated with
the set of items, or observables, required to carry out
the activity successfully, and each of these observables
in turn can be associated with many signatures (e.g.
spectral). These signatures are data representations
of how the observable “appear” when analyzed by a
specific sensor.

Here, similar to the construction of the pathways,
each association of an observable to an activity or sig-
nature to observable, expands the knowledge graph by
creating additional nodes and edges in the data model.

Observables can most simply be thought of as any-
thing that can be sensed (e.g., smelled, tasted, seen,
heard, touched). Observables are divided into three dis-
tinct groups:

1. Preconditions: Observables that must be present for
the activity to succeed

2. Effects: Observables produced as a result of per-
forming the activity, regardless of whether they are
detected (Example: A reaction produces chlorine,
but a mechanism is used to remove the chlorine
from the waste stream. Chlorine is still called out
as an effect.)

3. Incidentals: Observables that are not absolutely
required for an activity but are likely to be present
given what is typically used to conduct the activity
(Example: In the chemistry domain, many reactions
are carried out in a fume hood. The fume hood, while
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ideal for safety reasons, is not absolutely required and
is therefore called out as incidental because it may or
may not be present. If present, it does provide signifi-
cant clues to the type of activities being conducted.)

Each observable contains the following information
if available from a vetted source:

¢ Definition/description
e Nefarious and legitimate manufacturing uses

e English, foreign-language, and language-independent
alternative labels, synonyms, and colloquialisms

e Description of entity relationships (e.g., potential
uses)

e (lassification
e Source information (e.g., bibliographic citations)

e DPictures/illustrations

For biological and chemical entities, the following infor-
mation is also included:

e Health and hazard statements, where appropriate
e Physical properties, where appropriate
e Industrial uses

e Cross-references to chemical and biological datasets

® Machine-readable identifiers (e.g., Chemical Ab-
stract Service registry numbers)

Observables, like processes and activities, are mod-
eled as instances of classes defined within ontologies
tailored to specific CBRNE-SF domains. These ontolo-
gies are built using the Resource Description Framework
(RDF) and the Web Ontology Language (OWL), stan-
dards endorsed by the World Wide Web Consortium
(W3C).23 RDF structures data as a graph composed
of subject—predicate—object triples, each expressing a
simple fact (e.g., Bill isFatherOf Steve). These statements
are linked to form dynamically growing graphs, enabling
rich semantic modeling, inference, and graph analyt-
ics, capabilities particularly wellsuited for representing
adversarial activity.

To enhance semantic precision and structure, RDF
is extended through RDF Schema (RDFS) and OWL,
which introduce class- and property-based constructs
for building ontologies. In this framework, classes
define conceptual entities, and properties express the
relationships among them, together forming a flex-
ible, machine-readable vocabulary for each domain
of interest.

The CBRNE-SF knowledge base is fundamentally a
composition of such ontologies. These are not limited to

F
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Phosphorus
pentachloride

Chemical Hydrochloric
reaction vessel aci
P E

Synthetic
chemistry heater
P

Phosphorus
oxychloride
E

Oxalyl
chIoEide

Oxalic acid
P

React oxalic acid with
P phosphorus pentachloride to
produce oxalyl chloride

Hydrochloric

aci
E

Ventilation
equipment
|

Triethylamine
P

Chemically
resistant PPE
|

Activity to produce oxalic acid in a threat pathway

Figure 2. Example of a threat pathway within the broader knowledge graph and details of a specific activity.

taxonomic hierarchies; rather, concepts can assert facts
about other concepts, creating a richly interconnected
semantic model. To ensure consistency and expressive-
ness across domains, the domain-specific ontologies are
aligned under foundational upper ontologies. These
upper ontologies provide additional structure and rigor
to the knowledge representation, though their detailed
description lies beyond the scope of this overview.

