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Guest Editors’ Introduction: Countering Chemical, 
Biological, Radiological, Nuclear, and Explosive 
(CBRNE) Threats

Kelly A. Van Houten, Christopher C. Carter, and Joshua B. Broadwater

ABSTRACT
The Johns Hopkins University Applied Physics Laboratory (APL) plays a crucial role in helping the 
United States anticipate, counter, and prevail against chemical, biological, radiological, nuclear, 
and explosive (CBRNE) threats. APL researchers create innovative technologies and methodolo-
gies that enhance national security and provide decision-makers with actionable intelligence 
in the face of evolving threats. The counterterrorism and homeland security landscape has dra-
matically changed since the Johns Hopkins APL Technical Digest last published a comprehensive 
review on these topics in 2003. In the years since, APL’s expertise has expanded significantly, inte-
grating advancements in artificial intelligence, data analytics, autonomous systems, and sensor 
technologies to address increasingly sophisticated CBRNE challenges. This issue highlights APL’s 
latest contributions to detecting, identifying, and mitigating CBRNE threats to strengthen national 
and global security.

INTRODUCTION
Although asymmetric threats are a focus of inter-

national security efforts, the risk of a chemical, bio-
logical, radiological, nuclear, and explosive (CBRNE) 
attack remains ever-present, and capabilities are con-
stantly evolving. These threats can be anthropogenic 
(e.g., chemical warfare agents or explosions) or natu-
rally occurring (e.g., disease outbreaks) and are among 
the most insidious challenges facing our nation. Their 
impact, evidenced in the terrorist attacks on 9/11 or the 
COVID-19 pandemic, can be catastrophic in both the 
immediate and long terms. APL is dedicated to devel-
oping game-changing capabilities to enhance resilience, 
detect and neutralize threats before they materialize, 
and create asymmetric advantages for national security.

APL leverages a broad range of expertise to counter 
CBRNE threats, employing advanced competencies 
in molecular and cell biology, omics characterization, 
public health and epidemiology, aerosol science, chemi-
cal synthesis, chemical and nuclear engineering, nuclear 
physics, advanced analytics, and sensor design and 
development. Additionally, we integrate artificial intel-
ligence, data science, complex systems, and autonomy to 
develop innovative technologies and systems that trans-
form vast amounts of data into actionable intelligence 
and strategic advantages.

This issue highlights APL’s latest contributions to 
detecting, identifying, and mitigating CBRNE threats 
to strengthen national and global security.
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THE ARTICLES
This issue begins with “Simulants for Chemical and 

Explosive Threats” in which Lawrence and Van Houten 
describe the development of a systematic process to 
design and select effective simulants. Because work-
ing with real chemical warfare agents and explosives 
is dangerous and highly regulated, simulants (nontoxic 
substances that mimic the key properties of chemi-
cal warfare agents and explosives) are used to facili-
tate research, training, and technology development. 
The systems-engineering-based approach ensures that 
selected simulants closely match the properties of real 
threats but are safe to handle. The article also describes 
how these simulants help improve detection technolo-
gies, decontamination methods, and training exercises 
for security and defense personnel.

Next, in “Large-Scale Production of Radiopure 135Xe 
from Bremsstrahlung γ-Irradiation of Solid Xenon 
Difluoride,” Lloyd et al. present a novel method for 
producing the radioactive xenon isotope 135Xe, which 
plays a critical role in monitoring nuclear tests world-
wide. This research was conducted in APL’s linear accel-
erator facility, which was established in 2022 to support 
experiments requiring extremely high radiation fields. 
The team successfully generated 135Xe from solid xenon 
difluoride (XeF2) using an innovative approach that 
significantly increases yield while ensuring the isotope 
remains pure and free of contaminants. This break-
through enhances the calibration of nuclear test moni-
toring equipment, improving the ability to detect illicit 
underground nuclear explosions. Additionally, the study 
outlines strategies for refining the process to enable more 
efficient large-scale production.

In “APL’s Contributions to the Odor Detection 
Canine Community,” Klimkiewicz and Deglau high-
light 15 years of advancements in odor detection canine 
research. These canines play a crucial role in security, 
law enforcement, and disaster response, assisting in 
detection of explosives, narcotics, and other hazard-
ous materials. APL has contributed to multiple aspects 
of advancing canine detection capabilities, including 
breeding high-performance detection dogs, developing 
advanced training methodologies, and designing safer 
training aids that mimic real threats without using dan-
gerous substances. Additionally, APL researchers have 
explored methods to enhance communication between 
dogs and handlers and have optimized deployment condi-
tions through airflow monitoring and other tools. These 
innovations significantly improve the effectiveness and 
reliability of odor detection canines in real-world opera-
tions. Through ongoing research and collaboration, 
APL continues to advance the role of detection dogs in 
national security and public safety.

The next few articles highlight advancements in 
artificial intelligence and machine learning. First, in 

“Using Knowledge Graphs to Counter Weapons of Mass 
Destruction,” Mariner et al. describe the development 
of a knowledge graph system designed to help US gov-
ernment agencies combat weapons of mass destruction. 
Many government databases contain critical yet frag-
mented information about CBRNE threats, making it 
challenging to track emerging risks. To address this, 
APL developed the CBRNE Semantic Framework, 
a structured data model that organizes and connects 
disparate sources of information, enabling more effec-
tive pattern recognition and threat detection. This 
framework powers a tool that allows analysts to rapidly 
retrieve relevant data, assess potential risks, and antici-
pate how adversaries might develop weapons of mass 
destruction. By leveraging this technology, agencies can 
enhance their ability to detect, prevent, and respond to 
evolving threats.

Next, in “MLM: Machine Learning for Threat 
Characterization of Unidentified Metagenomic Reads,” 
Baugher et al. describe their development of a machine 
learning system to analyze unidentified genetic mate-
rial in biological samples. The Machine Learning for 
Metagenomics (MLM) pipeline is designed to detect 
potential biological threats by analyzing DNA sequences 
that do not match known organisms. Using advanced 
classification models, the system assigns threat levels 
to these unidentified sequences, providing forensic and 
military investigators with real-time hazard assessments. 
Tests of the system have demonstrated its high accuracy 
in identifying threats, highlighting its value for moni-
toring emerging or engineered biological dangers. The 
technology is being refined for deployment in field-ready 
devices, enhancing rapid threat detection and response 
capabilities.

In “Assessment of Sequencing for Pathogen-Agnostic 
Biothreat Diagnostics, Detection, and Actionability for 
Military Applications,” Bradburne et al. explore the use 
of genomic sequencing as a tool for detecting biological 
threats in military and field settings. While traditional 
methods, such as polymerase chain reaction (PCR), 
remain the fastest, most cost-effective, and most reliable 
option for identifying known pathogens, sequencing can 
be valuable when dealing with unknown threats. The 
researchers tested different sequencing methods and 
found that a hybrid enrichment approach was the most 
effective for detecting biothreats in simulated patient 
samples. However, sequencing remains slower and more 
expensive than PCR, making it most useful in cases 
where the infectious agent is unknown or emerging. 
As sequencing technology advances and costs decline, 
it may become a more viable tool for military and 
field applications, improving biothreat detection and 
response capabilities.

In “Wearables-Based Disease Surveillance: SIGMA+ 
Human Sentinel Networks Concept of Operations,” 
Stanish et al. describe how wearable technology, such 

http://www.jhuapl.edu/technical-digest
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Kelly A. Van Houten, Asymmetric 
Operations Sector, Johns Hopkins 
University Applied Physics Labora-
tory, Laurel, MD

Kelly A. Van Houten is the supervi-
sor of APL’s Applied Chemistry and 
Physics Group, which is responsible for 
developing solutions to detect, defeat, 

and deny chemical and nuclear threats. She has a BA in 

as smartwatches, could be used to detect and monitor 
disease outbreaks in real time. A network of volunteers 
wearing sensors could provide early warning of infec-
tious disease outbreaks, ranging from seasonal flu to 
biothreats such as anthrax. By analyzing changes in 
heart rate, temperature, and other physiological mark-
ers, the system can alert individuals to seek medical test-
ing, enabling public health officials to rapidly respond. 
Modeling showed that tracking just 5% of a population 
with these sensors could detect outbreaks days earlier 
than traditional surveillance methods. This innova-
tive approach has the potential to enhance early dis-
ease detection, improve emergency response efforts, and 
strengthen public health preparedness.

CONCLUSION
The articles in this issue reflect the breadth and 

depth of APL’s sustained commitment to countering 
CBRNE threats through innovation, scientific rigor, 
and cross-disciplinary collaboration. From advancing 
threat-based training tools and pioneering new methods 
for nuclear test detection to enhancing real-time bio-
surveillance through wearable technology and applying 
cutting-edge machine learning to genomic data, APL 
continues to push the boundaries of what is possible in 
national and global security. These capabilities are not 
only advancing threat detection and response, but they 
are also reshaping the landscape of preparedness and 
resilience in an era of increasingly complex and asym-
metric threats. As adversaries evolve and technologies 
advance, APL remains at the forefront of developing the 
tools, systems, and strategies necessary to protect our 
nation and its allies.

chemistry from Johns Hopkins University, a PhD in chem-
istry from the University of Maryland, College Park, and 
an MBA from Johns Hopkins University. She has over 
20 years of experience developing novel detection meth-
odologies for organophosphates, designing and synthesiz-
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warfighter tools. Her email address is kelly.van.houten@
jhuapl.edu.
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Simulants for Chemical and Explosive Threats

David S. Lawrence and Kelly A. Van Houten

ABSTRACT
Studies using chemical warfare agents (CWAs) and explosives are dangerous and are therefore 
conducted only in specialized laboratories with highly controlled conditions and limited accessibil-
ity. Obtaining these materials for study is another challenge, as they are tightly regulated. Because 
of these challenges, simulants—molecules that mimic key characteristics of a specified CWA or 
explosive but lack toxicity—are often used in testing, sensor development, and decontamination 
studies. In the past, simulants have generally been selected on the basis of their historical use (with 
researchers sometimes simply choosing “convenient” materials that happen to provide a detec-
tor alarm, for example) rather than rational design. The Johns Hopkins University Applied Physics 
Laboratory (APL) created a simulant development approach, based on systems engineering con-
cepts, that takes input from relevant parties and is scoped specifically for a project objective. This 
methodology can be universally applied to any type of simulant and includes down-selection 
criteria to identify specific simulant candidates that can be verified and validated according to the 
project’s required fidelity. This article describes the development approach, selection process, and 
demonstrated use cases for both CWAs and energetic materials.

Adversarial use of energetic, or explosive, materials is 
also a continuing threat. For the calendar year 2022, the 
US Bureau of Alcohol, Tobacco, Firearms and Explosives 
(ATF) Bomb Arson Tracking System (BATS) reported 
14,627 explosives-related incidents in the United States.6 
Although the number of US incidents has varied slightly 
over the past couple of decades (since 9/11), it has been 
consistently high and reflects the much higher number 
of incidents occurring worldwide.

These trends highlight the need to study toxic CWAs 
and energetic materials and the consequences of their 

INTRODUCTION
The use of chemical warfare agents (CWAs) is a 

growing threat. Between 1970 and 2020, more than 
200,000 global terrorist attacks were reported in the 
Global Terrorism Database (GTD),1 but just over 400 
involved a CWA. However, from 2013 to 2017, a 500% 
annual increase of CWA-related incidents (193 attacks) 
was reported.1 Recent events include the 2018 attack in 
Salisbury, United Kingdom, with a reported Novichok 
agent;2 the 2017 assassination of the half-brother of Kim 
Jong Un with the nerve agent VX;3 and over 1,400 deaths 
attributed to chemical warfare in the Syrian conflict.4,5

http://www.jhuapl.edu/technical-digest
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use, but work with these materials is potentially haz-
ardous and usually fraught with challenges—such as 
government regulation in gaining access to specialized 
laboratories, licensing, and accessing materials (espe-
cially chemical agents on the Chemical Weapons Con-
vention list of scheduled chemicals7). For these reasons, 
it has become necessary to develop simulants—materials 
that mimic the relevant properties of the “target” chemi-
cal agent or energetic material. For example, simulant 
materials can be used for testing detection capabili-
ties, exercising decontamination protocols, or training. 
Each application will have specific target attributes that 
need to be simulated with a required degree of fidelity. 
While some simulants may be adequate for more than 
one application, each simulant is generally tailored for a 
particular use case (such as detection).

Since 2006, APL researchers have been preparing 
simulants and test articles for explosives, CWAs, and 
narcotics threats for the Department of Defense and 
the Department of Homeland Security (DHS). In efforts 
for DHS and the Transportation Security Administra-
tion (TSA), APL developed simulants for explosives 
and synthetic opioids. This article focuses on APL’s 
simulant-based efforts for CWAs and energetic threats; 
APL’s work on simulants for illicit drugs is outside the 
scope of this article but is an active area of research.

APL has established guidelines for a rigorous and suc-
cessful design and testing program, shown schematically 
in Figure 1 for test and evaluation (T&E) applications. 
The overarching approach to simulant development is 
based on a “systems engineering” philosophy that begins 
with understanding the intended use for the simulant 
and how it contributes to the entire T&E process. The 
first step, “technology knowledge,” requires end-user 
input to help establish selection parameters and includes 
relevant target data so that the target–simulant charac-
teristics used for the application can be correlated during 
the selection process.

Simulant development for both CWAs and energetic 
materials follows equivalent design and development 
paradigms. It is important that the entire process—
particularly, the operational use of the material—be 
kept in mind when designing simulant materials. Devel-
opment of simulants for other applications, such as 
decontamination, follows similar approaches.

EXPLOSIVE SIMULANTS
In 2007, APL developed a generic verification, vali-

dation, and accreditation (VV&A) methodology for use 
with any simulant and any detection technology. The 
VV&A methodology begins with a detailed understand-
ing of the detection technology and algorithms of inter-
est. Verification involves comparing relevant detection 
parameters for the energetic target and any candidate 
simulants. One key technology for detecting energetic 
materials is based on x-ray imaging. X-ray-based detec-
tion systems generally rely on material characteristics 
that include the effective atomic number and the density 
of the material (mass per unit volume). A related value, 
the CT (computed tomography) number, is also used in 
some x-ray screening systems as a way of describing the 
x-ray “texture” of a material. These characteristics can 
be calculated and/or measured for both energetic targets 
and simulant materials.

Validation of the candidate simulants involves 
side-by-side comparisons with the appropriate energetic 
target in the detection system under evaluation. For 
these purposes, the “system” includes not only the hard-
ware but also the firmware and any software algorithms 
currently in place. A sufficient number of test runs 
with both the energetic target and the simulant must 
be performed using the system, in all relevant orienta-
tions of test samples (depending on the type of detection 
system), to ensure statistical significance of the prob-
ability of detection and probability of false alarm values 
within the desired level of confidence.

Accreditation involves the determination that the 
chosen simulant will perform appropriately under the 
conditions of its intended use. For an operational test, 
such as in an airport security checkpoint, the simulant 
will have to be usable in the local environment (e.g., in 
similar temperature and humidity conditions). It will also 
need to be nontoxic to humans and safe to use in indoor 
environments. The material’s shelf life should exceed the 
duration of the testing period, at a minimum. Finally, 
the material should be user-friendly for the intended 
application—for example, when contained in a piece of 
luggage with other background materials, such as clothing 
and electronics (“clutter”), the material should be pack-
aged in such a manner that it can be manipulated to con-

form within the luggage and 
not leak onto other contents.

During its 15+ years of 
technical support to TSA, 
APL has cataloged physical 
and chemical properties of 
hundreds of explosives, pre-
cursors, and related materials, 
as well as simulants (com-
mercial, APL developed, and 
component materials). These 

Technology
knowledge

Simulant
development

V V & A
process

Laboratory-
based testing

Operational
T&E

Veri�cation

Validation

Accreditation

Figure 1.  Standardized simulant development process for operational T&E. It is critical that the 
entire process, especially the operational use of the material, be considered during development.
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properties include calculated and measured values for 
various detection technologies, such as x-ray, millimeter 
wave, optical, and nuclear-based systems (e.g., percent-
age of nitrogen density). Under tasking from TSA, APL 
developed a database that serves as a reference guide 
to enable efficient simulant development. The Aug-
mentable Library of CHemicals, Explosives and other 
Materials for homeland securitY (ALCHEMY) database 
contains hundreds of records with referenced values (lit-
erature, measurement details, etc.) as well as online tools 
to aid in simulant design (Figure 2). The team also devel-
oped a quality management plan for ALCHEMY mea-
surements that includes standard operating procedures 
for measuring properties during any simulant develop-
ment activities.

In addition to developing the database and standard 
operating procedures for property measurement, the team 
constructed a simulant development process, shown as 
a flowchart in Figure 3, and an approach to indepen-
dent verification and validation (IV&V). In general, the 
design of simulant candidates follows a methodical pro-
cess, using information from the ALCHEMY database 

Images
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Figure 2.  Example windows from the ALCHEMY database. This APL-developed database contains hundreds of records with referenced 
values as well as online tools to aid in simulant design.

 Simulant
request

 ALCHEMY
database helps

determine
formulation

 Does 
candidate

formulation
match desired

properties?
Correct

detection 
system

response?

Will it 
pass criteria for 

packaging?

Finalize 
quantities and 

packaging

 Deliver with
suitability report
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representative

device. Did
it pass?

Yes

Yes

Yes

Yes
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No

External 
simulant V V & A 

process

Figure 3.  APL simulant development process. In general, this 
methodical process leverages an intake form that includes infor-
mation on the simulant along with data from the ALCHEMY data-
base to determine the formulation. Subsequent steps ensure 
thorough testing, and the process concludes with delivery of the 
simulant followed by IV&V.
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to determine what commercial formulations might exist 
(and could be leveraged), what previously developed sim-
ulant formulations could be used, and what previously 
characterized materials could be combined.

This process has been implemented many times 
over the years to provide simulants and test articles to 
TSA and DHS for a variety of detection technologies. 
These technologies have included x-ray, millimeter 
wave, and neutron/gamma-based detection systems for 
applications in baggage, person-borne, and cargo screen-
ing. For the TSA-based simulants, the team created a 
form to capture all the relevant parties’ requirements 
and priorities. The form documents basic information 
on the requested simulant and its application, required 
detection performance (particularly, the desired fidelity 
between target energetic and simulant materials), and 
operating conditions (for example, whether the material 
will be used indoors or outdoors, details on any inter-
fering equipment, and how the material might be pack-
aged into the test articles). While the specific process 
described in this article was developed by APL, several 
other organizations have developed similar approaches. 
All of the developers recently came together to draft the 
first-ever ASTM standard for the development of explo-
sive simulants,8 which leverages input from APL.

Figure 4 shows another way to visualize the simulant 
development process, where the ALCHEMY database is 
used as the central “tool” that takes input from the simu-
lant request form, literature data, and detection prop-
erty measurement. The ALCHEMY tool can be used 
to explore previously developed materials and to gener-
ate new material candidate mixtures (based on existing 
components) that can be used to examine simulant suit-
ability in accordance with the desired target–simulant 
fidelity requirements.

As discussed above and illustrated in Figure 5, a 
detection-based application of simulant development for 
energetics includes the formulation of a simulant mate-
rial, which can then be packaged into a test article (here, 
an improvised explosive device, or IED) and placed into 
luggage in order to generate an x-ray image for testing.

CHEMICAL SIMULANTS
The recent growth of CWA use described in the 

introduction highlights the need to develop novel meth-
ods for decontamination, destruction, and detection. 
The Chemical and Biological Weapons Conventions 
prohibit the widespread use of chemical and biological 
warfare agents for testing purposes, so simulants must be 
used. Even if agents were readily available, the needs of 
development and training programs are best met with 
simulants. Simulants minimize the risk to personnel and 
the contamination of equipment and the test location. 
In addition, working with agents can be cost prohibitive 
and is limited to certified locations. For these reasons, 
simulants for chemical and biological warfare agents are 
crucial for passive defensive research as well as develop-
mental and operational testing. Simply put, simulants 
allow more testing and training in more settings over a 
shorter period of time and with fewer restrictions. The 
simulant data obtained can be used to inform final vali-
dation studies with CWAs.

Chemical simulants can facilitate the development 
of novel mitigation strategies since, by definition, they 
lack the toxicity of the agent. Chemical simulants may 
be structurally similar to the agent, may have similar 

reactivity under a given set of 
conditions, or both. Similar to 
the development of explosive 
simulants described above, the 
selection of the optimal chemical 
simulant for a given application 
combines the iterative activities 
of literature search, laboratory 
experimentation, and computa-
tional approaches.

APL has been developing 
CWA simulants since 2006 and 
has found that certain tasks are 
critical to all simulant selection 

Literature
data

Simulant
suitability

Detection
property

measurement

New material
candidates

Previous
materials

Stimulant
request

form

Figure 4.  Another visualization of the simulant development 
process. Here the ALCHEMY database is used as the central tool. 
It takes input from the simulant request form, literature data, and 
detection property measurement to provide both previously 
developed materials and new material candidates.

Simulant Test article X-ray image showing test
article luggage

Figure 5.  Detection-based application. Shown are a packaged simulant, a test article (an 
IED), and an x-ray image of a test article in luggage.
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efforts. We have developed a tool set to aid in the sim-
ulant selection process. The tools used to down-select 
from candidate simulants provide a template to guide 
the chemist and the nonspecialist end user in identi-
fying a CWA simulant that meets the end user’s needs 
(Figure 6).

The simulant down-selection process starts with a 
series of questions, called the “Green Sheet” (Figure 7), 
designed to identify the simulant’s intended use. Once 
the intended use has been determined, the next step is 
identification of agent properties relevant to that use. 
These properties, the most important components of 
the process, are then used to drive the simulant selec-
tion process. Selecting the proper simulant relies on the 
correlation of quality simulant and agent data, regardless 
of the ultimate use of the simulant. The higher the fidel-
ity of the agent data, the more likely that the selected 
simulant will mimic the desired target agent behavior. 
Examples of agent data used in APL’s simulant selections 
include chemical reactivity with decontamination solu-
tions, physiochemical properties (e.g., solubility, vapor 
pressure, octanol−water partition coefficient, surface 
tension, viscosity, and thermal reactivity), and common 
synthetic pathways. If agent data are unavailable, they 
must be calculated computationally or collected at a 
government surety laboratory (a facility where agents are 
analyzed and other services are performed in a safe and 
secure environment; surety laboratories are used to ana-
lyze chemical, biological, and nuclear materials and to 
ensure the safety of the materials and the people work-
ing with them). These properties are prioritized to help 

drive the development process. Simulant physiochemi-
cal data can be collected from open-source data or com-
putationally determined. Wherever possible, simulants 
are also evaluated using the same experimental condi-
tions that were used to collect agent data. Finally, the 
agent and simulant data are correlated. The process is 
discussed in more detail below.

As mentioned, the process begins with the Green 
Sheet, a series of questions that define the end user’s 
simulant requirements. These include: What is the 
intended use? Will the simulant be used in a labora-
tory with trained chemists, or will it be used outside for 
fieldwork? If the simulant will be used in the laboratory 
by trained chemists, smaller quantities of simulant and 
higher levels of toxicity may be acceptable since engi-
neering controls will be available. On the other hand, 
if the simulant will be used in outdoor fieldwork, larger 
quantities of simulant with lower toxicity levels are 
required, along with site location approvals. Determin-
ing how much simulant is needed will help determine 
whether the simulant can be purchased commercially 
or will need to be synthesized. Answering this question 
also helps in establishing timelines since it can take a 
long time to procure some chemicals.

Based on the end-user requirements defined in the 
Green Sheet, the agent properties required for the effort 
can be identified and prioritized. For example, using 
a simulant in an outdoor test may necessitate library 
updates to the detection equipment being used in the 
test. Obtaining the CWA data is the most critical part 
of the simulant selection process. These studies are 

Correlate agent simulant data, establish tolerance 

Agent data, data assessment, data collection, and tabulation

Simulant data, searches, collection, toxicity assessment

Green Sheet: Define the simulant
(target properties and tolerable toxicity)

Identify agent properties to drive simulant identification 

Calculations: Calculate chemical properties to match

Key driver

Figure 6.  The simulant down-selection tool set. These tools 
guide the identification of a CWA simulant that meets end-user 
needs.

• What is the intended use?

• Where are you using the simulant?

• Which agent are you simulating?

• How much simulant do you need?

• When is your event?

• Is agent data available?

• Toxicity concerns?

• Detection/monitoring?

• Additives?

• Any material compatibility issues?

• Permits/approvals required?

• Other unique concerns?

Figure 7.  The Green Sheet. Answering a series of questions that 
define the end user’s simulant requirements is the start and a key 
driver of the down-selection process.
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expensive and can be performed only at government 
surety laboratories. If experimental data are unavailable, 
the physical properties can be modeled computationally. 

Once the desired agent properties are selected, the 
simulant candidates are sought from the open literature. If 
any of the physical properties of the simulant are unavail-
able, they can be measured or computationally calcu-
lated. The simulant candidates are further down-selected 
by the criteria set by the Green Sheet. At this point, sim-
ulant candidates are narrowed to a short list. Laboratory 
studies are performed to evaluate simulant performance, 
ideally using the same procedures used to collect the 
agent data. For some simulant use cases, end users would 
like to be able to detect the simulant using their opera-
tor tools (specific detection technologies). In these cases, 
the simulant candidates can be further down-selected to 
be compatible with the detection technology. A colori-
metric or fluorometric indicator is another option that 
can be added to the simulant formulation and provides a 
visual indication of simulant location. During the selec-
tion process, it is important to ensure that any additive 
has similar properties to the agent. For example, the addi-
tive would have a similar octanol–water partition coef-
ficient to facilitate decontamination studies. Next, it is 
important to consider any material compatibility issues. 
For example, simulants used for testing on sensitive 
equipment should be compatible with the surface materi-
als and should not damage the equipment.

Although each use case is unique and can have 
requirements that are not captured by the initial ques-
tion list, a completed Green Sheet provides a template to 
identify the key agent properties that drive the simulant 
selection. The agent properties that must be retained 
in the simulant for a specific application vary consider-
ably with the simulant use. Finally, the selected simulant 
formulation is evaluated under the experimental condi-
tions used above and the results are correlated to the 
agent. This will show how the simulant compares to the 
agent. For example, compared with the agent, a decon-
tamination simulant could correlate as x times easier or 
harder to remove from a given surface when following 
the use-specific instructions.

This is best illustrated with an example.

Chemical Simulant Example
The Defense Threat Reduction Agency (DTRA) 

Automated, Detailed Equipment Decontamination for 
Land Vehicles (Auto-Decon) advanced technology dem-
onstration program required a chemical weapons simu-
lant for use in large-scale outdoor training of the United 
States Army Chemical Corps. The simulant was used 
for a baseline detailed equipment decontamination and 
training of the 71st Chemical Company (Figure 8).

APL worked with the Auto-Decon team to define 
and prioritize the target properties of the simulant. The 

Auto-Decon Green Sheet is shown in Figure 9. With the 
readily available agent data, as well as the protocol used 
for decontamination with hot, soapy water (HSW),9 the 
APL team developed a list of simulant candidates.

The initial simulant list included more than 100 can-
didates selected primarily from commercial off-the-shelf 
flavor and fragrance compounds. The simulant prop-
erties identified on the Green Sheet were molecular 
weight, melting point, boiling point, vapor pressure, 
octanol–water partition coefficient, and toxicity. The 
octanol–water coefficient is a first-principle descriptor 
of how a compound will interact in a mixed aqueous/

Figure 8.  Photo from a decontamination training exercise. APL 
supported this outdoor field test evaluating decontamination of 
military vehicles. (Used with permission from Esry.10)

✓ Stimulant must be approved for open-air release.

✓ Simulant should have similar behavior to HD and/or VX on
    CARC-painted surfaces.

✓ Simulant should closely match physical properties (vapor
    pressure, viscosity, octanol–water partition coef�cient) of
    HD and/or VX.

✓ Fluorophore detection reagent for decon is required.

✓ Materials must be commercial off-the-shelf and inexpensive.

✓ Materials must have extremely low toxicity
    (LD50 > 1,000 mg/kg).

✓ Simulant should behave and react like agent under HSW 
    decontamination.

✓ Simulant solubility in water should increase upon 
    decontamination.

Figure 9.  The Green Sheet for DTRA’s Auto-Decon training 
event. The sheet identifies simulant use and target properties. 
With this information, along with agent data and the protocol 
used for decontamination, the APL team developed a list of simu-
lant candidates.
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organic system (like soapy water). For reference, com-
pounds with a low octanol–water coefficient are more 
water soluble than organic soluble. Any molecule with 
an octanol–water coefficient between that for VX and 
HD was selected for further evaluation.

The Green Sheet indicated that the final simulant 
formulation must contain a fluorophore visible to the 
naked eye. The down-selection process is shown in 
Figure 10. The APL team initially selected candidate 
fluorophores on the basis of the criteria that they were 
expected to be colorless in solution under ambient light 
and to fluoresce under long-wave ultraviolet (UV) light 
irradiation. The fluorophores 
were required to be fluores-
cent when exposed to the 
long-wave UV light. The 
initial evaluation of the fluo-
rophores involved dissolving 
each molecule in ethanol at 
a concentration of 50  mM 
(Figure  11). Fluorophores 
that gave brightly colored 
solutions and fluorophores 
that did not dissolve in etha-
nol were eliminated from 
consideration.

The APL team then eval-
uated the remaining simu-
lant candidates’ solubilities 
of the fluorophores. They 
evaluated various simulant–
fluorophore pairs for their 
visibility under UV light on 
chemical-agent-resistant coat-
ing (CARC)-painted stainless 

steel coupons. Simulant–fluorophore pairs that were 
not readily visible on CARC were eliminated. Since 
the fluorophore serves as a marker for the simulant for-
mulation, it is important that it behave like the simu-
lant under HSW decontamination. The octanol–water 
coefficients were calculated for selected fluorophores 
using commercially available software. Finally, selected 
simulant–fluorophore pairs were evaluated in decontam-
ination studies using the same protocols used to collect 
agent data. Figure 12 shows results from the Auto-Decon 
test. The top photos (a) show before decontamination 
and after successful decontamination of a part of a mili-
tary vehicle. The bottom photos (b) show a failed decon-
tamination. The vehicle shown in the bottom photos 
was returned to the decontamination line for additional 

Task 1: Identify simulant use and target properties

Task 2: 
Obtain agent data

Task 7:
Correlate agent/
simulant pro�les

Task 8:
Make �nal 

recommendation

Identify physiochemical properties

Task 3:
Identify simulant candidates

Task 4:
Update instrument

Task 5:
Screen simulant candidates

Task 6:
Add �uorescent tag

Figure 10.  The Auto-Decon simulant down-selection process. 
The APL team initially selected candidate fluorophores that were 
expected to be colorless in solution under ambient light and to 
fluoresce blue under ultraviolet (UV) light irradiation.

Figure 11.  Representative simulant with an added fluorophore 
on a CARC coupon. This photograph was taken outside in direct 
sunlight. The blue fluorescence is readily visible from the hand-
held UV light source.

Before contamination After contamination(a)

(b)

Figure 12.  Photos from the Auto-Decon field test. Left, simulant formulation applied before 
decontamination. Right, after decontamination. (a) Successful decontamination; (b) unsuccessful 
decontamination. (Used with permission from Esry.10)
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the mission. Our selection process has been embraced by 
the user community and has been leveraged for numer-
ous use cases. Because of the extreme safety risk and cost 
of studies using energetic materials and CWAs, simu-
lant efforts will continue to provide valuable, impactful 
information to our sponsors.

cleaning. The ability to quickly access decontamination 
efficiency in the field provided real-time feedback to end 
users so they could evaluate performance and protocols.

The Auto-Decon simulant use case had some unique 
requirements. Since the simulant was applied to mili-
tary vehicles, it was important that it did not damage 
the vehicles. In addition to performing decontamina-
tion evaluation studies on CARC coupons, the APL 
team also tested with glass, cast acrylic, and extruded 
acrylic to determine whether these surfaces would be 
compatible with the simulant and the decontaminant. 
Additionally, because the field test’s decontamination 
wash solutions were released into the environment, the 
simulant formulation had to be biodegradable to comply 
with requirements of the state where the simulant was 
used in training. These requirements represent the 
unique needs for this use case and demonstrate the need 
to account for simulant use during early stages of field 
test planning to ensure there is sufficient time to resolve 
any site-specific issues.

CONCLUSION
The hazardous nature of explosives and CWAs has 

driven the development of simulants, which mimic spe-
cific properties and characteristics of the materials of 
interest. The use of simulants facilitates development 
of tools and tactics to protect the warfighter and other 
frontline security professionals. Using a systems engi-
neering approach, APL has created a simulant develop-
ment process that includes a methodology for the design 
and selection of scenario-specific simulants. This pro-
cess provides simulant materials that are ideally suited 
to a specific detection or other application, as defined by 
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Large-Scale Production of Radiopure 135Xe 
from Bremsstrahlung γ-Irradiation of Solid 
Xenon Difluoride

Evan P. Lloyd, Ciara B. Sivels, Alan W. Hunt, and Yenuel S. Jones-Alberty

ABSTRACT
The United States, together with the United Kingdom, signed the Limited Nuclear Test Ban Treaty 
in 1963. The Comprehensive Nuclear-Test-Ban Treaty was partially ratified by the United Nations 
General Assembly in 1996. A multifaceted worldwide monitoring network, in which the United 
States actively participates, continuously monitors treaty compliance. One of the tools this world-
wide network uses is atmospheric sampling of radioxenon. During an underground detonation, 
noble gases, such as xenon, do not react with soil and can escape into the atmosphere. The detec-
tion of radioactive xenon in 2006 provided reliable proof of North Korea’s underground testing. 
Because radioactive xenon is required for calibrating the detectors, the synthesis of high-purity 
radioxenon is of interest. In light of this interest, a team at the Johns Hopkins University Applied 
Physics Laboratory (APL) developed a novel production pathway for the 135Xe isotope using APL’s 
new linear accelerator facility.

Xenon-135, or 135Xe, is required to calibrate the 
detectors that passively monitor the atmosphere for 
global enforcement of the 1963 Nuclear-Test-Ban 
Treaty. Radioactive xenon in the atmosphere can indi-
cate nuclear explosions or testing; it is a clear marker 
of underground testing (because the unreactive noble 
gas escapes and persists after a test). Indeed, monitoring 
133Xe and 135Xe ratios offered the most reliable proof of 
North Korea’s 2006 underground nuclear test, providing 
a fission source term in contrast with seismic data that 
could have been produced with nonnuclear explosives.1,2 
Optimized purification of xenon from atmospheric 

INTRODUCTION
This article describes the use of bremsstrahlung 

radiation to induce 136Xe(γ,p)135I reactions, followed 
by milking of 135Xe from β-decay of the 135I product. 
To increase Xe density in irradiated samples, we used 
solid xenon difluoride, resulting in a yield of 80 nCi 135I 
and 26  mCi 135Xe from 122 mg XeF2 after irradiation 
of 21.9 MeV over 30 min. Using XeF2, we were able to 
separate unreacted xenon from the 135I product via 
aqueous sodium hydroxide decomposition of XeF2, 
followed by removal of evolved gaseous xenon by 
cryotrapping with liquid nitrogen. After decay, radiopure 
135Xe was recovered by cryotrapping.
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sampling has been demonstrated using the automated 
radioxenon sampler-analyzer (ARSA) since 1999. ARSA 
was developed by the US Department of Energy’s Office 
of Nonproliferation and the Pacific Northwest National 
Laboratory. Engineers have successfully purified and 
concentrated xenon from the atmosphere for analysis of 
radioxenon used to detect nuclear activity.

In experimental nuclear physics, a two-body nuclear 
reaction can be expressed as A(a,b)B, where, by con-
vention, A represents the target nucleus; a is the inci-
dent particle; b is a lighter ejected particle, known as 
the ejectile; and B is a heavier ejected particle, known 
as the recoil. 134Xe(n,γ)135Xe transitions after expo-
sure of low-density gaseous xenon, in which a neutron 
is incident on a 134Xe nucleus, produce valuable 135Xe 
samples for calibrating the worldwide detectors. These 
samples, however, contain mostly 134Xe, which compli-
cates the calibration process. Not only would radiopure 
and carrier-free 135Xe samples improve the existing state 
of the art, but using an alternative, denser form of Xe 
would allow for production of greater yields.

136Xe(γ,p)135I reactions have been described as a 
way to produce 135Xe. Horkley et al. recently reported 
production of 592 Bq of 135Xe after 6.5-h irradiation at 
21.8 MeV.3 These experiments produced 135Xe without 
detectable 133Xe; however, the yields were 103 times 
lower than would be required for practical use. If using 
a similar gamma source, concentrating the xenon sub-
strate solves this limitation.