Combining processes, activities, observables and
signatures for a single threat agent creates a complex
data model that a human would have difficulty under-
standing as a whole. However, given the structure of
the CBRNE-SF, the application interface allows a user
to easily query the graph in real time to explore com-
plex relationships among observables, activities, and
processes for WMD production, weaponization, and
employment. This interface provides deeper insights and
more comprehensive answers to complex mission-critical
questions. Figure 2 shows an example of a single threat
pathway as an illustration of the scale and complexity of
more than one hundred of these pathways modeled in
the overall graph.

ANALYTICS ENABLED BY CBRNE-SF

A web application was developed to provide ana-
lysts with an interface to quickly retrieve, explore,
and query the complex data enabling them to answer
the most mission-relevant questions with ease. Sev-
eral analytical workflows assist system users as they

o

answer mission-critical questions about observables.
For example:

1. What is it?
— Basic definition
—  Uses and regulations
—  Exposure information
— Physical characteristics
— Alternative identification

2. What can it be used for?
— Possible nefarious WMD production routes
—  Possible
uses
3. What else should I look for?

— A prioritized list of unique observables to guide
further search activities

non-nefarious industrial/commercial

Given the machine-readable knowledge graph, queries
are returned in real time and dynamically rendered on
a web page. A user’s primary workflow involves search-
ing for an observable and scrolling through the Details
page. In another workflow, the user enters observables
into the Evidence Bag and scrolls through the returned
output. To give some insight to the information returned
to an analyst, a few examples are provided below.

Observable Detail Page Workflow

The observables Details page varies slightly by the
WMD threat type, but, in general, all Details pages
contain similar information pulled dynamically from
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(U) A molecular entity that appears as a greenish-yellow gas at room temperature and as a clear amber-colored liquid
in condensed conditions. Chlorine gas is recognized by a pungent, irritating odor (cf. chloramine) like that of "bleach”.
It occurs widely as chloride compounds in salts dissolved in seawater. Elemental chlorine, however, exists as a
diatomic molecule which occurs very rarely in nature. Industrial quantities of chlorine are produced mainly via the
electrolysis of brine, a process for making sodium metal. It is normally stored as condensed liquefied gas in steel

tanks/cylinders. It can also be generated in small scale by acidification of widely available hypochlorite salts. Chlorine
is used in manufacturing, as a reagent in synthetic chemistry, for water purification, and in the production of
chiorinated lime, which is used in fabric bleaching. It is a strong oxidant and a powerful irritant that can cause fatal
pulmonary edema. lts main route of entry is inhalation.

Figure 3. Excerpt from the Details page for the chlorine gas observable.

CBRNE-SF through queries that traverse the knowl-
edge graph to retrieve the requested information. When
accessing the Details page for a toxic industrial chemi-
cal (e.g., chlorine gas), the user will see a definition of
the chemical, as shown in Figure 3. Definitions, typi-
cally written by a SME, provide basic information in an
easy-to-understand paragraph. They are designed to be
helpful to nonexperts and provide context for why the
observable is part of a CWMD knowledge graph.

In the view shown in Figure 4, the user is presented
with the activities associated with chlorine. These activi-
ties are separated by the function that chlorine plays in
the activity (e.g., “Activity as precondition”). Chlorine is
used in 28 activities as a precondition, indicating that
while chlorine itself is toxic, it is also used as a precursor.
Chlorine functions as an effect in 21 activities, indicating
that there are 21 general ways to generate chlorine either
as the intended product or as an incidental by-product.
Chlorine functions in one activity as an incidental,
indicating that it may or may not be present. While not
shown in the figure, a user can expand each section to
access a collapsible list of specific activities. The user can
further click a link to a particular activity to see all of the
content, such as activity definitions, images, durations,
reference material, and bibliographic citations.

Associated Activities

28 Activities as precondition

1 Activities as incidental

21 Activities as effect

Manufacturing Uses

Watchlists

The CBRNE-SF also contains information on manu-
facturing uses, and similarly, if the observable is on any
control lists, the lists will be provided in a dedicated
section. If the user needs more information on other
observables within a manufacturing industry or on a list,
they simply need to click the linked text in the relevant
section to view all of the observables in the CBRNE-SF
with that industrial use or on that control list.