Xenon difluoride, or XeF2, is a colorless salt produced 
from the reaction of xenon and difluorine. These gases 
react when energy is added. XeF2 has been synthesized 
from irradiation with ultraviolet (UV) light, heat, γ-rays, 
and other energy sources.4 Today XeF2 is typically pro-
duced via UV irradiation of a xenon fluorine mixture in a 
2:1 ratio with catalytic 1 mol % hydrogen fluoride,5 which 
forms pure crystals. Because of its volatility and reactivity, 
XeF2 is best stored cold and in a sealed polyethylene or 
fluoropolymer container. Although xenon is a noble gas 
and therefore tends to be chemically inert, xenon diflu-
oride is reactive; it will react with water but not rapidly, 
and it requires the presence of base to reliably dissociate 
and evolve xenon gas.6 XeF2 is used as a niche fluorinat-
ing agent for research purposes7 but has limited industrial 
use synthetically. XeF2 is available commercially from 
common chemical suppliers and can be purchased for less 
than $200 per gram, although not in isotopically pure 
forms. Furthermore, purifying xenon from XeF2 is simple 
by using liquid nitrogen for cryo-condensation.

Efforts to optimize the purification of xenon from 
atmospheric sampling have demonstrated reliable 
sequestration of radioxenon produced from 136Xe(γ,p)135I 
reactions and subsequent 135I β-decay. In this article, we 
report a proof of concept for generating 135Xe in large 
yields from a solid xenon-containing substrate, followed 
by purification and trapping of radiopure 135Xe.

LINEAR ACCELERATOR FACILITY
We conducted experiments in APL’s linear acceler-

ator facility, a ~4,000-ft2 laboratory that consists of a 
~1,000-ft2 heavily shielded accelerator hall, a ~600-ft2 
heavily shielded experimental hall, a ~620-ft2 radio-
chemistry laboratory, and a ~520-ft2 experiment staging 
area. The accelerator and experimental halls are both 
partially underground with walls and ceilings consisting 
of ~3 ft of concrete and 1.7 ft of steel, providing ample 
radiation shielding for radiation-producing machines 
and large radioactive sources. The accelerator is capa-
ble of delivering electron pulses with operator-selectable 
widths between 0.5 and 4 ms at a repetition rate up to 
115  Hz. The maximum charge per pulse ranges from 
40 nC for 0.5-ms pulses to 350 nC for 4-ms pulses. The 
electron energy can be varied from ~5 to 25 MeV with 
an energy resolution of 5%, which can be reduced using 
collimators or slits. The S-band standing wave radio fre-
quency linear accelerator, which operates at ~2.8 GHz, 
was used to accelerate 21.9-MeV electrons that gener-
ate bremsstrahlung γ-radiation using a 2-mm tungsten 
source. With the electron linear accelerator’s energy 
range and versatility, we were able to develop a novel 
solution for synthesizing radiopure 135Xe.

EXPERIMENTAL METHODS
We placed xenon difluoride crystals (200 mg) into a 

25-mL single-neck borosilicate glass Schlenk reaction 
tube fitted with a rubber septum. Next we submerged 
the sealed reaction tube in an ice water bath and then 
placed it directly in the γ-beam. This setup is pictured 
in Figure 1.

Figure 1.  Placement of the reaction tube containing XeF2 crys-
tals in APL’s linear accelerator facility γ-beam.
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We fit the sealed reaction tube containing irradiated 
XeF2 to the apparatus pictured in Figure 2. The appa-
ratus comprised the sealed reaction tube connected to 
a drying trap that facilitated visualization of moisture 
trapping. The drying trap connected to a stainless steel 
U-tube, also shown in Figure 2, and was fitted with 
a manual valve on both ends and a gauge to monitor 
internal pressure. We introduced into the reaction 
tube a steady stream of ultrahigh-purity nitrogen from 
a cylinder. Next, we opened the tube, drying tube, and 
reaction tube valves and then submerged the U-tube in 
liquid nitrogen before adding aqueous sodium hydroxide 
(1 N, 3 mL) to the XeF2 crystals. Nitrogen flowed into 
the reaction solution to sparge the mixture and remove 
the entirety of dissolved xenon, as shown in Figure 3. We 
continued to purge the system with nitrogen for 1 min 
after we could no longer see xenon evolution, and then we 
shut off the gaseous nitrogen flow. Finally, we closed the 
reaction tube, drying tube, and tube valves and removed 
the U-tube from the liquid nitrogen bath, allowing the 

tube to warm to room tem-
perature. Figure 4 shows the 
XeF2-containing reaction 
tube at various stages during 
these experiments.

We piloted this pro-
cedure with unirradiated 
XeF2 and examined the col-
lected xenon by residual gas 
analysis, which is a form of 
mass spectrometry. During 
mass spectrometry, the 
mass-to-charge ratio (m/z) of 
an ion is measured, typically 
by manipulating the ion’s 
trajectory using a magnetic 
field.8 The sensitivity of mass 
spectrometry techniques is 
such that individual ions of 
a given mass-to-charge ratio 

Figure 4.  The XeF2-containing reaction tube. (a) Crystals before irradiation. (b) Intact crystals after irradiation at 0°C. (c) Sublimation of 
crystals after irradiation at ambient temperature. (d) Solution after dissociation with 1N NaOH.

(a) (b) (c) (d)

Figure 2.  The apparatus used to purify xenon from XeF2. Inset, the U-tube fitted with a pressure gauge and valves on either end con-
taining cryotrapped xenon.

Figure 3.  Removal of 
dissolved xenon gas by 
sparging XeF2 dissolved 
in 1N NaOH with gaseous 
nitrogen.
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can be counted. This analysis revealed xenon isotopes 
ranging from 126 to 136 Da, similar to the natural iso-
topic distribution for xenon, as shown in Figure 5. An 
increase in ion counts can be observed in this range for 
the xenon sample, shown in blue.

RESULTS
Irradiation of Xenon Difluoride

We sought to irradiate xenon difluoride crystals and 
determine the yield of 135I and 135Xe produced from a 
solid substrate. In a first-pass experiment, we added 
100 mg XeF2 to a borosilicate Schlenk tube. Processes 
to synthesize XeF2 involve adding energy during the 
reaction, including γ-irradiation, and we did not know 
whether adding high amounts of ionizing radiation 
could reverse the reaction and produce hazardous gases.9 

Therefore, we fit the Schlenk tube to a gas scrubber 
to remove any produced hydrogen fluoride or fluorine 
vapors with aqueous 3N  sodium hydroxide. This pre-
caution turned out to be unnecessary, however, as we 
observed no bubbling during irradiation, and the XeF2 
crystals appeared intact after irradiation for 15 min at 
21.9  MeV. Longer irradiations, at 1  h, resulted in visi-
ble sublimation of the XeF2 substrate, so we performed 
future experiments at 0°C by using an ice water bath. 
With the temperature held constant at 0°C, we observed 
no sublimation, and the XeF2 crystals remained intact 
and in place at the bottom of the reaction tube.10

We measured the production yields of 135I and 135Xe 
at multiple energies by bombarding a 200-mg sample of 

XeF2 with bremsstrahlung radia-
tion. Measurements were taken 
at 16-, 19-, and 22-MeV end-point 
energies at 15-min irradiation 
intervals. Electrons were acceler-
ated using the linear accelerator 
facility’s 25-MeV linear acceler-
ator (Figure 6), and bremsstrah-
lung radiation was generated by 
impinging a 2-mm-thick tungsten 
radiator. Also known as braking 
radiation, bremsstrahlung results 
from electrons decelerating in 
a medium.11,12 A 2.54-cm-thick 
block of aluminum served as a 
beamstop. A simulated brems-
strahlung spectrum for an inci-
dent 22-MeV electron beam is 
shown in Figure 7.Figure 6.  The 25-MeV linear accelerator in APL’s facility. 

Figure 7.  Monte Carlo N-Particle (MCNP)10 simulated brems-
strahlung spectrum for an incident 22-MeV electron beam.

Figure 5.  Residual gas analysis of cryotrapped xenon from XeF2.
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Purification of Xenon from 
Xenon Difluoride

We hypothesized that 
XeF2 could be rapidly dis-
sociated into xenon gas and 
fluoride salts upon addition 
of aqueous sodium hydrox-
ide. Indeed, adding 3  mL 
1N  NaOH solution to the 
XeF2 crystals caused vig-
orous bubbling in our ini-
tial tests with unirradiated 
material. We assembled an 
apparatus to remove xenon 
after irradiation by using 
positive flow of nitrogen 
gas from a cylinder into the 
sample-containing Schlenk 
tube, followed by drying of 
the flowed gases through 
anhydrous calcium sulfate 
desiccant and condensation 
of xenon gas into a stainless 
steel trap made from ¼-in. 
stainless steel tubing using 
liquid nitrogen. Xenon was 
cryotrapped from unirradi-
ated XeF2 using our appa-
ratus, and successful xenon 
recovery was validated by 
residual gas analysis mass 
spectrometry.

The experimental work-
flow was repeated with irra-
diated XeF2 and iodine was 

successfully maintained in the aqueous sodium hydrox-
ide solution. The isotopes of interest, 135I and 135Xe, have 
half-lives of 6.9 ± 0.4 h13 and 9.13 ± 0.5 h,14 respectively. 
Furthermore, it can be extrapolated that 135I β-decays 
exclusively to 135Xe based on the energies reported 
for this transition.15 Characteristic γ-decay energies 
associated with these radioisotopes were measured by 
analyzing the cryotrapped gases using a high-purity 
germanium detector (HPGe), which is a semiconductor 
γ-ray detector.11 We observed prominent γ-ray decays 
of energy Eγ = 1,260.409, 1,131.511, and 1,457.56 keV, as 
shown in Figure 8. Decay curves, shown in Figure 9, were 
constrained for each isotope and are within error bars of 
known values. The production yields for 135I and 135Xe 
are shown in Figure 10. We determined that 135Xe was 
successfully purified from the 135I sample. After waiting 
for ~16 h, we repeated the procedure to sparge the solu-
tion and induce cryotrapping of the 135Xe resulting from 
β-decay of the 135I product during that period. Radio-
pure 135Xe was recovered.

An additional insight resulted from these measure-
ments. Currently, the experimental cross sections of 
the 136Xe(γ,n)135Xe and 136Xe(γ,p)135I reactions, which 

Figure 8.  HPGe gamma spectrum for post-irradiated XeF2.

105

104

103

102

101

100

10–1

10–2

10–3

10–4

24
9.

8 
ke

V 
13

5 X
e 

0               400             800           1,200          1,600
Energy (keV)

100.4 mg XeF2

9.7 h post irradiation
R

at
e 

(s
–1

 · 
ke

V
–1

) 40
8.

0 
ke

V 
13

5 Xe

52
9.

9 
ke

V 
13

3 I

87
5.

3 
ke

V 
13

3 I

11
31

.5
 k

eV
 13

5 I

12
60

.4
 k

eV
 13

5 I
12

98
.2

 k
eV

 13
3 I

14
57

.6
 k

eV
 13

5 I

16
78

.0
 k

eV
 13

5 I
17

06
.5

 k
eV

 13
5 I

Figure 9.  Decay curves for 135I and 135Xe produced from irradiation of XeF2.

 R
at

e 
(s

–1
)

212

211

210

 R
at

e 
(s

–1
)

2102–2

2–3

2–4

2–5

2–6

1,260 keV 135l 250 keV 135Xe
t

1/2  = 6.58 h

t
1/2  = 9.14 h

29

28

27

Time (h) Time (h)
0            8           16          24           32 0            8           16          24           32

Figure 10.  Production yields of 135I and 135Xe at 16, 19, and 22 MeV.

13
5 I

 Y
ie

ld
 (C

i·A
–1

·g
–1

)

13
5 X

e 
Y

ie
ld

 (C
i·A

–1
·g

–1
)

101

100

10–1

212

211

210

Energy (MeV) Energy (MeV)
16            18            20            22 16            18            20            22

http://www.jhuapl.edu/technical-digest


E. P. Lloyd et al.

6 Johns Hopkins APL Technical Digest, Volume 37, Number 4 (2025), Article 2400429-3 
www.jhuapl.edu/technical-digest

describe the probability of these reactions taking place, 
have not been measured. As such, theoretical cross sec-
tions are used to predict the production yields of the 135I 
and 135Xe isotopes. Our measured 135I production yield 
suggests a large discrepancy between the theoretical and 
experimental cross sections. Further measurements are 
needed to clarify this discrepancy and to constrain the 
experimental cross sections for these reactions; this work 
would be beneficial to the nuclear data community.

CONCLUSION AND OUTLOOK
Our hypothesis for how 135Xe could be purified from 

the irradiated solid XeF2 hinges on the passive evolution 
of gaseous xenon from aqueous solution. The overall 
radiochemical transition from 136Xe to 135I is shown in 
Figure 11. As the 135I is likely stable as a salt in aqueous 
solution, the remaining xenon can be removed at this 
point by sparging the aqueous solution with an inert 
gas, such as nitrogen. The remaining aqueous 135I will 
decay into 135Xe with a half-life of 6.6 h and then can be 
removed by sparging the solution with gaseous nitrogen. 
Xenon’s boiling point is 165 K, compared with nitrogen’s 
boiling point of 77.3 K; therefore, the evolved 135Xe can 
be trapped using liquid nitrogen.

The proposed chemistry in Figure 11 allows 135Xe to 
be selectively purified if radiopure 136XeF2 is used because 
the unconverted xenon is removed after the addition of 
aqueous sodium hydroxide (NaOH) followed by sparging 
of the solution with nitrogen. The removal of evolved 
135Xe after a waiting period through cryotrapping leaves 
behind the 135I as an aqueous salt. The purity of the 
milked 135Xe is measured using HPGe γ-spectroscopy, 
demonstrating the effectiveness of this approach for 
large-scale 135Xe production. An example of the HPGe 
γ counting setup is shown in Figure 12.

These methods could be applied to a more refined 
production process using a custom-built and engineered 
apparatus. The techniques involved are simple and rely 
on separation of undesired xenon isotopes by remov-
ing them before the majority of the 135I decay. If inert 
conditions are maintained through the use of a nitro-
gen atmosphere, using liquid nitrogen to cryotrap the 

radioactive xenon product gas is 
a reliable approach to separating 
135Xe from the mixture without 
risking chemical release as a 
result of system overpressure.

Using XeF2 as a substrate 
for radiochemical production 
of 135Xe is a viable strategy to 
generate calibration samples for 
the comprehensive Nuclear Test 
Ban Treaty’s atmospheric xenon 
detectors. Not only are produc-
tion yields sufficient, but the 

ability to chemically separate the produced 135I allows 
for isolation of radiopure 135Xe and removes the pres-
ence of problematic xenon isotopes. Cryo-condensation 
of these undesirable xenon isotopes allows for their safe 
handling and recycling, as well as bottling of radiopure 
135Xe for future sample preparation.

Future directions to refine this approach would 
involve designing a 135Xe separation apparatus and using 
radiopure 136XeF2. An apparatus for 135Xe evolution and 
separation would require the use of an inert atmospheric 
environment, as previously stated, so the ability to load 
the irradiated XeF2 material and purge the system with 
gaseous nitrogen is required, followed by the ability to 
add aqueous sodium hydroxide solution to the XeF2 and 
sparge the resulting solution without opening the system 
to the atmosphere. Ideally, the evolved Xe that contains 
undesired 136Xe from the sample would be cryotrapped 
and recycled into the synthesis of 136XeF2. The appara-
tus should allow for an additional or replacement cryo-
trap vessel so that pure 136Xe can be collected after the 
135I decay process without opening the system to the 
atmosphere.

Figure 12.  An example of the HPGe γ counting setup. The HPGe, 
shown on the right side of the image, is housed in lead bricks.

Figure 11.  Radiochemical irradiation of XeF2 and extraction chemistry.

Legend
g: gaseous
s: solid
aq: aqueous
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APL’s Contributions to the Odor Detection Canine 
Community

Shirley M. Klimkiewicz and David M. Deglau

ABSTRACT
Odor detection canines play a key role in ensuring our nation’s security. For more than 15 years, 
the Johns Hopkins University Applied Physics Laboratory (APL) has supported research on and 
advancement of the community’s efficacy and capabilities through the application of inter­
disciplinary solutions spanning chemistry, biology, data analytics, and engineering. Not only have 
APL’s contributions resulted in strong collaborations across the research space, but they have also 
directly informed and impacted strategies and capabilities for operational deployments of odor 
detection canines.

olfaction to detect a specific compound or class of com-
pounds in a variety of environments and scenarios. 
Canines are the ideal candidate for detection applica-
tions, given their incredible olfactory abilities. They are 
able to detect substances at concentrations as low as 
one part per trillion, which is more sensitive than most 
analytical instruments.5 Additionally, canines have 
the dynamic capability of providing detection in differ-
ent odor disciplines (e.g., narcotics, explosives, arson, 
human remains) based on which “library” of compounds 
is introduced via training. Utilization within an odor 
discipline requires a specialized training protocol to 
enable the canine to detect specific compounds related 
to the intended odor discipline without alerting to unre-
lated odors. In addition to their dynamic capabilities 
within odor disciplines, canines have a strong learning 
ability that enables their use in a variety of scenarios. 
Their initial training focuses on scanning static envi-
ronments and stationary objects, such as stadium seats, 
luggage and packages, and vehicles. Some ODCs, such 

INTRODUCTION
Odor detection canines (ODCs) are utilized as sen-

sors in a variety of fields, from medical to military and 
defense to disaster relief, among others. Many people 
may have encountered ODCs at the airport, where the 
Transportation Security Administration (TSA) lever-
ages them to scan luggage and passengers for explosive 
materials.1 Similar to how TSA uses ODCs to scan lug-
gage, other organizations, such as Customs and Border 
Protection, employ these canines to identify contraband 
and illicit substances at ports of entry.2 The Federal 
Emergency Management Agency (FEMA) uses ODCs 
to locate survivors and human remains after a disaster.3 
Researchers have explored the use of ODCs to detect 
specific biological conditions, including but not lim-
ited to diabetes, seizures, and various types of cancer.4 
These select examples demonstrate the importance of 
ODCs in national security and infrastructure in the 
United States.

Building on natural biological characteristics and 
physiology, ODCs are trained from a young age to use 
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as those the TSA uses at airport checkpoints, undergo 
additional training to scan people standing in queues or 
walking. ODCs’ dynamic working ability also extends to 
the environment, as they can be deployed indoors and 
outdoors under a variety of weather conditions.

Like all analytical instrumentation, however, ODCs 
have limitations. One challenge of using biological 
detectors is establishing efficient, reliable communi-
cation between the ODC and the handler. Although 
canines within an odor discipline are generally trained 
to display a uniform response when alerting to a an 
odor they are trained to detect, each canine will likely 
exhibit different behavior leading up to the final trained 
response. Additionally, canines may display unique 
behaviors associated with a false alarm. Effective use of 
ODCs relies on experienced and attentive handlers to 
guide the canines and interpret their behavior, which 
is generally more difficult than interpreting results from 
nonbiological detectors. In preparation for working with 
an ODC, handlers undergo specialized training depend-
ing on the intended odor discipline. Typically, the final 
portion of this training involves pairing the handler and 
canine, which may require several attempts until an 
effective team is formed.

Another limitation, also related to communication, 
is that it can be difficult or even unfeasible for multiple 
handlers to pair with the same canine. During training, 
an ODC primarily works with trainers and its assigned 
handler, because it is important to form specific canine–
handler pairs for efficient detection. Canine or handler 
reassignment typically requires additional training so 
that the handler can become familiar with the canine’s 
behaviors and recognize patterns, making reassignment 
onerous. Whereas any operator with the appropriate 
skill set can use other analytical instruments, ODCs are 
typically most effective when paired with one handler.

Because of these complexities, ODCs are considered 
a qualitative sensor system, and thus, they are often 
used and relied on as a high-throughput but initial layer 
of screening. They are most effective when integrated 
into multiple layers of detection. For example, ODCs 
deployed at airports are layered with x-ray-based technol-
ogies to provide several layers of security. While canine 
detections are consistently used in security and medical 
applications, additional quantitative detections are still 
considered valuable as supportive or final determinations.

APL’S CONTRIBUTIONS TO CANINE DETECTION 
ADVANCEMENT AND ENGINEERING

APL’s efforts within the ODC community have been 
as diverse as the range of staff members at APL itself. Over 
the course of more than 15 years, APL has established 
and grown a foundational approach to canine research 
and advancement through the efforts of an experienced 
and innovative interdisciplinary team bringing together:

•	 traditional disciplines (chemistry and biology);

•	 end users or operational teams and components; and

•	 nontraditional disciplines (engineering, computer 
science, and data analytics).

APL has performed, and continues to perform, research 
on every aspect of the canine’s life, from informing the 
selection of matings to enhancing breeding outcomes 
to optimizing deployment. This breadth of scope is 
demonstrated across APL’s various efforts, stemming 
from long-term relationships with sponsors driven by its 
Homeland Chemical, Biological, Radiological, Nuclear, 
and Explosives Defense portfolio, and is captured in 
Figure 1 and detailed below.

Training aid
development

Training
guideline

Domestic 
Breeding

Consortium

Deployment 
optimization

Independent 
operational 
assessment

Identify unique odor 
signatures
CH3

NO2O2N

NO2

Develop nonhazardous
operational training aid

Figure 1.  APL’s ODC areas of effort.
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Domestic Breeding Consortium
As a key component of security measures in ports, 

airports, stadiums, and other public spaces, ODCs are 
critical to national security, public safety, and infrastruc-
ture in the United States. Explosives detection canines 
(EDCs) especially play a significant role in ensuring 
public safety and protection from explosive materials. 
Currently, most EDCs are sourced outside of the con-
tinental United States, a fact that Congress recognized 
as a potential threat to national security. In light of 
this, the House of Representatives passed the Domes-
tic Explosives Detection Canine Capacity Building Act 
of 2017 directing the creation of a 
domestic breeding network to pro-
vide high-quality, effective EDCs.6 
In 2019, APL started the Domes-
tic Breeding Consortium (DBC) 
with the objective of meeting this 
congressional call. The DBC is 
a collaborative project focusing 
on developing evidence-based 
breeding and selection practices 
to strengthen and expand the 
domestic supply of ODCs, partic-
ularly EDCs.

The DBC has developed and 
deployed quantitative evaluations 
to monitor and support early and 
operational development as well as 
to create a more informed procure-
ment structure. Additionally, APL 
has aggregated and documented a 
community best practices frame-
work that both the private and 
public sectors can use to increase 

the knowledge and capabilities of 
organizations raising ODCs. Over 
its 3  years of existence, through 
the collaborative efforts of five 
partner organizations across the 
private and academic sectors, the 
DBC has produced 125 canines 
and successfully developed and 
placed 60 into primary, 12 into 
secondary, and 19 into tertiary 
positions (as EDCs, operational 
ODCs, and research ODCs, 
respectively). Two graduates from 
the DBC, pictured in Figure  2, 
were placed with the University of 
Maryland Police Department.

The team plans to integrate all 
aforementioned knowledge, prac-
tices, and analytical developments 
into a common platform to be dis-
tributed and used by the develop-

ment, training, and deployment organizations. To fully 
understand the impact of applying scientific principles 
to breeding and developing ODCs, APL has created 
genetic references and is actively generating models to 
support the optimization of ODC discipline determi-
nation through not only development but also genetic 
optimization.7

Training Guideline
Another critical application of ODCs is person-borne 

explosives detection (PBED), which specifically involves 
the detection of explosive material carried by people, 

Figure 2.  APL staff members, University of Maryland Police Department officers, and 
Domestic Breeding Consortium (DBC)  canines.

Figure 3.  APL-developed training guideline home page.
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whether stationary or moving. Over the last decade, the 
Department of Homeland Security Science and Tech-
nology Directorate (DHS S&T) has prioritized research 
on the strengths and weaknesses of PBED canines, 
including factors that may impact their performance.8 
In response to this call, APL developed a training 
guideline for uptraining traditional ODCs on expanded 
person-borne detection capabilities. The guideline, 
disseminated by DHS S&T,9 was developed based on 
input from ODC subject-matter experts and partner law 
enforcement agencies that deploy ODCs. Before this 
guideline was disseminated, many agencies relied on 
commercial sources for PBED training, and the training 
quality varied. The training guideline (Figure 3) provides 
detailed instructions as well as supplemental figures and 
videos, enabling agencies to conduct training in-house 
and ultimately giving more agencies the opportunity to 
deploy PBED canines.

Training Aid Development
The ODC training process requires the use of spe-

cialized training aids (TAs) for each odor discipline. 
The TAs contain the odor the canines are being trained 
to detect. In the case of EDCs, the conventional TAs 
are generally small amounts of neat (i.e., in the form 
that would be used operationally) explosive material. 
Although the amounts used vary according to explo-
sive type and individual agency preference, the use of 
neat explosive material introduces considerable safety 
and logistical limitations across all agencies employing 
EDCs. While most agencies maintain a TA supply for 
ongoing maintenance training, the limited stability of 
certain explosive materials prevents agencies from keep-
ing even small amounts in-house. In these cases, EDC 
training with the explosive material may be limited 
because it requires an agency to have the appropriate 
qualifications to handle and transport the material.

These limitations led to the development of alter-
native TAs that reproduce or mimic the neat materi-
al’s odor profile but eliminate its safety hazards. These 
TAs can generally be categorized as dilution or deriva-
tive TAs. Dilution TAs contain the neat material, but 
it is rendered nonhazardous through means of altered 
concentration, mixture, or geometry. Derivative TAs 
do not contain the neat material, but rather a chemi-
cal derivative or product that is meant to be chemically 
or structurally analogous to the raw trained material.10 
In contrast, TAs known as psuedo-TAs are the most 
common form of commercially available derivative TAs. 
They are primarily designed to reproduce the headspace 
generated by the neat material, as determined by gas 
chromatography–mass spectrometry (GC/MS).11 This 
approach has several limitations, the most significant of 
which is the assumption that the compounds identified 
by headspace analysis are the same as those the canine 
identifies to make a positive detection. Given that 

canines’ detection ability is known to be more sensitive 
than that of analytical instrumentation, it is not unrea-
sonable to presume that canine detection of the trained 
odor may rely on compounds that are not detected 
by gas chromatography–mass spectrometry or similar 
approaches, which may include but are not limited to 
binders, solvents, or tagents.5 For this reason, dilution 
TAs are generally preferred as alternative TAs, partic-
ularly for explosive detection. Dilution TAs often take 
on the format of a mixture of neat material in an inert 
matrix, such as diatomaceous earth or silica gel. Because 
the neat material is sufficiently dispersed in the inert 
matrix, the dilution TA does not pose the hazards the 
neat TA does. Furthermore, low-volatility inert matrices 
make minimum contributions to the headspace of the 
material. Therefore, usually the dilution TAs’ headspace 
closely mimics the headspace of neat TAs and represents 
the entire odor profile rather than the profile of select 
compounds, as is generally the case with pseudo-TAs.

Because APL has experience in developing12 and 
evaluating TAs using both traditional analytical and 
canine methods, it is often called on to review the state 
of the science as well as commercially available prod-
ucts. Findings are documented in market survey reports, 
the most recent of which was published for the ODC 
community and general public through a collaboration 
with the National Urban Security Technology Labora-
tory (NUSTL) System Assessment and Validation for 
Emergency Responders (SAVER)13 and paired with an 
additional succinct TechNote summary.14

Independent Operational Assessment
Regardless of odor discipline, ODCs are deployed in 

an operational environment after extensive training. 
Because deployment can introduce variables that may 
have been absent or controlled during training, the tran-
sition from training to an operational space can affect 
ODC performance. To solve this issue, APL has part-
nered with several local agencies deploying EDCs, such 
as the University of Maryland Police Department and 
the Pentagon Force Protection Agency, to optimize the 
operational assessment process and provide expert rec-
ommendations for optimizing team performance. With 
these local partners, APL has conducted small-scale 
pilots to test assessment methodologies and deployment 
optimization techniques before performing them in col-
laboration with national organizations such as TSA.

Operational assessments of ODCs can reveal the 
influence of any number of variables on performance 
and likelihood of success. The assessments are designed 
by APL and reviewed by external subject-matter experts 
to ensure that the complexity of assessing a biologi-
cal detector is reflected in the experimental plan. As a 
trusted independent evaluator, APL is well positioned, 
given its partnerships with the end-user community, 
to conduct these assessments, interpret the results, and 
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provide tailored recommendations for potential improve-
ments to canine training and deployment practices. This 
development cycle ensures that ODCs are trained and 
deployed through scientifically verifiable progressions.

Deployment Optimization
Many environmental factors are known or suspected 

to influence ODC performance in operational environ-
ments. One major factor of specific interest in the com-
munity is airflow. In light of this interest, APL undertook 
a substantial effort to develop airflow visualization and 
detection techniques to help handlers and trainers 
understand the potential impact of air movement in 
the dynamic operational environment. APL piloted the 
deployment of fieldable fogger kits (Figure 4) adapted 
from commercial off-the-shelf products.15 When using 
the fogger system during ODC training, handlers gained 

Figure 4.  Fogger kit. Left, fogger kit components; right, the kit deployed in a rolling suitcase.

Figure 5.  APL’s anemometer array concept.

a better awareness of typical air movement patterns or 
behaviors directly in the operational environment.

To further advance the capabilities and awareness 
of the ODC team, APL developed an advanced, field-
able sensor suite to give deployed teams and their agen-
cies useful analytical knowledge of their operational 
environment. This knowledge is provided by a suite of 
self-contained anemometer-based units. These inte-
grated units provide real-time situational awareness of 
their deployment environment through a graphical user 
interface. Handlers, trainers, and supervisors can then 
determine optimal deployment conditions with a more 
complete awareness of the environment and, when 
paired with knowledge ascertained through operational 
assessments, deploy with analytically informed and sci-
entifically optimized efficacy. The anemometer array is 
shown in Figure 5 (green tripod structures) within the 
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deployed advance queue configuration developed in col-
laboration with and fielded by TSA.

CONCLUSIONS
While inherently it may seem that canine-based 

detection is more limited than continually advancing 
state-of-the-art equipment and sensors, ODCs have 
proven to be an effective, sensitive, and dynamically 
fieldable solution for the nation’s defense against a wide 
range of threats. APL has contributed to the deploy-
ment, technologies, and information at all phases of the 
canine’s life and deployment in order to ensure advance-
ment in the state of the science and capabilities of an 
invaluable fielded sensor platform that is integral to the 
safety and security of our nation.
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Using Knowledge Graphs to Counter Weapons of 
Mass Destruction

Ray H. Mariner, Timothy P. Lippa, Phillip T. Koshute, David W. Boyce, 
Josef C. Behling, and Michael J. Peters

ABSTRACT
This article describes the development of a data-driven approach to map adversarial activity into 
machine-readable models. Specifically, this approach is grounded in well-structured knowledge 
graphs and uses a semantic representation of domain-specific pathways implementing formal 
ontology and Resource Description Framework (RDF) and Web Ontology Language (OWL). In 
addition, the article describes a web-based application through which a user can interact with 
the underlying knowledge graph. The application also allows for development of analytics that 
use these data to answer questions about adversarial activity.

INTRODUCTION
Many US  government agencies and organizations 

are involved in countering weapons of mass destruction 
(CWMD). While overall goals and specific mission objec-
tives vary, the US government typically requires access 
to experts on WMD production. When experts are not 
readily available, however, especially in operational set-
tings, the government has typically supplemented expert 
knowledge with printed material, such as note cards or 
books. In a field environment, these printed materials 
can be cumbersome to carry and use effectively, espe-
cially for new operators. Additionally, materials are often 
severely outdated because adversaries have evolved their 
tactics, techniques, and procedures (TTPs).

Another factor complicating CWMD missions is 
the lack of a common vocabulary to describe adversary 
TTPs. This, coupled with the many disparate and stove-
piped data systems, makes sharing information difficult. 
As a result, everything from retrieving information to 
developing advanced artificial intelligence and machine 

learning algorithms is inefficient and costly. APL recog-
nized the potential of semantic data models to enable a 
revolutionary shift in CWMD knowledge management 
and analysis.

Based on an Independent Research and Development 
experiment, APL researchers developed a semantic data 
model using domain-specific ontologies. Without ontol-
ogies, analysts typically rely on the natural language to 
describe the world, and natural language lacks the pre-
cision required for machine interpretation. The formal 
representation of knowledge through ontologies allows 
for greater clarity among both individuals and computer 
agents. For instance, consider the difficulty a system 
(or human) would face in understanding the intent of 
the word tank in the following example: “Tanks found 
at grid coordinates x,y, along with heavy-duty press and 
several kilograms of calcium chloride.” Because natu-
ral language is inherently overloaded, this one simple 
example quickly grows in confusion when attempting to 
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describe and model a domain of interest in any detail. 
To address the associated problems described above for 
supporting CWMD missions, APL developed several 
domain-specific ontologies to define and represent the 
relationships between entities within the field of WMD 
agent production.

Existing US Department of Defense and Intelligence 
Community systems provide information (e.g., observa-
tions of entities and events of interest). APL’s semantic 
models allow us to organize and relate this information, 
and the organization and relationships then allow us to 
reliably interpret the information and build analytical 
tools.

In 2009, the US Defense Threat Reduction Agency 
(DTRA) funded the creation of a broader set of CWMD 
adversary models in pursuit of the following objectives:

•	 Characterize threats with meaningful definitions, 
health and safety information, and physical properties

•	 Identify and document adversary TTPs for WMD 
production, weaponization, and employment

•	 Provide a standard vocabulary for CWMD missions

•	 Provide analytical capabilities to aid analysts look-
ing for WMD activity

APL, on behalf of DTRA, created these models and 
developed a comprehensive knowledge graph known as 
the Chemical, Biological, Radiological, Nuclear, Explo-
sive Semantic Framework (CBRNE-SF). This graph con-
tains the information related to processes (actions taken 
by an adversary) and observables (things needed and 
used by an adversary) to perform a specific action in pur-
suit of WMD. Pathways for more than 100 threat agents 
have been modeled, with more than 20,000 observables 
and more than 100,000  multilingual alternative labels 
and synonyms for the observables.

A simple example is presented in Figure 1. The activi-
ties are represented by rectangles, whereas observables 
are in blue type beneath each activity. If someone had 
made fresh orange juice, one could expect to observe 
oranges, a juicer, and a pitcher.

Powered by the CBRNE-SF, APL also created a user 
interface for DTRA, which is currently deployed in sev-
eral environments across many federal agencies. The 
application allows the user, or even other systems, to 
access the CBRNE-SF to quickly complete the follow-
ing tasks:

•	 Identify observables using a comprehensive list of 
synonyms and imagery for WMD agents, precursors, 
and equipment to help standardize the vocabulary 
used to describe WMD TTPs

•	 Understand how observables are associated with 
adversary activities related to WMD production, 
weaponization, and employment

•	 Understand health and hazard information on the 
effects of WMD agents and precursors, including 
chemical exposure, biological disease, and symptoms

CBRNE-SF CONSTRUCTION
The CBRNE-SF knowledge base contains the inter-

connected series of actions an adversary would likely 
take when producing, weaponizing, or employing a 
WMD. In many cases, there are several different syn-
thetic approaches to produce a WMD, so the knowledge 
base must contain all possible approaches. The knowl-
edge base is not meant to provide precise step-by-step 
instructions for producing, weaponizing, or employing 
a WMD; instead, it provides a road map to the most 
essential actions that present opportunities for discovery. 
Additionally, it leverages a diverse range of authorita-
tive sources. Subject-matter experts (SMEs) consulted 
online databases, specialized dictionaries, reference 
texts, peer-reviewed journals, and other trusted resources 
to develop each process. Whenever possible, our work-
flows are grounded in, and enriched by, peer-reviewed 
literature.

To codify the steps an adversary would use to carry 
out some activity or set of activities, we developed the 
following lexical constructs: pathways, processes, activi-
ties, observables, and signatures.

A pathway is the interconnected series of actions that 
are performed and lead to some intended outcome. In 
CBRNE-SF, this takes the form of a unidirectional flow-
chart comprising processes and activities.

A process allows for collecting related activities used 
to get to a specific end state. These processes can be 
nested as subprocesses in a bigger overall process.

An activity defines the lowest level of discrete action 
modeled in the pathway. Activities contain all the 
relevant information required for that activity to be 
completed successfully and, subsequently, all the infor-
mation that would allow the activity’s discovery. These 
activities are assembled in processes that themselves can 

Get oranges Juice oranges

Start

Get orange
juice 

concentrate

Orange 
juice

Oranges Juicer, pitcher

Orange juice
concentrate

 Pitcher, spoon,
water

Add water

Figure 1.  Example of the process of making fresh orange juice. 
Observables are listed below each  boxed activity.
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be nested in higher-level processes. Similar to Unified 
Modeling Language (UML),1 we provide constructs in 
the data model that allow for decisions to be made when 
multiple choices are available in carrying out a set of 
activities and also allow capture of activities that can be 
performed asynchronously. Supplemental information, 
such as activity descriptions, references, drawings, and 
illustrations, is also captured and associated as appropri-
ate. Within the CBRNE-SF, processes and activities can 
be reused to gain efficiency in modeling new threats. A 
SME can leverage these previously modeled items con-
taining hundreds or thousands of nodes simply by copy-
ing them. This saves considerable time and standardizes 
the processes for commonly used precursors, as well as 
allows for quick updates to the models as the threat 
landscape changes.

A key innovation for the construction of the data 
model is the idea that the pathways themselves should 
be instantiations of ontological classes. This led to the 
development of a pathway modeling ontology, with the 
resulting behavior that, as the pathways are constructed, 
the processes, activities, decisions, etc., end up as con-
nected nodes in the knowledge graph. This allows for a 
fully interconnected graph that can be easily traversed 
in a query. This enables the kinds of analysis described 
later in this article.