Information on uses and regulations allows the user to
understand whether there are dual uses for the observ-
able and whether there any restrictions on its use. This
information provides critical context and situational
awareness for the user.

Exposure information

The application also dynamically displays exposure
information in two sections of the Details page. The
first section lists information extracted from safety
data sheets, which are globally standardized documents
detailing the harmful effects of chemical exposures.
For all chemical threats and precursors included in the
CBRNE-SF, such as chlorine, a safety data sheet was
obtained and the information extracted. Figure 5 shows
an example of the type of extracted information that is

Figure 4. Activities associated with chlorine.
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Health Hazards

Causes damage to organs

Causes damage to organs through prolonged or repeated exposure

Causes serious eye damage
Causes severe skin burns and eye damage
Fatal if inhaled

Physical Hazards

« Contains gas under pressure; may explode if heated

Prevention Precautions

Do not breathe dust/fume/gas/mist/vapours/spray.
Do not eat, drink or smoke when using this product
Use only outdoors or in a well-ventilated area.
Wash hands thoroughly after handling.

Wear protective gloves/protective clothing/eye protection/face protection

Wear respiratory protection.
Response Precautions

Get medical advice/attention if you feel unwell
IF exposed: call a POISON CENTER or doctor/physician.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing
IF INHALED: Remove person to fresh air and keep comfortable for breathing. Call a POISON CENTER or doctor/ physician
IF ON SKIN (or hair): Remove/Take off Inmediately all contaminated clothing. Rinse SKIN with water/shower.

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.
Wash contaminated clothing before reuse

Storage Precautions

« Protect from sunlight.

« Store in a well-ventilated place. Keep container tightly closed.

« Store locked up.

Disposal Precautions

« Dispose of contents/container to an approved waste disposal plant

Figure 5. Example of the type of information extracted from a safety data sheet.

included for each chemical and biological precursor,
when available.

Physical Properties

The scientific community and the US government
have made considerable investments to understand phys-
ical properties of chemical and biological threat agents
and precursors. Knowledge of these properties is critical
for certain missions, such as modeling and simulating
potential releases to assess consequences. Some of these
data can be found in open sources, such as PubChem,*
while other data can be found only in restricted gov-
ernment reports. The web application provides the user
with a single location to access both open-source data
and US governmentfurnished data. Each data point
has a button indicating where the data originated. For
instance, Figure 6 displays the boiling point of chlorine,
as obtained from PubChem.’

> -34.04 °C PubChem

Figure 6. Example of physical property data from PubChem.

o

While the user can simply view the displayed values
dynamically returned from the knowledge graph, it is
also possible to create a custom query that traverses the
CBRNE-SF to return all chemicals with a certain boil-

ing property.

Alternative Identification

Language is complex, with multiple ways to refer to the
same object. Chemicals can be described using system
identifiers and multilingual terms. The CBRNE-SF con-
tains all known system identifiers, such as the Chemical
Abstracts Service (CAS) registration numbers and refer-
ence numbers for popular open-source databases, such as
ChemSpider.®

Multilingual terms, like the ones in Figure 7 for chlo-
rine, are typically extracted from data sources such as
PubChem. All multilingual terms that are encoded
for a given observable are also searchable. This allows
the user to access information on an observable with-
out needing to know the name used in the CBRNE-SF.
As an example, each chemical in the CBRNE-SF has
a unique URI with alternative label data semantically
linked as a series of nodes and edges.
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Multilingual Terms

Language Independent (U) 231-959-5  (U) 7782-50-5

(U) Chiorine mol (U)Ci2 (U)Cloro

Using Knowledge Graphs to Counter Weapons of Mass Destruction ——————

(U) 7782-50-5, chlorine gas, ¢! (U) Bertholite  (U) Chloor  (U) Chlor  (U) Chiore

(U) Diatomic chlorine  (U) Molecular chlorine  (U) UN 1017

English (U) Bertholite  (U) Chlorine  (U) chiorine diatomic  (U) Chlorine Gas  (U) Chlorine Gas (Common Form)

(U) chiorine molecule
Arabic (U) s
Chinese wms

Chinese (Latin, pinyin) V)lug

(U) Diatomic Chlorine  (U) dichloran  (U) dichlorine  (U) molecular chlorine

Figure 7. Example of multilingual terms in the CBRNE-SF.