A pathway allows for activities to be associated with 
the set of items, or observables, required to carry out 
the activity successfully, and each of these observables 
in turn can be associated with many signatures (e.g. 
spectral). These signatures are data representations 
of how the observable “appear” when analyzed by a 
specific sensor.

Here, similar to the construction of the pathways, 
each association of an observable to an activity or sig-
nature to observable, expands the knowledge graph by 
creating additional nodes and edges in the data model.  

Observables can most simply be thought of as any-
thing that can be sensed (e.g., smelled, tasted, seen, 
heard, touched). Observables are divided into three dis-
tinct groups:

1.	 Preconditions: Observables that must be present for 
the activity to succeed

2.	 Effects: Observables produced as a result of per-
forming the activity, regardless of whether they are 
detected (Example: A reaction produces chlorine, 
but a mechanism is used to remove the chlorine 
from the waste stream. Chlorine is still called out 
as an effect.)

3.	 Incidentals: Observables that are not absolutely 
required for an activity but are likely to be present 
given what is typically used to conduct the activity 
(Example: In the chemistry domain, many reactions 
are carried out in a fume hood. The fume hood, while 

ideal for safety reasons, is not absolutely required and 
is therefore called out as incidental because it may or 
may not be present. If present, it does provide signifi-
cant clues to the type of activities being conducted.)

Each observable contains the following information 
if available from a vetted source:

•	 Definition/description

•	 Nefarious and legitimate manufacturing uses

•	 English, foreign-language, and language-independent 
alternative labels, synonyms, and colloquialisms

•	 Description of entity relationships (e.g., potential 
uses)

•	 Classification

•	 Source information (e.g., bibliographic citations)

•	 Pictures/illustrations

For biological and chemical entities, the following infor-
mation is also included:

•	 Health and hazard statements, where appropriate

•	 Physical properties, where appropriate

•	 Industrial uses

•	 Cross-references to chemical and biological datasets

•	 Machine-readable identifiers (e.g., Chemical Ab-
stract Service registry numbers)

Observables, like processes and activities, are mod-
eled as instances of classes defined within ontologies 
tailored to specific CBRNE-SF domains. These ontolo-
gies are built using the Resource Description Framework 
(RDF) and the Web Ontology Language (OWL), stan-
dards endorsed by the World Wide Web Consortium 
(W3C).2,3 RDF structures data as a graph composed 
of subject–predicate–object triples, each expressing a 
simple fact (e.g., Bill isFatherOf Steve). These statements 
are linked to form dynamically growing graphs, enabling 
rich semantic modeling, inference, and graph analyt-
ics, capabilities particularly wellsuited for representing 
adversarial activity.

To enhance semantic precision and structure, RDF 
is extended through RDF Schema (RDFS) and OWL, 
which introduce class- and property-based constructs 
for building ontologies. In this framework, classes 
define conceptual entities, and properties express the 
relationships among them, together forming a flex-
ible, machine-readable vocabulary for each domain 
of interest.

The CBRNE-SF knowledge base is fundamentally a 
composition of such ontologies. These are not limited to 
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taxonomic hierarchies; rather, concepts can assert facts 
about other concepts, creating a richly interconnected 
semantic model. To ensure consistency and expressive-
ness across domains, the domain-specific ontologies are 
aligned under foundational upper ontologies. These 
upper ontologies provide additional structure and rigor 
to the knowledge representation, though their detailed 
description lies beyond the scope of this overview.

Combining processes, activities, observables and 
signatures for a single threat agent creates a complex 
data model that a human would have difficulty under-
standing as a whole. However, given the structure of 
the CBRNE-SF, the application interface allows a user 
to easily query the graph in real time to explore com-
plex relationships among observables, activities, and 
processes for WMD production, weaponization, and 
employment. This interface provides deeper insights and 
more comprehensive answers to complex mission-critical 
questions. Figure 2 shows an example of a single threat 
pathway as an illustration of the scale and complexity of 
more than one hundred of these pathways modeled in 
the overall graph.

ANALYTICS ENABLED BY CBRNE-SF
A web application was developed to provide ana-

lysts with an interface to quickly retrieve, explore, 
and query the complex data enabling them to answer 
the most mission-relevant questions with ease. Sev-
eral analytical workflows assist system users as they 

answer mission-critical questions about observables. 
For example:

1.	 What is it?
	– Basic definition
	– Uses and regulations
	– Exposure information
	– Physical characteristics
	– Alternative identification

2.	 What can it be used for?
	– Possible nefarious WMD production routes
	– Possible non-nefarious industrial/commercial 

uses

3.	 What else should I look for?
	– A prioritized list of unique observables to guide 

further search activities
Given the machine-readable knowledge graph, queries 

are returned in real time and dynamically rendered on 
a web page. A user’s primary workflow involves search-
ing for an observable and scrolling through the Details 
page. In another workflow, the user enters observables 
into the Evidence Bag and scrolls through the returned 
output. To give some insight to the information returned 
to an analyst, a few examples are provided below.

Observable Detail Page Workflow
The observables Details page varies slightly by the 

WMD threat type, but, in general, all Details pages 
contain similar information pulled dynamically from 

Activity to produce oxalic acid in a threat pathway

React oxalic acid with 
phosphorus pentachloride to 

produce oxalyl chloride

Phosphorus
pentachloride

P

Oxalic acid
P

Chemical
reaction vessel

 P

Synthetic
chemistry heater

 P

Oxalyl
chloride 

E

Phosphorus
oxychloride

E

Hydrochloric
acid
 E

Hydrochloric
acid

E

Triethylamine
P

Chemically
resistant PPE

 I

Ventilation
equipment

 I

Figure 2.  Example of a threat pathway within the broader knowledge graph and details of a specific activity.
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CBRNE-SF through queries that traverse the knowl-
edge graph to retrieve the requested information. When 
accessing the Details page for a toxic industrial chemi-
cal (e.g., chlorine gas), the user will see a definition of 
the chemical, as shown in Figure 3. Definitions, typi-
cally written by a SME, provide basic information in an 
easy-to-understand paragraph. They are designed to be 
helpful to nonexperts and provide context for why the 
observable is part of a CWMD knowledge graph.

In the view shown in Figure 4, the user is presented 
with the activities associated with chlorine. These activi-
ties are separated by the function that chlorine plays in 
the activity (e.g., “Activity as precondition”). Chlorine is 
used in 28  activities as a precondition, indicating that 
while chlorine itself is toxic, it is also used as a precursor. 
Chlorine functions as an effect in 21 activities, indicating 
that there are 21 general ways to generate chlorine either 
as the intended product or as an incidental by-product. 
Chlorine functions in one activity as an incidental, 
indicating that it may or may not be present. While not 
shown in the figure, a user can expand each section to 
access a collapsible list of specific activities. The user can 
further click a link to a particular activity to see all of the 
content, such as activity definitions, images, durations, 
reference material, and bibliographic citations.

The CBRNE-SF also contains information on manu-
facturing uses, and similarly, if the observable is on any 
control lists, the lists will be provided in a dedicated 
section. If the user needs more information on other 
observables within a manufacturing industry or on a list, 
they simply need to click the linked text in the relevant 
section to view all of the observables in the CBRNE-SF 
with that industrial use or on that control list.

Information on uses and regulations allows the user to 
understand whether there are dual uses for the observ-
able and whether there any restrictions on its use. This 
information provides critical context and situational 
awareness for the user.

Exposure information
The application also dynamically displays exposure 

information in two sections of the Details page. The 
first section lists information extracted from safety 
data sheets, which are globally standardized documents 
detailing the harmful effects of chemical exposures. 
For all chemical threats and precursors included in the 
CBRNE-SF, such as chlorine, a safety data sheet was 
obtained and the information extracted. Figure 5 shows 
an example of the type of extracted information that is 

Figure 3.  Excerpt from the Details page for the chlorine gas observable.

Figure 4.  Activities associated with chlorine.
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included for each chemical and biological precursor, 
when available.

Physical Properties
The scientific community and the US  government 

have made considerable investments to understand phys-
ical properties of chemical and biological threat agents 
and precursors. Knowledge of these properties is critical 
for certain missions, such as modeling and simulating 
potential releases to assess consequences. Some of these 
data can be found in open sources, such as PubChem,4 
while other data can be found only in restricted gov-
ernment reports. The web application provides the user 
with a single location to access both open-source data 
and US  government-furnished data. Each data point 
has a button indicating where the data originated. For 
instance, Figure 6 displays the boiling point of chlorine, 
as obtained from PubChem.5

While the user can simply view the displayed values 
dynamically returned from the knowledge graph, it is 
also possible to create a custom query that traverses the 
CBRNE-SF to return all chemicals with a certain boil-
ing property.

Alternative Identification
Language is complex, with multiple ways to refer to the 

same object. Chemicals can be described using system 
identifiers and multilingual terms. The CBRNE-SF con-
tains all known system identifiers, such as the Chemical 
Abstracts Service (CAS) registration numbers and refer-
ence numbers for popular open-source databases, such as 
ChemSpider.6

Multilingual terms, like the ones in Figure 7 for chlo-
rine, are typically extracted from data sources such as 
PubChem. All multilingual terms that are encoded 
for a given observable are also searchable. This allows 
the user to access information on an observable with-
out needing to know the name used in the CBRNE-SF. 
As an example, each chemical in the CBRNE-SF has 
a unique URI with alternative label data semantically 
linked as a series of nodes and edges.

Figure 5.  Example of the type of information extracted from a safety data sheet.

Figure 6.  Example of physical property data from PubChem.
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	 Xr = –log(Fr),	 (1)

where Fr is the resource’s prevalence (i.e., the proportion 
of processes in which r appears). This weight is equiva-
lent to the resource’s “self-information.”8

Step 7 in the algorithm computes a similarity score 
for each process with respect to the observed evidence 
set. The similarity score for each process is computed as

	 Wp = TOVERLAP/(TOVERLAP + α*TEVIDENCE-ONLY +	
	 β*TPROCESS-ONLY).	 (2)

In Eq.  2, parameter  α determines the size of the 
penalty for resources from the evidence set that do not 
appear in process p. Parameter β determines the size of 
the penalty for resources in p that were not recorded 
within the evidence set.

Set Similarity Algorithm for Evidential Reasoning
A user is able to look for threat agent production 

processes associated with the set of entered observables. 
The application traverses the knowledge graph and pres-
ents a table of processes ordered by a calculated similar-
ity score. In set theory, this similarity score is called a 
weighted Tversky index.7 Similarity scores are described 
in more detail below.

Algorithm Overview
Figure 8 summarizes the steps involved in the 

process-ranking algorithm.
The three sets described in step 4 are related to the 

overlap of the observed resources within an Evidence 
Bag and the resources within a given process. Given an 
evidence set E and process p, three sets of resources must 
be identified:

1.	 The overlap set contains all of the resources that 
appear in E and either appear directly in p or are an 
instance of a resource that appears in p.

2.	 The evidence-only set contains resources that are in 
E but are not in p.

3.	 The process-only set contains resources that are in 
p but not in E.

These sets are illustrated in Figure 9.
In step 3, each resource r is given a weight Xr that is 

inversely related to its prevalence

Input: Evidence

Output: Highest-scoring
process

1. Compare observed resources  
    with each threat process in 
    the knowledge base

2. Identify the processes in 
    which at least one
    observed resource appears

3. Compute self-information weights for
    • each observed resource; and
      • all resources in processes in which 
  an observed resource appears

4. For each process, place   
    observed resources in   
    one of the three sets

5. Add the self-information 
   weights in each set

6. Calculate the weighted
    Tversky index (”similarity
    score”) for each process

7. Identify the process 
    with the greatest
    similarity score

Figure 8.  Steps involved in the process-ranking algorithm.

Resources from
the process

Process-
only set

Overlap set
Evidence-
only set

Resources from
the evidence

Overlap set

Figure 9.  Sets of resources.

Figure 7.  Example of multilingual terms in the CBRNE-SF.
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weight is –log(1/3)  =  1.097. Similarly, if a resource 
appears in two of three processes, its weight is  
–log(2/3) = 0.405. If a resource appears in all three 
processes, its weight is –log(3/3) = –log(1) = 0.

The process with the greatest similarity score is 
ranked the highest and can be considered the most 
likely. The score for each process is determined from the 
scores of the resources within that process, the scores 
of the resources within the 
given set of evidence, and 
the extent to which these 
sets of resources overlap.

Example Computations
To demonstrate the evi-

dence algorithm, consider 
the following example for 
making iced tea, lemonade, 
and orange juice. Figures 10 
and 11 each contain a single 
process, as does Figure 1 
shown earlier. Blue boxes 
indicate activity nodes, and 
blue type outside the boxes 
describes resources used 
in the activities. In this 
example, α and β are both 
set to 0.5, suggesting that 
it is equally important for a 
resource to be missing from 
the Evidence Bag or from a 
process.

Each time evidence is 
collected, the observables 
are compared with the 
resources in each process, 
and a corresponding score 
is assigned to each process. 
The steps enumerated below 
correspond to the algorithm 
description in Figure 8.

•	 Evidence set = {cup, ice 
cube tray, pitcher, sugar}.

•	 Steps 1 and 2: The 
resources within this 
evidence set overlap 
with the iced tea, lem-
onade, and orange juice 
processes. Therefore, 
weights must be calcu-
lated for all resources in 
these processes.

•	 Step 3: Table 1 provides 
the weights for each 
resource that appears in 
at least one process. If a 
resource appears in one 
of three processes, its 

Get ice

Start

Freezer  Ice, ice cube 
tray, water

Get freezer

Get tea  Brew 
tea

Freeze water

Mix tea
and ice

Iced tea

 Tea bags  Kettle, stove,
water

 Pitcher,
spoon

Ice

Figure 10.  Iced tea process example.

Freezer  Ice, 
Ice cube tray, 

water

Get 
lemons

 Juice
 lemons

 Lemonade 
powder

 Pitcher,
water

 Get
 ice

 Spoon

 Mix lemonade 
and ice

 Get
 sugar

 Lemonade

 Get 
freezer

 Freeze 
water

 Get lemonade 
powder

 Start
 Ice

 Add
 water

 Lemons  Sugar Cup,
juicer

Figure 11.  Lemonade process example.

Table 1.  Weights by resource for example

Resource

Appears in

Resource  
Prevalence Weight

Iced Tea  
Process

Lemonade  
Process

Orange Juice 
Process

Cup ✓ 1/3 1.097
Freezer ✓ ✓ 2/3 0.405
Ice ✓ ✓ 2/3 0.405
Ice cube tray ✓ ✓ 2/3 0.405
Juicer ✓ ✓ 2/3 0.405
Kettle ✓ 1/3 1.097
Lemonade powder ✓ 1/3 1.097
Lemons ✓ 1/3 1.097
Orange juice concentrate ✓ 1/3 1.097
Oranges ✓ 1/3 1.097
Pitcher ✓ ✓ ✓ 3/3 0
Spoon ✓ ✓ ✓ 3/3 0
Stove ✓ 1/3 1.097
Sugar ✓ 1/3 1.097
Tea bags ✓ 1/3 1.097
Water ✓ ✓ ✓ 3/3 0
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the CBRNE-SF is continuing its evolution as a shared 
CWMD resource. It is poised to support next-generation 
generative artificial intelligence and large language 
model capability. The CBRNE-SF has contributed to 
DTRA’s position as a locus of authority for CBRNE 
ontologies, enabling tighter integration of and interop-
erability within the broader US  government CWMD 
mission space.

•	 Step 4: The resources that appear in the evidence 
are compared separately with each process.

	– For the iced tea process, the resources that appear 
both in the evidence set and the process (overlap 
set) are {cup, ice cube tray, pitcher}. The resources 
that appear in the evidence but not in the iced 
tea process (evidence-only set) are {sugar}. The 
resources that appear in the iced tea process but 
not in the evidence (process-only set) are {freezer, 
ice, kettle, spoon, stove, tea bags, water}.

	– For the lemonade process, the overlap set is {cup, 
ice cube tray, pitcher, sugar}; the evidence-only 
set is the empty set (i.e., there are no resources in 
this set); and the process-only set is {freezer, ice, 
juicer, lemonade powder, lemons, spoon, water}.

	– For the orange juice process, the overlap set is 
{pitcher}; the evidence-only set is {cup, ice cube 
tray, sugar}; and the process-only set is {juicer, 
orange juice concentrate, oranges, water}.

•	 Step 5: Table 2 provides the total weight for each 
set. These totals are obtained from the sum of the 
weights of the resources in each set. For instance, 
the weight for the overlap set in the iced tea pro-
cess is 1.097 (cup)  +  0.405 (ice cube tray)  +  0 
(pitcher) = 1.502. Since the pitcher resource appears 
in all three processes, its weight is 0 (i.e., it does not 
provide any information on which process is most 
similar to be active).

•	 Step 6: Given α = β = 0.5, the similarity scores for 
each process are calculated as follows:

	– WIT = 1.502/(1.502 + 0.5*1.097 + 0.5*4.180) = 0.363
	– WLM = 2.599/(2.599 + 0.5*0 + 0.5*3.527) = 0.596
	– WOJ = 0/(0 + 0.5*2.599 + 0.5*2.635) = 0

•	 Step 7: WLM  =  0.596 is greater than WIT or WOJ 
(i.e., the lemonade process has the greatest similarity 
score). Therefore, the lemonade process is identified 
as the most similar.

CONCLUSION
APL has worked with the US government for more 

than 15 years to create the most comprehensive set of 
CBRNE ontologies to enable CWMD missions world-
wide. As a machine-readable representation of reality, 

Table 2.  Weights for each set (from example 1)

Process

Set

Overlap Evidence-Only Process-Only

Iced tea 1.502 1.097 4.180
Lemonade 2.599 0 3.527
Orange juice 0 2.599 2.635
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MLM: Machine Learning for Threat Characterization 
of Unidentified Metagenomic Reads

Benjamin D. Baugher, Phillip T. Koshute, N. Jordan Jameson, Kennan C. Lejeune, 
Joseph D. Baugher, and Christopher M. Gifford

ABSTRACT
Forensics and military investigators often assess sites of interest, searching for evidence of bio-
logical hazards. The application of metagenomics provides genomic data for all microorganisms 
present in a sample, enabling advanced analysis for detection of biological signatures and threat 
detection from such sites. DNA sequence segments (digitally represented as “reads”) from metage-
nomics samples are commonly compared with reference libraries in order to identify microor-
ganisms present in the sample. However, this approach does not capture the complete biological 
signature, as there always remains a subset of reads that are unable to be successfully mapped 
to a known organism. The Johns Hopkins University Applied Physics Laboratory (APL) Machine 
Learning for Metagenomics (MLM) pipeline characterizes these unidentified reads in terms of 
composition and alignment with sequences of known organisms. Since these reads are unable 
to be mapped directly to a known organism, our models classify each read according to one of 
five threat levels, ranging from 0 to 4 (with threat level 4 the most severe). Our pipeline consists 
of random forest, Bayesian network, and clustering models. When testing this pipeline against 
simulated and real sequencing data, we achieved high threat level classification accuracy: 95% 
for clusters of related reads. Based on these results, we are preparing for deployment of our pipe-
line on far-forward devices, providing investigators with real-time threat assessment of biological 
materials to inform an appropriate rapid response.

Metagenomics enables detailed screening of biologi-
cal samples from sites of interest. Collected samples can 
be passed through a sequencer, yielding reads of DNA 
nucleotides. A read is a digital representation of a seg-
ment of a DNA molecule. In an attempt to identify the 
organisms present in a sample, the reads are compared 
with reference libraries of DNA sequences from known 

INTRODUCTION
Forensics and military investigators often assess sites 

of interest, searching for evidence of biological hazards 
due to malicious actors or natural phenomena.1 When 
hazards are present, it is ideal to identify them precisely. 
However, if this is not possible, characterizing the sever-
ity of the threat provides vital insights for guiding the 
investigators’ response.
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organisms. Close matches with reference sequences 
infer the presence of specific organisms in the sample. 
However, there always remains a subset of reads that 
are unable to be successfully mapped to a known organ-
ism based on the set of matches, if any, to reference 
sequences. For instance, emerging, mutated, or modified 
threats all potentially pose concern to investigators but 
often do not have matches within reference libraries. 
Additionally, reference sequences exist only for a small 
percentage of microorganisms.

Our Machine Learning for Metagenomics (MLM) 
project focuses on these unmapped reads (i.e., “uniden-
tified” reads). We developed a pipeline of models that 
characterizes unidentified reads in terms of composition 
and alignment with sequences 
of known organisms. Since 
these reads are unable to be 
mapped directly to a known 
organism, our models classify 
each read according to one of 
five threat levels (TLs), rang-
ing from 0 to 4. We developed 
this scale of TLs by combin-
ing the bioterrorism categories 
from the US Centers for Dis-
ease Control and Prevention2 
and the biosafety risk groups 
from the US National Insti-
tutes of Health.3 Within our 
scale, organisms that pose the 
greatest threat have TL4, while 
organisms that do not pose a 
threat have TL0. By predict-
ing the TL of the organism(s) 
represented by unidentified 
reads through carefully trained 
classification models, MLM 
provides rapid TL assessments 
of unidentified organisms pres-
ent in biological samples (e.g., 
organisms that are unknown 
or are not represented within a 
reference library). We focus spe-
cifically on detecting bacterial 
and viral threats because they 
comprise the large majority of 
organisms that pose threats to 
human health.

The remainder of this article 
proceeds as follows. We first 
give a detailed overview of the 
components of our MLM model 
pipeline. Then, we describe 
how we trained the models 
within the pipeline, enabling 
the models’ training algorithms 

to search for patterns between reads with the same TLs. 
Next, we highlight the pipeline’s results on both simu-
lated and real reads and offer observations on practical 
considerations for deploying our pipeline. Finally, we sug-
gest possible next steps for ongoing and future research.

MODEL SETUP
Our MLM pipeline consists of interconnected pro-

cessing steps, random forest (RF) models, Bayesian 
network (BN) models, and clustering steps. Figure  1 
illustrates the progression of reads through these steps 
and models. Within the pipeline, unidentified reads 
are gathered and filtered, features are extracted from 
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Figure 1.  Data flow through model pipeline. Unidentified reads are gathered and filtered, fea-
tures are extracted from remaining reads, and these features are passed through a combina-
tion of models. The ensemble of RF models provides preliminary prediction of the TLs of the 
reads’ organisms, as well as other characteristics. The initial BN (BN1) fuses the RF predictions. 
The final BN (BN2) incorporates features computed from the predictions of each individual 
read’s closely related reads (CRRs). The clustering step is based on the density-based spatial 
clustering for applications with noise (DBSCAN) method and enables a single aggregate TL 
prediction for the organisms represented in each cluster of reads.
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remaining reads, and these features are passed through 
a combination of models. The ensemble of RF models 
provides preliminary prediction of the TLs of the 
unidentified organisms represented by the reads and of 
other characteristics. The initial BN (BN1) fuses the RF 
predictions. The final BN (BN2) incorporates features 
computed from the predictions of each individual read’s 
closely related reads (CRRs). The clustering step is based 
on the density-based spatial clustering for applications 
with noise (DBSCAN) method and enables a single 
aggregate TL prediction for the organisms represented 
in each cluster. Each of these steps is further described 
in the following subsections.

Read Source
Among the multitude of available sequencing 

devices, we focus our analysis on sequencing data from 
the Oxford Nanopore MinION sequencer.4 We opted 
for the MinION device because of its portability, low 
cost, and ease of use—characteristics that are impor-
tant in many use cases for military investigators. All of 
the reads within this analysis have either come from a 
MinION simulator (refer to the Read Simulation subsec-
tion) or have been collected with a MinION device or 
similar nanopore sequencing device (refer to the Results 
on Real Reads subsection).

If desired, our process for extracting features and 
developing and evaluating models could be similarly 
implemented for reads from other sequencing platforms 
for which data are available. For instance, we have previ-
ously demonstrated this capability for Illumina’s MiSeq 
and iSeq platforms.

Read Mapping with Reference Library
Before mapping, we pass reads through an algorithm 

that flags reads that are highly likely to originate from 
macroorganism (host organism) contamination. This 
algorithm searches for matches in a set of short overlap-
ping k-mers between the read and a database of plant and 
animal reference sequences that are extremely unlikely 
to have occurred by chance. (A k-mer is a subsequence 
of nucleotides of length k.) We discard reads that cor-
respond to such matches.

To identify remaining reads that can be mapped to 
known microorganisms, we developed a pair of match-
ing and alignment algorithms. Relying on clever index-
ing of large reference libraries and overlapping short 
k-mer matches, the first algorithm is very fast but at the 
cost of some accuracy. The second algorithm verifies 
matches identified by the first algorithm by performing 
targeted alignments between a given read and the por-
tion of the reference sequence in which the potential 
match was found.

The matching algorithm yields an alignment 
score between each read and the top N reference 
sequence matches, where N is a user-defined parameter. 

Ultimately, an alignment hit occurs when the alignment 
score between the read and a reference sequence exceeds 
a specified threshold. This alignment score is also used 
for feature extraction in the cases where the scores do 
not exceed the threshold (refer to the Feature Extraction 
subsection).

Currently, we use as our reference library the Octo-
ber 2, 2021, version of the Nucleotide database from the 
National Center for Biotechnology Information.5 We 
plan to update our reference library periodically as we 
move forward with this project.

After this matching step, we annotate reads for which 
we have identified alignment hits with known organ-
isms and provide them to the end user for analysis. The 
remaining reads without alignment hits (i.e., unmapped 
reads) are then processed by our MLM pipeline to search 
for any undetected threats from emerging, mutated, or 
modified microorganisms. By assessing the unmapped 
reads, our MLM pipeline aims to complement the 
insights obtained from reads mapped to known organ-
isms. The MLM pipeline can also be used to assess the 
unidentified reads from any other alignment or taxo-
nomic classifier tool.

Filtering Unidentified Reads
To select the best set of reads from a given sample to 

run through our model pipeline, we employ a variety of 
filtering steps.

First, we check the number of nucleotides that are 
suitable for assessment. After masking likely MinION 
sequencing adapters6 and low complexity regions,7 we 
discard reads that do not have at least 100  unmasked 
nucleotides.

We also consider the quality scores of each read, 
checking whether a read has enough high-quality nucle-
otides and a sufficiently long sequence of contiguous 
high-quality nucleotides. We discard reads that do not 
meet both of these conditions.

Each of the filtering steps is based on parameters that 
can be tuned to be more or less aggressive based on the 
use case and end user needs. Our default parameter values 
are somewhat conservative, yielding greater confidence 
in the results. In contrast, a more liberal approach would 
enable greater sensitivity to traces of potential threats, 
but at the cost of an increased false alarm rate (FAR). A 
false alarm (FA) occurs when the MLM pipeline predicts 
a high TL but the true TL is not high. We regard TL2, 
TL3, and TL4 as high TLs.

Feature Extraction
For all unidentified reads remaining after filtering, 

we extract 163  features, including 19  alignment-based 
features and 144  composition-based features. These 
features are ultimately used as inputs to six subsequent 
RF models.
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We obtain the alignment-based features by compar-
ing each read with sequences of reference organisms for 
which we know the TL. These alignment-based features 
include the TL of the reference sequence most closely 
aligned to the read under consideration, the top align-
ment scores for reference sequences from each TL (i.e., 
one feature for each of the five TLs), and the percentage 
of alignment hits from each TL.

While alignment-based features seek to quantify 
and represent a read’s similarities to known organ-
isms, composition-based features focus directly on the 
nucleotides that make up a given read. Most of the 
composition-based features correspond to the frequencies 
of the 136 unique tetramers. Other composition-based 
features include the GC (guanine-cytosine) content of 
the read and minimum compositional distances to refer-
ence sequences from each TL.

Taken together, the alignment- and composition-based 
features provide a detailed representation of each read. 
Subsequent supervised machine learning (ML) models 
leverage this representation to find patterns between 
reads’ features and the TLs of the organisms from which 
they have come.

Random Forest Classifiers
RF models are supervised ML models consisting of 

numerous decision trees, each trained by a statistically 
strategic random subset of the available data.8 The 
random selection of each tree’s training data reduces the 
correlation in the trees’ prediction, amounting to less 
prediction variance and less overall prediction error for 
the RF. Within the RF, each decision tree yields a sepa-
rate prediction based on a set of logical rules, which can 
be evaluated by progressing down the tree. For our data, 
examples of such logical rules might include “top normal-
ized alignment score for a TL3 reference sequence < 0.4” 
or “normalized frequency of tetramer #1 > 0.05.”

Our MLM pipeline includes six RF classification 
models (or “classifiers”). Four of the RF classifiers predict 
TLs. Each of these TL classifiers is trained with a differ-
ent set of simulated reads. (We describe our simulation 
process in the Read Simulation subsection.) Each set 
is characterized by whether its reads originated from a 
bacterium or virus and which clade (species or strain) of 
“neighbors” has been removed from the reference library 
before those reads’ features have been computed. We 
remove the neighbor clade as a way to mimic the sce-
nario in which a read from a previously unseen species 
or strain is collected. We refer to the RF TL classifiers 
according to the set of reads on which they were trained: 
BSp (bacteria reads with their species removed from 
the reference library), BStr (bacteria reads with their 
strains removed from reference library), VSp (virus reads 
with their species removed from the reference library), 
and VStr (virus reads with their strains removed from 

reference library). We train separate RF classifiers for 
each set of reads to cover a range of possible unidenti-
fied organisms from which reads might be collected. The 
predictions from these RFs are ultimately fused (along 
with other values) by the BNs later in the pipeline.

The other two RF classification models predict other 
characteristics of the reads. The BV classifier predicts 
whether a given read corresponds to bacterium or virus. 
Likewise, the NN classifier predicts whether the clos-
est related organism in the reference library is in the 
same species or not (“nearest neighbor”). The outputs of 
these additional RF classifiers also are inputs to the BNs 
within the MLM pipeline.

Initial Bayesian Network
BNs represent probability relationships between vari-

ables, enabling the state of one or more variables to be 
assessed as data are observed. In particular, BNs provide 
an estimate of the “belief level” for each possible state of 
each variable, based on prior knowledge of these vari-
ables and observed data.

In a BN, each variable is defined by a node, which 
has two or more possible discrete states. The “target” 
node has special importance; this node represents the 
variable for which the state is being estimated. Pairs of 
nodes with conditional probability relationships have a 
directed edge between them; the edge originates at the 
node corresponding to the variable on which the other 
variable is conditioned. A node may be the terminus for 
more than one directed edge (i.e., a variable may be con-
ditioned on more than one other variable).

The structure of a BN’s nodes and edges may be 
determined through expert knowledge or “learned” via 
training data. We determined through experimenta-
tion that learning the BN structure yields better predic-
tion performance. Our approach for training our BNs is 
described in the Model Training Details subsection.

Each node also has a conditional probability table 
(CPT), which describes the conditional probability 
relationships between nodes connected by edges. The 
dimension of each node’s CPT is determined by the 
number of variables on which the variable correspond-
ing to that node is conditioned. In general, the values in 
each column of a CPT sum to 1.

BN1 includes nodes for nine variables: the outputs of 
the six RF classifiers, the true type of read (bacterium 
or virus), the true removed clade (species or strain), and 
the read’s TL (i.e., TL of the organism from which the 
read has come). For each read, we compute values for 
the first six variables. When these values are propagated 
through BN1, the BN1 inference step estimates values 
for the remaining three variables, including the read’s 
TL. Figure 2 gives an example of a possible structure for 
BN1. Based on this particular BN1 structure, Table 1 
gives an example of a CPT for one of the nodes (BSp RF 
TL Prediction).
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The output of the BN is a set of belief values for each 
node, with one belief value for each state of the variable 
represented by that node. The belief values range from 0 
to 1 and must sum to 1 for a given node. (In Table 1, the 
sum of each column may slightly differ from 1 because of 
rounding.) For BN1, these values can be used to predict 
a discrete TL by identifying the state in the target vari-
able’s node (“Threat Level”) with the largest belief value.

Identifying Closely Related Reads
Within metagenomic analysis, reads are not col-

lected in isolation but rather in samples with sets of 
thousands to millions of other reads from many different 
organisms. These sets generally include multiple reads 
obtained from each organism present. To predict the 
TL for an individual read, we use features from the read 
itself as well as from other CRRs that are likely to have 

come from the same organism 
or a very closely related one. 
This mix of features helps us to 
fine-tune our threat assessment 
for each read and ultimately 
reduce FA assessments. Our 
methods for computing features 
based on CRRs is described in 
the Features Based on Closely 
Related Reads subsection. The 
model for which these fea-
tures are inputs is described in 
the Final Bayesian Network 
subsection.

To determine the CRRs for 
each read, we use a method 
based on rank-biased over-
lap (RBO).9 For each read, 
we use segments within the 
read to match the read with 
sequences from our refer-
ence library. For the refer-
ence sequences that match, we 
align the reads with targeted 
portions within the reference 
sequences based on where the 
segments matched to obtain 
alignment scores characteriz-
ing how well the reads match 
the reference sequences. These 
alignment scores are used to 
produce a ranked list of similar 
organisms for each read. The 
list consists of the reference 
library organisms with the best 
alignment scores. We repeat 
this process, obtaining rank-
ings or reference library organ-

isms for each unidentified read. Given these rankings, 
we compute “distances” between pairs of unidentified 
reads by comparing the reads’ lists using the RBO 
method. These distances do not correspond to physi-
cal space but instead measure the dissimilarity between 
reads; reads with similar lists have smaller distances. 
Originally developed for comparing results of internet 
search engines, the RBO method enables comparison 
of ranked and possibly incomplete lists to identify simi-
larities between lists.

For each read, we identify up to 1,000  CRRs from 
among those with the smallest distances to the read. Not 
all reads have the full set of 1,000 CRRs. This occurs 
when there are a limited number of reads present from 
a given organism. It can also occur with reads that have 
fewer matches with the reference library. Some reads 
may even have no CRRs.

BSp RF TL
prediction

BSt RF TL
prediction

VSt RF TL
prediction

True BV

True NN
BV RF

prediction
VSp RF TL
prediction

NN RF
prediction

Target node
RF output
True attribute

True
TL

Figure 2.  Example of BN1 with learned structure. Included are nodes for nine variables: the 
outputs of the six RF classifiers, the true type of read (bacterium or virus), the true removed 
clade (species or strain), and the TL.

Table 1.  Example of BN1 CPT

BSp RF TL 
Prediction

True TL

0 1 2 3 4

0 0.9442 0.5895 0.1863 0.3639 0.8501
1 0.0185 0.3672 0.0351 0.5391 0.0954
2 0.0018 0.0379 0.6970 0.0280 0.0348
3 0.0277 0.0046 0.0001 0.0665 0.0003
4 0.0077 0.0008 0.0816 0.0023 0.0194

Rows correspond to TLs predicted by the BSp RF model for each read, and columns correspond to 
the true TL of the organism that each read represents. Each cell shows the probability of the TL 
predicted by the BSp RF (indicated by the row), given the true TL (indicated by the column). Hence, 
the values within a given column sum to 1.
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Features Based on Closely Related Reads
Given each read’s CRRs, we compute 13 additional 

features for use as inputs for BN2. These features char-
acterize the predictions of the RF TL classifiers and 
BN1 for the neighbor reads. Table 2 summarizes these 
additional features. If a read has no CRRs, CRR_BN1_
TLPred_Mode and CRR_BN1_TLPred_Max are set to 
the BN1 prediction for that read. Likewise, CRR_RF_
TLPred_Mode is set to the most common prediction 
from the RF TL classifiers. All other CRR-related fea-
tures are set to 0.

BNs expect features with discrete states. Thus, a dis-
crete value must be set for each feature, and special care is 
needed when there are ties for TL-based features. For the 
CRR_RF_TLPred_Mode and CRR_BN1_TLPred_Mode 
features, ties are handled by computing the mean value 
among all TLs involved in the tie and rounding to the 
nearest TL. A tie may occur for a given read if multiple 
TLs are predicted equally often by the CRRs for that read.

Final Bayesian Network
BN2 is similar to BN1 but leverages information 

from CRRs and incorporates additional features. BN2 
involves the 9 nodes from BN1, as well as nodes for the 
13 features from Table 2. Similar to BN1, the output of 
BN2 is a predicted TL for the given read, determined 
from the TL with the largest belief value in the target 
node (“Threat Level”).

Clustering
The unidentified reads within our pipeline are com-

posed of very noisy data with a variety of limitations, 
such as low quality. There are also errors in the reference 
library. Additionally, reads from low-threat organisms 
that are somewhat closely related to high-threat organ-
isms may be assessed as posing higher threat than is war-
ranted because of shared genomic regions. As a result, 
TLs may be incorrectly predicted for individual reads.

To provide a robust alternative to predictions for indi-
vidual reads, we group the reads within a sample into 
clusters using the DBSCAN method.10 For each result-
ing cluster, we obtain cluster-level TL predictions by 
identifying the most commonly predicted TL for indi-
vidual reads within the cluster.

The DBSCAN method uses high- and low-density 
data regions to identify clusters and outliers, charac-
terizing density in terms of reads’ distances from each 
other. We compute distances between reads as part of 
the RBO-based CRR identification step (refer to the 
Identifying Closely Related Reads subsection).