Input: Evidence

1. Compare observed resources
with each threat process in
the knowledge base

2. ldentify the processes in
which at least one
observed resource appears

3. Compute self-information weights for
- each observed resource; and
- all resources in processes in which
an observed resource appears

4. For each process, place
observed resources in
one of the three sets

5. Add the self-information
weights in each set

6. Calculate the weighted

Tversky index (”similarity
score”) for each process

7. ldentify the process
with the greatest
similarity score

Output: Highest-scoring
process

Figure 8. Steps involved in the process-ranking algorithm.

Set Similarity Algorithm for Evidential Reasoning

A user is able to look for threat agent production
processes associated with the set of entered observables.
The application traverses the knowledge graph and pres-
ents a table of processes ordered by a calculated similar-
ity score. In set theory, this similarity score is called a
weighted Tversky index.” Similarity scores are described
in more detail below.

Algorithm Overview

Figure 8 summarizes the steps involved in the
process-ranking algorithm.

The three sets described in step 4 are related to the
overlap of the observed resources within an Evidence
Bag and the resources within a given process. Given an
evidence set E and process p, three sets of resources must

be identified:

1. The overlap set contains all of the resources that
appear in E and either appear directly in p or are an
instance of a resource that appears in p.

2. The evidence-only set contains resources that are in
E but are not in p.

3. The process-only set contains resources that are in
p but not in E.

These sets are illustrated in Figure 9.
In step 3, each resource 1 is given a weight X that is
inversely related to its prevalence
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X, = —log(F), D

where F_is the resource’s prevalence (i.e., the proportion
of processes in which r appears). This weight is equiva-
lent to the resource’s “self-information.”

Step 7 in the algorithm computes a similarity score
for each process with respect to the observed evidence
set. The similarity score for each process is computed as

_ *
W, = ToverLarToverLap + @ TevipencEonLy T
ES
B*TorocESs-ONLY)- )

In Eq. 2, parameter o determines the size of the
penalty for resources from the evidence set that do not
appear in process p. Parameter 8 determines the size of
the penalty for resources in p that were not recorded
within the evidence set.

Resources from
the process

Resources from
the evidence

Evidence- )

only set

<=3 Process-

only set

Figure 9. Sets of resources.
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The process with the greatest similarity score is
ranked the highest and can be considered the most
likely. The score for each process is determined from the
scores of the resources within that process, the scores

of the resources within the
given set of evidence, and
the extent to which these
sets of resources overlap.

Example Computations

To demonstrate the evi-
dence algorithm, consider
the following example for
making iced tea, lemonade,
and orange juice. Figures 10
and 11 each contain a single
process, as does Figure 1
shown earlier. Blue boxes
indicate activity nodes, and
blue type outside the boxes
describes  resources used
in the activities. In this
example, « and B are both
set to 0.5, suggesting that
it is equally important for a
resource to be missing from
the Evidence Bag or from a
process.

Each time evidence is
collected, the observables
are compared with the
resources in each process,
and a corresponding score
is assigned to each process.
The steps enumerated below
correspond to the algorithm
description in Figure 8.

e Evidence set = {cup, ice
cube tray, pitcher, sugar]}.

e Steps 1 and 2: The
resources within this
evidence set overlap

with the iced tea, lem-
onade, and orange juice
processes.  Therefore,
weights must be calcu-
lated for all resources in
these processes.

e Step 3: Table 1 provides
the weights for each
resource that appears in
at least one process. If a
resource appears in one
of three processes, its

weight is —log(1/3) = 1.099. Similarly, if a resource
appears in two of three processes, its weight is
—log(2/3) = 0.405. If a resource appears in all three
processes, its weight is —log(3/3) = —log(1) = 0.