DBSCAN involves two parameters that generally 
guide the size and number of clusters. The assignment 
of points to clusters is determined by whether they are 
in the “neighborhood” of one or more core points. (For 
our analysis, each read corresponds to a point.) The eps 
parameter defines the radius of each point’s neighbor-
hood. It can be set as any positive number. Larger values 
of eps permit more points to be included in a single neigh-
borhood, thus prompting more points to be clustered 
together and encouraging smaller numbers of clusters. 
We typically use eps = 0.1. Secondly, the minPts param-
eter sets the minimum number of other points within 
a given point’s neighborhood to qualify that point as a 
“core point.” A point is within another point’s neighbor-
hood if the distance between the points is less than eps. 
As a result, larger values of minPts make the requirements 
for a core point to be regarded as a core point more strict 
and therein also encourage smaller numbers of clusters. 
Wanting to encourage detection of smaller clusters, we 
typically set minPts as the minimum of 100 and 0.05NP, 
where NP is the number of points in a given sample.

Within DBSCAN, points that are not within 
the neighborhood of any core point are assigned to a 
“noise cluster.” The points in this cluster are not nec-
essarily similar to each other, but rather are relatively 
unlike other points assigned to other clusters. Smaller 
values of eps and larger values of numPts promote 

Table 2.  Summary of neighbor-based features for BN2

Feature Description Possible Values

CRR_RF_TLPred_Mode The most common output for all RF TL classifiers for all CRRs 0, 1, 2, 3, 4
CRR_RF_PredLevel_TL0

Discrete categories of the proportion p of the RF TL predictions 
for CRRs with a given TL (the feature value is Low if p < 0.2 for 
that TL, medium if 0.2 ≤ p < 0.5, and high if p ≥ 0.5)

Low, medium, high
CRR_RF_PredLevel_TL1
CRR_RF_PredLevel_TL2
CRR_RF_PredLevel_TL3
CRR_RF_PredLevel_TL4
CRR_BN1_TLPred_Mode The most common BN output for CRRs 0, 1, 2, 3, 4
CRR_BN1_TLPred_Max The highest TL among BN1 outputs of all CRRs 0, 1, 2, 3, 4
CRR_BN1_PredLevel_TL0

Discrete categories of the proportion p of the BN1 predictions for 
CRRs with a given TL (the feature value is low if p < 0.2 for that 
TL, medium if 0.2 ≤ p < 0.5, and high if p ≥ 0.5)

Low, medium, high
CRR_BN1_PredLevel_TL1
CRR_BN1_PredLevel_TL2
CRR_BN1_PredLevel_TL3
CRR_BN1_PredLevel_TL4
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more points to be assigned to the noise cluster. In our 
case, the noise cluster most likely includes reads from 
contaminating organisms.

MODEL TRAINING
We train and evaluate models using simulated reads, 

which provide the benefit of knowing the TLs of the 
organisms from which they have come. We use the 
DeepSimulator tool to simulate reads. We split the 
training reads into multiple sets to separately train the 
RF models, BN1, and BN2. The following subsections 
describe our training process in further detail.

Read Simulation
DeepSimulator11,12 is the first deep learning–based 

MinION read simulator. It seeks to accurately simulate 
the reads by simulating the entire sequencing process. 
DeepSimulator directly models the raw electrical sig-
nals produced by nanopores, rather than simply trying 
to mimic the sequencing results. In particular, it builds 
a context-independent pore model using deep learning 
methods to simulate the electrical signals produced by 
the actual nanopores. Given these signals, it uses stan-
dard base-calling software to convert the simulated sig-
nals into reads.

To train and evaluate the version of our pipeline 
shown in this analysis, we ran DeepSimulator version 1.5 
on selected reference sequences from the Nucleotide 
database, using the built-in error profile for the MinION 
sequencer. Additionally, we specified a mean read length 
of 8,000 nucleotides, a read coverage of 50× for bacterial 
genomes, and a read coverage of 250× for viral genomes. 
Read coverage refers to the average number of simulated 
reads in which a given nucleotide is included. These 
runs ultimately yielded approximately 372 million sim-
ulated reads for bacteria and approximately 70 million 
reads for viruses.

Simulating Unidentified Reads
To train models to make accurate predictions about 

unidentified organisms, we construct simulated datasets 
of “unknown” organisms by removing known organisms 
from the reference databases (i.e., “sanitizing” the data-
bases). To do this, we remove each clade one by one, 
compute the features on the simulated reads obtained 
from the organisms within the removed clade, and then 
put it back before removing the next clade. For both 
bacteria and viruses, we construct two datasets apiece. 
The first one set mimics the case in which an entire new 
species is encountered without being represented in the 
reference library. The second set similarly mimics the 
case in which a new strain is encountered.

We use our read mapping algorithm (refer to the Read 
Mapping with Reference Library subsection) to classify 

and then align each of the simulated reads with the sani-
tized reference database. We discard reads that align well 
to any reference sequence that remains in the database 
because these would not be considered to be unidenti-
fied reads. The remaining reads are those that would be 
unidentified if the given clade was in fact unknown; we 
use these reads for training and testing our models. We 
set the threshold for regarding a read as unidentified to a 
90% alignment match.

Defining Training and Test Sets
We gathered slightly more than 1.4 million unidenti-

fied reads from the simulated data described above. We set 
aside ~25% for testing and separated the rest into different 
training sets: 136,446 reads for BSp RF; 84,056 for BSt RF; 
52,138 for VSp RF; 15,419 for VSt RF; 284,925 for BN1; 
and 490,522 for BN2. The different types of reads used 
to train our four TL RF classifiers are described in the 
Feature Extraction subsection. We formed an additional 
training set as the union of the four training sets for RF 
TL classifiers (amounting to 288,059 reads) and used this 
aggregate set to train both the BV and NN RF classifiers.

For each training set we extract 163 features from 
each read within the set (refer to the Feature Extraction 
subsection). Training ML models involves allowing com-
puterized algorithms to find patterns that link input fea-
tures to the target value. We train six RF models using 
the feature data extracted from their individual training 
sets. As described in the Random Forest Classifiers sub-
section, the first four RF models predict the read’s TL; 
these models differ in the type of reads used to train 
them (BSp, BSt, VSp, VSt). The other two RF models 
predict whether the read is from a bacterium or virus for 
the BV classifier and whether the closest related organ-
ism in the reference library is in the same species or not 
for the NN classifier. Subsequently we run the feature 
data extracted from the BN1 training set through the 
trained RF models and use the outputs of these models 
to train BN1 to predict TL. As a final training step, we 
run the feature data from the BN2 training set through 
the trained RF and BN1 models, compute CRR-based 
features (summarized in Table 2), and use the resulting 
19  features to train BN2 to predict TL for individual 
reads (refer to the Final Bayesian Network subsection).

To assess performance, we ran the 346,373 reads from 
the test set through the entire MLM pipeline. Because 
these reads were not at all involved in model training, 
the pipeline’s performance against them provides an esti-
mate of the pipeline’s performance against unidentified 
threats. The pipeline’s performance against these reads is 
described in the Results on Simulated Reads subsection.

Model Training Details
We use various R packages to train our models: ranger 

for the RF models13 and both bnlearn14 and gRain15 for 
BN1 and BN2.
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For the RF models, we use 50  trees per model and 
ranger default values for all other settings. The minimum 
number of reads at a terminal node in each decision 
tree is one, and trees are set to grow as large as the data 
permit. For each tree, reads are randomly sampled with 
replacement (i.e., reads can be sampled more than once 
for a given tree). Each split within each tree considers 
a subset of 12 randomly selected features (equal to the 
floor of the square root of the total number of features, 
floor (√163) ≈ 12).

For training the BN models, we use the hill-climbing 
algorithm from the hc function within the bnlearn pack-
age to learn the structure of the models. To aid the learn-
ing, we specify an initial network (with edges originating 
from the “Threat Level” node and terminating at each of 
the other nodes) and a list of forbidden edges (e.g., those 
that terminate at the “Threat Level” node). For BN2, we 
also limit the number of edges terminating any given 
node to 3. This constraint limits the size of any given 
node’s CPT and also decreases the time required to run 
the model. Likewise, we use the extractCPT, compileCPT, 
and grain functions within the gRain package to fit the 
nodes’ CPTs. To account for the possibility in which a 
given cell in the CPT has zero instances, we specify a 
smoothing constant of 0.01.

Supporting Evidence Check for False Alarm Reduction
During model development, we observed that FAs 

occurred because in certain cases reads from the train-
ing set with true high TL did not have any supporting 
evidence for the high TL (i.e., the extracted RF features 
corresponding to high TLs had low values, suggesting 
that there were no similarities to high-threat organisms 
for these reads). As a result, the BN models had learned 
to associate features that did not reflect similarities to 
high-threat organisms with high TL predictions. This 
aspect of the models can lead to FAs because these asso-
ciations do not generalize well. While there are reads 
from true high-threat organisms for which we do not 
find any similarities to known threats, we generally have 
low confidence in any high TL predictions for which 
such similarities have not been found.

To account for this phenomenon, we implemented a 
postprocessing step after BN2 to adjust predicted TLs for 
which there was no supporting evidence. In particular, 
if a predicted high TL is not consistent with RF feature 
values corresponding to that TL, we adjust the belief 
values for that TL so that it is no higher than any belief 
value for a low TL and renormalize all TLs’ belief values 
so that they sum to one. We repeat this step until the 
highest belief value for the read is for a low TL or for a 
high TL with supporting evidence. This step substan-
tially reduces the MLM pipeline’s FAR without impact-
ing cluster-level TL predictions for real reads (refer to the 
Results on Real Reads subsection).

RESULTS
To assess the performance of the MLM pipeline, we 

evaluated it on both simulated and real reads. For sim-
ulated reads, the true TL of the organism from which 
each read has come is known. The real reads come from 
collected samples for which the primary organisms pres-
ent are known. Thus, the true TL for each organism 
within a set of real reads is known, but the true TLs for 
individual reads are not necessarily known.

Results on Simulated Reads
As described in the Read Simulation subsection, 

we simulated reads using the DeepSimulator tool. To 
account for the randomness in how RF classifiers are 
constructed, we trained 10  sets of models, tracking 
results for the test set reads (refer to the Defining Train-
ing and Test Sets subsection) on each set of models. We 
measure performance in terms of accuracy (the propor-
tion of correctly predicted TLs across all reads), sensitiv-
ity (the proportion of reads with true high TL for which 
we predict high TL), and positive predictive value (PPV, 
the proportion of reads for which we predict high TL 
that have a true high TL). In other contexts, sensitivity 
and PPV are also called recall and precision, respectively.

Because the simulated reads are not grouped into 
samples, we analyzed these metrics at the read level. 
We did not conduct the clustering step as part of our 
analysis of simulated reads. While operational decisions 
are unlikely to be made in practice on individual reads, 
different models’ PPV and sensitivity on these reads 
characterize the models’ relative performance and point 
to which model is most promising for use with clusters 
of reads.

Figure  3 shows the accuracy results for each model 
type within our pipeline for each set of models. These 
models undertake the five-class classification problem of 
predicting a TL for each read from among one of five 
possible TLs. Incorporating the outputs of the RF models 
(Figure 1), the BN models perform better than the RF 
TL classifiers, consistently achieving classification accu-
racy among the five TLs of 70% or greater and averaging 
near 75% accuracy. Since the BN models leverage the 
predictions of the RF TL classifiers, the improved per-
formance with the BN models is expected.

We also assessed the models’ ability to accurately pre-
dict high TLs, i.e., to predict whether or not a read has 
come from an organism with a TL of 2 or higher. Since 
this amounts to a binary classification problem, the 
model’s prediction is determined by comparing its output 
score (i.e., sum of belief values for TL2, TL3, and TL4) 
with the decision threshold. It is important for models to 
not miss true TLs (i.e., achieve high sensitivity) and also 
to not falsely predict high TLs (i.e., achieve high PPV). 
Figure 4 shows the trade-off between sensitivity and PPV 
for each model with a decision threshold of 0.5. Again, 
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BN2 showed the best results, with 
relatively high PPV and moderate 
sensitivity. Other models, includ-
ing RF-VSp, showed higher PPV 
but very low sensitivity.

For some operational decisions, 
these values (PPV ~0.8, sensitiv-
ity ~0.5) may be unsatisfactory. 
Nevertheless, given the 3-to-1 
class imbalance within our test 
set (with more low TLs than high 
TLs), they still point to the poten-
tial of BN2 to efficiently detect 
high-TL organisms. Refer to the 
Results on Real Reads subsection 
for details on how these read-level 
performance values translate to 
success on clusters of reads.

In Figure 5, each model’s 
PPV-sensitivity curve (also known 
as a precision-recall curve) shows 
the values of PPV and sensitivity 
as the decision threshold is varied. 
These curves are constructed by 
aggregating the results from all 10 
sets of models. BN2 and RF-BSt 
show the best performance.

Results on Real Reads
We also assessed the MLM pipe-

line using 21 samples of real reads 
that were prepared, sequenced, 
and analyzed by an external 
organization. The samples were 
analyzed using a bioinformatics 
pipeline based on minimap2,16 and 
the unidentified reads were given 
to us for analysis. We ran each 
sample through the MLM pipeline 
(Figure 1). The number of uniden-
tified reads ranged between thou-
sands and hundreds of thousands 
per sample, and we first ran these 
through our filters (refer to the Fil-
tering Unidentified Reads subsec-
tion). After filtering, the number 
of reads remaining for analysis 
from each sample ranged from 
several dozen to several hundreds 
of thousands.

From each sample, we applied 
DBSCAN clustering (refer to the 
Clustering subsection) and pre-
dicted TLs at the cluster level. 
Accordingly, we evaluated our 
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Figure 3.  TL classification accuracy (out of five TLs) by model type. The BN models perform 
better than the RF TL classifiers, consistently achieving 70% or greater classification accu-
racy and averaging near 75% accuracy.
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Figure 4.  Trade-off between sensitivity and PPV by model type (with five original TLs con-
solidated to two low and high TLs). BN2 performed best, with relatively high sensitivity and 
moderate PPV. Other models showed higher PPV but very low sensitivity.
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Figure 5.  PPV-sensitivity curves (precision-recall curves) by model type. BN2 again per-
formed best. The RF-BSt model also shows good performance.
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predictions at the cluster level, comparing the true 
TL of the highest threat organism (i.e., the true high-
est TL) with the highest TL predicted for any cluster 
within the sample. Table 3 shows this comparison, with 
nonzero counts shown in boldface and underlined for 
easy reference.

We correctly predicted the highest TL for 20 of 
21 samples (95%). These results include correct predic-
tions for 8 of 8 samples with TLs of 2 or higher. The 
one misclassified sample could arguably have been 
counted as correct as it contained a TL1 organism but 
only at a very low abundance (0.01%). Based on this 
abundance level, the expected number of reads present 
would be well below the MLM pipeline’s specified level 
of detection. For a given sample, the level of detection 
is determined by the minimum cluster size (refer to the 
Clustering subsection). For this sample, the minimum 
cluster size and level of detection would be 100  reads 
(i.e., 0.06% of this sample).

We also achieved low FAR against these samples. We 
did not predict a high TL (TL2 or above) for any of the 
13 samples with true low TLs (TL0 or TL1). Thus, our 
FAR for these cluster-level predictions was 0%. More-
over, for the ~1 million reads within these samples, we 
had a 0.01% read-level FAR.

DEPLOYMENT CONSIDERATIONS
Based on the results of the MLM pipeline on both 

simulated reads and collected samples, we are consider-
ing requirements for deployment, including physical size, 
cost, adaptability, runtime, and interpretability.

Requirements for size, weight, and power depend on 
whether our model pipeline is run at a nearby mobile 
laboratory as part of a follow-up analysis or in the field 
amid a real-time investigation. If the models are run 
in a laboratory, minimizing size, weight, and power 
needs is less crucial. Conversely, if the models are run 
in the field, they must be able to be implemented on 
devices carried during military missions and other 
investigations.

For the scenario in which our pipeline is run in the 
field, the computational requirements must not result in 

the need for a device that is overly heavy or that requires 
additional batteries. We are mindful of these con-
straints, and have selected more efficient design options 
whenever possible, and made numerous improvements 
to reduce the memory footprint and runtime of the pipe-
line. Some examples include a fourfold reduction of our 
overall memory footprint by implementing a database 
decimation technique developed for plagiarism detec-
tion; an analysis of the effect of the number of trees in our 
RF models that resulted in substantially smaller models, 
improving both memory use and runtime; and a rede-
sign of our BN inference implementation that reduced 
the inference runtime by three orders of magnitude.

The devices must also have a low enough cost and 
size that they can be feasibly included within an investi-
gator’s tools. In its current setup, the MLM pipeline can 
run smoothly on a laptop or a miniature personal com-
puter (mini-PC). For instance, we demonstrated that the 
MLM pipeline can run on a mini-PC (connected wire-
lessly to the sequencing device) that has a footprint of 
20 in.2, weighs 1 lb., and draws only 6 W of power. We 
also developed a user-friendly web application to enable 
follow-up analysis on a laptop when desired.

New threats are prone to emerge at any time, and 
the reference library leveraged by our pipeline may fall 
out of date. Nevertheless, insofar as we target reads that 
are not mapped to reference organisms, our approach is 
robust to intervals without library updates. Moreover, we 
are able to update the reference library whenever new 
information becomes available, enabling the models to 
be retrained if time permits. Several weeks are typically 
required to fully train and validate the models.

Some investigators may need insights within short 
time frames to inform their decisions. Thus, we aim for 
our models to have efficient runtime. The current pipe-
line can process and analyze approximately 3,200 uniden-
tified reads per minute on a laptop and approximately 
1,800 unidentified reads per minute on the mini-PC. For 
context, MinION sequencers yield about 20,000 reads 
per hour. Our pipeline does not fully process all of these 
reads but only those that are unidentified. Although the 
percentage of unidentified reads can vary considerably 
between samples, on average the pipeline can process 
an hour’s worth of sequencing data in approximately one 
minute on a laptop and in less than two minutes on a 
mini-PC.

Decision support insights are also enhanced by com-
plementing TL predictions with explanations of how the 
predictions are determined. To achieve this, we incorpo-
rated SHAP (SHapley Additive exPlanations) into our 
pipeline, which is a popular ML technique for explain-
ing the particular influence that values of individual fea-
tures have had on the overall TL predictions.17,18 These 
explanations provide additional information to support 
decision-making and to increase user confidence in 
the models.