Get ice

Y

Ice

Start Iced tea
Brew .| Mix tea
O—> Get tea —> o —>landice —»O
Teabags Kettle, stove, Pitcher,
water spoon
»| Get freezer || Freeze water
Freezer Ice, ice cube
tray, water
Figure 10. Iced tea process example.
.| Get
>l ice
Get Juice Get
lemons [ lemons [ sugar Ice
Start - . - Lemonade
emons —— Lup, ugar Add | | Mix lemonade
Juicer water |— 3 andice
Get lemonade Pitcher, Spoon
powder water
Get Freeze
L%rgv?,gi?e > freezer water |
Freezer
Ice cube tray,
water
Figure 11. Lemonade process example.
Table 1. Weights by resource for example
Appears in
Iced Tea  Lemonade Orange Juice Resource
Resource Process Process Process Prevalence Weight
Cup v 1/3 1.099
Freezer v v 2/3 0.405
Ice v v 2/3 0.405
Ice cube tray v v 2/3 0.405
Juicer v v 2/3 0.405
Kettle v 1/3 1.099
Lemonade powder v 1/3 1.099
Lemons v 1/3 1.099
Orange juice concentrate v 1/3 1.099
Oranges v 1/3 1.099
Pitcher v v v 3/3 0
Spoon v v v 3/3 0
Stove v 1/3 1.099
Sugar v 1/3 1.099
Tea bags v 1/3 1.099
Water v v v 33 0
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Table 2. Weights for each set (from example 1)

Set
Process Overlap Evidence-Only  Process-Only
Iced tea 0.405 2.197 4.107
Lemonade 2.603 0 3.414
Orange juice 0 2.603 2.603

e Step 4: The resources that appear in the evidence
are compared separately with each process.

—  For the iced tea process, the resources that appear
both in the evidence set and the process (overlap
set) are {ice cube tray, pitcher}. The resources that
appear in the evidence but not in the iced tea
process (evidence-only set) are {cup, sugar}. The
resources that appear in the iced tea process but
not in the evidence (process-only set) are {freezer,
ice, kettle, spoon, stove, tea bags, water}.

—  For the lemonade process, the overlap set is {cup,
ice cube tray, pitcher, sugar}; the evidence-only
set is the empty set (i.e., there are no resources in
this set); and the process-only set is {freezer, ice,
juicer, lemonade powder, lemons, spoon, water}.

— For the orange juice process, the overlap set is
{pitcher}; the evidence-only set is {cup, ice cube
tray, sugar}; and the process-only set is {juicer,
orange juice concentrate, oranges, spoon, watery}.

e Step 5: Table 2 provides the total weight for each
set. These totals are obtained from the sum of the
weights of the resources in each set. For instance,
the weight for the overlap set in the iced tea process
is 0.405 (ice cube tray) + O (pitcher) = 0.405. Since
the pitcher resource appears in all three processes,
its weight is O (i.e., it does not provide any informa-
tion on which process is most similar to be active).

e Step 6: Given a = B = 0.5, the similarity scores for
each process are calculated as follows:

- W;=0405/(0405 + 0.5%2.197 + 0.5%4.107) = 0.114
- Wy =2603/(2.603 +0.5%0 + 0.5%3.414) = 0.604
~ W =0/(0+05%2.603 +0.5%2.603) = 0

* Step 7 Wy, = 0.604 is greater than Wi or W,
(i.e., the lemonade process has the greatest similarity
score). Therefore, the lemonade process is identified
as the most similar.

CONCLUSION

APL has worked with the US government for more
than 15 years to create the most comprehensive set of
CBRNE ontologies to enable CWMD missions world-
wide. As a machine-readable representation of reality,
the CBRNE-SF is continuing its evolution as a shared
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CWMD resource. It is poised to support next-generation
generative artificial intelligence and large language
model capability. The CBRNE-SF has contributed to
DTRA’s position as a locus of authority for CBRNE
ontologies, enabling tighter integration of and interop-
erability within the broader US government CWMD

mission space.
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