Table  3.  Confusion matrix of TL predictions by real read 
sample

Highest 
Predicted TL

True Highest TL for Sample

0 1 2 3 4

0 5 1 0 0 0
1 0 7 0 0 0
2 0 0 0 0 0
3 0 0 0 2 0
4 0 0 0 0 6

Nonzero counts are shown in boldface and underlined.
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POSSIBLE NEXT STEPS
The models within our MLM pipeline show prom-

ising performance, achieving over 74% accuracy in TL 
classification of individual simulated reads and 95% 
accuracy for predicting the highest TL present in real 
samples based on clusters of related reads (refer to the 
Results section). At the same time, work for this project 
is ongoing, and several additional capabilities or analy-
ses are underway or planned. These next steps focus on 
possible new features for the RF models, new features for 
BN2, and possible alternatives to BN2. Complementing 
the deployment considerations described in the preced-
ing section, these steps are aimed at further improving 
the accuracy of the pipeline.

Currently, we have 136  features tracking the fre-
quency of unique tetramers within each read. These 
features only consider DNA sequence segments of 
4 nucleotides. Considering sequences of different num-
bers of nucleotides might offer a broader space within 
which the pipeline models can find TL patterns, but 
increasing the sequence length greatly increases the 
number of possible sequences and, thus, the number 
of corresponding features. For instance, there are 
8,192  unique 7-mers. Deep autoencoders are neural 
networks that compress higher-dimensional inputs to 
a much smaller d-dimensional representation that is 
still able to reconstruct the original inputs. We envi-
sion using the smaller-dimensional representation 
(e.g., with d  =  25) from such a model to replace the 
high-dimensional feature space arising from frequen-
cies of tetramers, 5-mers, 6-mers, and 7-mers. This 
representation would replace the current 136 tetramer 
frequency features.

The current set of 19 BN2 input features builds on 
the results of the RF models and BN1, but additional 
metrics reflect other aspects of these models’ results 
and may be used as potential BN2 input features. For 
instance, rather than extracting features from the TL 
classifications for all of a given read’s 1,000 CRRs, com-
plementary features could consider only the 100 or 200 
closest CRRs. Also, the TL predicted by BN1 for a given 
read could be used as an input for BN2. These additional 
features could enable BN2 to more precisely identify pat-
terns distinguishing different TLs.

We previously opted to use BNs to fuse the predic-
tions of the RF models because of their ability to explic-
itly quantify the probabilistic relationships between the 
models’ outputs. However, as the space of BN2 input 
features (potentially) expands, other types of models 
may provide greater flexibility. For instance, we have 
considered replacing BN1 or BN2 or both BNs with one 
or more additional RF models. Alternative model types 
such as neural networks19 or gradient-boosted models20 
might also yield performance improvement.

CONCLUSIONS
As sequencing technology continues to increase 

in speed and portability, rapid threat assessment of 
unidentified organisms in complex biological samples 
has become increasingly desirable. Our MLM pipeline 
builds on the vast amount of available sequencing data, 
enabling objective characterization of the TL of any 
unidentified organisms present in the samples through 
the use of ML models that have been carefully trained to 
recognize patterns in sequencing reads that correspond 
to threat signatures. These insights offer the potential 
to provide crucial information for investigators in iden-
tifying appropriate responses to emerging, mutated, and 
modified threats.
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Assessment of Sequencing for Pathogen-Agnostic 
Biothreat Diagnostics, Detection, and Actionability 
for Military Applications

Christopher E. Bradburne, Robert A. Player, Sarah L. Grady, Ellen R. Forsyth, 
Kathleen J. Verratti, and Jeffrey B. Bacon

ABSTRACT
Biothreat detection strategies have historically focused on cheap, specific, and deployable assays 
that detect a small but specific nucleic acid or protein component of a threat organism. Genomic 
sequencing technologies that have emerged over the past 15 years are poised to find their place 
in the biothreat detection tool kit for military and civilian use. Here we describe efforts to compare 
and contrast sequencing to traditional polymerase chain reaction (PCR) assays for diagnostics 
and detection of biothreat agents of concern in military applications. We show that after direct 
spiking of human blood and serum with biothreat simulants, agnostic sequencing can achieve 
detection. However, for known agents, PCR is still superior in terms of speed, cost, scale, and reli-
ability for military applications. Although PCR should still be the first choice for diagnostics and 
detection when an agent is known or suspected, for unknown agents, agnostic sequencing can 
be a powerful addition to identify causative agents in soils, aerosols, and biothreats in patient 
samples. APL developed and conducted this work for the Department of Defense to address the 
basic question of when to use PCR versus when to use sequencing for field-forward infectious 
disease diagnostics and environmental detection.

a single DNA molecule to millions of copies. This 
allows the target signal to be amplified from very low 
levels relative to background noise. In addition, the 
abundance of pathogen target can be estimated based 
on how long it takes the signal to cross a threshold 
of detection (termed a cycle threshold, or Ct, value) 
in a quantitative PCR (qPCR) assay. A Ct value can 
therefore constitute both a detection signal and an 
abundance signal, with lower values indicating higher 
amounts of initial material.

INTRODUCTION
Over the past 30 years, rapid biological threat detec-

tion and identification has been enabled by small, 
mobile, cheap, and specific polymerase chain reaction 
(PCR) assays for DNA and RNA1 and lateral flow 
assays (LFAs) for proteins and antigens.2 The advan-
tage of PCR for detection is that it can be made to 
target DNA sequences that are specific to a pathogen 
while also excluding closely related, but nonpatho-
genic microbes and viruses (i.e., “near neighbors”). 
PCR enables enzymatic amplification from, in theory, 
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Because PCR is a moderately complex molecular 
assay, an automated PCR platform (FilmArray) that can 
run several targeted pathogens is currently used across 
the military. A simpler, hand-held option is the LFA. 
An LFA is a paper-based chromatography assay that 
uses the wicking properties of paper to separate sample 
components and then expose biothreat target proteins 
or antigens to a detection antibody. Those antibodies 
are linked to a chromatographic indicator that gives 
either a positive or negative indication if the antibody 
comes into contact with the antigen. LFAs are simple 
and robust and include such widespread applications 
as home pregnancy tests. As such, they are excellent 
for quick answers but can struggle with sensitivity and 
low-abundance target samples.

Genomic sequencing involves assessing a sample for 
the genomic content and the specific sequence of nucle-
otides of each genomic fragment in that sample. Because 
early Sanger sequencing could sequence only one DNA 
fragment at a time, throughput, scale, time, and cost 
made it untenable for field-forward diagnostics. The field 
changed in 2007 with the commercial development of 
a massively parallel genome sequencer able to generate 
millions of sequencing reads of varying lengths. Since 
then, a handful of technology companies have pushed 
the market forward.3,4 Their products vary in terms of 
ease of use, lengths of individual DNA reads, per-base 
quality, and throughput. The cost of sequencing per base 
has also been driven down by at least four orders of mag-
nitude since 2007.5

Despite these advances, sequencing still has not made 
it into widespread use in field-forward disease diagnos-
tics or in environmental biothreat detection for military 
applications. The major barriers are the cost and com-
plexity of individual sequencing runs and difficulties in 
analyzing and interpreting results. All sequencing tech-
nologies produce immense amounts of data (on the order 
of a hundred megabytes to hundreds of gigabytes), and 
the analysis can typically be done only on highly capa-
ble laptops, the cloud, or high-performance computers. 
Considerable technical knowledge and skill are required 
to perform bioinformatics, and interpretation can be 
difficult even when automated pipelines are employed. 
Examples of bioinformatic complexity include the pres-
ence of many near-neighbor sequences in a sample, faulty 
and mis-curated reference genomes, and differences in 
the abundance of the target versus background that 
result in the target not being detected. Because these 
and other challenges have been difficult to solve, the 
US Food and Drug Administration (FDA) has not fully 
approved genomic sequencing technologies for diagnos-
tic use, even though it issued “draft guidance” for the 
industry in 2016 with the expectation that sequencing 
for diagnostics would eventually be approved.6,7 To our 
knowledge, there has been no updated guidance since 
this draft document was released.

One of the simple questions the Department of 
Defense (DoD) seeks to answer is when to employ LFA 
and/or PCR-type technologies and when to employ 
genomic sequencing technologies. In 2019, just before 
the start of the COVID-19 pandemic, the Defense Threat 
Reduction Agency (DTRA) tasked APL to address this 
question, using data and experience to guide DoD stake-
holders on when, where, why, and how to utilize this 
emerging capability. Partners at the US Army Medical 
Research Institute of Infectious Diseases (USAMRIID) 
had developed and/or adopted three protocols employ-
ing different methodologies to enrich viral sequences 
in metagenomic samples so that they could be detected, 
counted, and characterized:

1.	 Sequence-independent, single-primer amplification 
(SISPA)8 employs single primers targeting a virus, 
with random hexamers to allow virus taxa ampli-
fication without knowledge of the viral genome 
beyond the single target primer. This allows a 
mostly sequence-agnostic enrichment of the virus 
in a sample undergoing next-generation sequencing 
(NGS).

2.	 Sequence-independent, single-primer amplification, 
and rapid amplification of cDNA ends (SISPA- 
RACE)8 employs SISPA, but includes rapid amplifi-
cation of the cDNA ends after reverse transcription.

3.	 Hybrid oligonucleotide enrichment amplification9 
involves utilizing bioinformatics optimization to 
select many primer oligonucleotide sequences to 
enrich for a variety of viruses.

A challenge in agnostic diagnostic sequencing is 
determining which strategy to select to optimize the 
chances of detection. In true field-forward settings, 
field personnel may be able to draw or obtain diag-
nostic samples, but they may not know whether to 
target bacteria, viruses, or even fungi as the causative 
agent. Of these agents, viruses are typically the most 
difficult to detect using NGS because of their small 
genome size relative to the host and the fact that they 
may not be present in high titers in a clinical sample. 
Therefore, employing a sequencing protocol to enrich 
viruses would enable virus detection while still gener-
ating enough sequencing reads to detect any bacterial 
pathogens present. With this concept in mind, APL 
designed a test bed to evaluate these viral-enrichment, 
yet pathogen-agnostic, sequencing pipelines. The data 
generated gave the DoD important insights into the 
performance of sequencing versus PCR, and one of 
the protocols, hybrid enrichment, was a forerunner 
of the ARTIC protocol that clinical laboratories and 
researchers used to enrich and sequence SARS-CoV-2 
viruses from clinical diagnostic samples during the 
COVID-19 pandemic.10
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APPROACH
Biothreat Diagnostics

For testing, APL designed a scenario-based test that 
envisions a febrile patient infected with an unknown 
biothreat agent (Figure 1). The patient provides a blood 
sample, which is divided into whole blood and serum. 
This biothreat scenario is applicable to many poten-
tial select agents that achieve bacteremia/viremia at or 
beyond the febrile phase, but other clinical specimens 
could also be appropriate. (“Select agents are biological 
agents and toxins that have been determined to have 
the potential to pose a severe threat to public health and 
safety, to animal and plant health, or to animal or plant 
products.”11) In this scenario, since the causative agent 

is not known, each sample is probably split by a lab tech-
nician for DNA and RNA processing and then entered 
into the NGS protocol. After sequencing, the sample 
is analyzed using a DTRA-funded analysis software, 
Empowering the Development of Genomics Expertise 
(EDGE) Bioinformatics, to determine the presence 
and abundance of an agent. APL was the project inte-
gration lead involved in initiating the development of 
this software with Los Alamos National Laboratory and 
the Naval Medical Research Command in 2013. To test 
this pipeline against an array of pathogen genomes, four 
Biosafety Level (BL) 2 or BL3 agents are used: Bacillus 
anthracis Ames (Ba), a bacterium; vaccinia virus (VV), 
a double-stranded (ds) DNA virus; Venezuelan equine 
encephalitis virus (VEEV), a (+) single-stranded (ss)

Table 1.  Pathogens chosen for spiking blood and serum and the corresponding human clinical disease concentrations targeted

Organism in the 
Literature

Equivalent 
Test  

Organism Host
Range of Clinical  

Concentration
Measured 

in Reference

Concentra-
tion Chosen 
for Testing

Bacillus anthracis 
Ames ancestor

Ba
African green 

monkeys
40 to > 1e3 CFU/mL Blood Rossi et al.12 1e5 CFU/mL

Sin Nombre (Hanta)
HV Human

1e4.5 to 1e7.5 PFU/mL Blood Terajima et al.13
1.1e3 PFU/mL

Puumala (Hanta) 3 to 1.8e6 PFU/mL Serum Evander et al.14

Venezuelan equine 
encephalitis virus

VEEV Human

1e5 to 1e7 PFU/mL Blood Sellon and Long15

7.5e3 PFU/mL
1e2 to 1.8e4 PFU/mL
3e2 to 6.7e5 PFU/mL
1e1.7 to 1e1.56 PFU/mL

Serum
Serum 
Serum

Vilcarromero et al.16

Quiroz et al.17

Weaver et al.18

Variola virus
Variola virus
Monkeypox

VV Macaques
Up to 1e4 PFU/mL
Up to 2e7 genomes/mL
Up to 4.8e6 genomes/mL

PBMC
Blood
Blood

Rubins et al.19

Mucker et al.20

Barnewall et al.21
1e5 PFU/mL

PBMC, peripheral blood mononuclear cell.

Febrile patient’s blood is 
drawn at lab

Testing scenario: Diagnosing a biothreat agent in a febrile patient sample at a DoD lab outside of the continental United States

Agent spiking Protocol assessment

Whole 
blood

Whole-blood 
sample is split into 
blood and serum

Agent is unknown, so 
sample is split into DNA 

and RNA work�ows

DNA and RNA are 
run through the 

sequencing protocol

EDGE bioinformatics 
product is used to 

classify the organismBlood RNA

DNA

RNA

DNA

RegulatoryRNA viruses DNA virus Bacteria Logistics Operations Performance
Comparison to 
standard assay

Serum

Figure 1.  APL testing scenario for comparison of pathogen-agnostic sequencing assays for use in field-forward diagnostics. The use 
case is a febrile patient who walks into a forward, remote, low-resource clinic. An agnostic sequencing approach is initiated to look for 
the presence of RNA and DNA viruses and bacteria. Sequencing protocols are assessed against the PCR standard assay for performance, 
ease of use, cost, speed, and regulatory considerations.
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RNA virus; and Seoul hantavirus (Ha), a (–) ssRNA 
virus. Each agent is tested with each sequencing pro-
tocol, as well as with agent-specific qPCR assays, at a 
concentration in blood or serum corresponding to 
human clinical concentrations reported in the literature 
(Table 1). This helps to ensure some fidelity of the use 
case of a febrile patient who might appear with an infec-
tion from that pathogen.

To support application to real-world scenarios, all 
protocols were evaluated for cost and operational time 
of use. Lastly, even though the scenario was for a use 
case outside the continental United States, there was an 
interest in mapping to regulatory requirements for the 
use of diagnostic tests in US jurisdictions. FDA regu-
latory oversight of sequencing for clinical diagnostics 
has been challenging because sequencing is so sensitive 
and can reveal so much information that the results can 
often be difficult to interpret. For example, nearly every 
metagenomic sample will have sequence reads that map 
to pathogens, and yet those pathogens may not constitute 
a threat for a number of reasons: they may be identical 
to nonpathogenic near-neighbor organisms, associated 
with nonviable threats, or associated with nonvirulent 
variants of an infectious agent, or they may constitute 
pathogenic sequences that appear across many different 
microbial taxa. As mentioned earlier, the FDA’s draft reg-
ulatory guidance provides a comprehensive assessment 

of a diagnostic test using sequencing, in anticipation of 
eventual approval, but as of this publication date, there 
is still no official FDA approval of sequencing for infec-
tious disease diagnostics as described here. Nevertheless, 
we compared the operation of these three protocols with 
the draft FDA guidance document.

Performance metrics for each protocol are shown in 
Figure 2. Each protocol was evaluated using spiked agent 
from blood and serum and compared directly with qPCR 
and droplet-digital PCR (ddPCR) for extensive quantifi-
cation. This enabled direct comparison of the protocols’ 
performance and sensitivity.

Fielded Biothreat Detection
Aiming to put sequencing technologies in the 

hands of service members in far-forward environments, 
DTRA has funded efforts to transition a small, porta-
ble sequencing capability to special operations teams. 
APL has supported components of these efforts by pro-
viding subject matter expertise and participating in 
exercises demonstrating these capabilities. In February 
2024, DTRA and the US Army Combat Capabilities 
Development Command Chemical Biological Center 
(DEVCOM  CBC) hosted a testing and training exer-
cise just south of the Arctic Circle in Fox, Alaska, to 
support testing and evaluation for the Army’s Far For-
ward Advanced Sequencing Technology (F-FAST), led 

Febrile patient’s blood is 
drawn at lab

Individual 
infectious agents 

are spiked in 
blood over a 

range of 
concentrations

Testing scenario 

Agent spiking Absolute quantitation

Metrics

Whole
blood

Blood
(low) (high)

Whole-blood 
sample is split into 
blood and serum

Lab is agnostic to agent, so splits 
samples into RNA and DNA 

work�ows

QPCR of dilution 
series used to 
select clinically 

relevant 
concentrations

SISPA
SISPA-
RACE

Test protocols

Operational metrics

Hybrid
capture

1/2

1/2

Blood RNA
processing

DNA
processing

QPCR

ddPCR

Venezuelan equine 
encephalitis virus

Hantavirus

Vaccinia virus

Bacillus anthracis

ddPCR
analysis/data

RNA
phase

DNA or cDNA 
phase

Serum

MiSeq
processing

QPCR
analysis

SISPA
analysis

Hybrid 
capture 
analysis

SISPA-
RACE 

analysis

Bioinformatics 
processing

Figure 2.  Compartmentalization of performance metrics and process quality control for the APL diagnostic sequencing test scenario. 
Spiked pathogen concentrations are confirmed by droplet-digital PCR (ddPCR) and qPCR.
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by Dr. R. Cory Bernhards of DEVCOM CBC. F-FAST, 
which has now transitioned into the Far Forward 
Bio-detection System (FFBS), uses an Oxford Nanopore 
platform called the M1kC, a handheld device that 
contains a readout display and flow cell cartridge. Sup-
porting materials for sample and library preparation 
are labeled in a kit that is deployed with the M1kC. 
This system is designed to agnostically provide the 
genetic content of a noncomplex sample and informa-
tion about a potential threat agent in under an hour for 
microbial pathogens and DNA viruses and in 90 min 
for RNA-based viruses. At the time of the exercise, the 
F-FAST system had the ability to identify known bio-
logical pathogens by using a custom database contain-
ing the full genomes of ~5,000 organisms.

The F-FAST system has already been tested and 
evaluated in multiple environments, including Dugway 
Proving Ground during the peak of summer when tem-
peratures were over 100°F. This exercise sought to test 
performance in the extreme cold at Fort Wainwright, 
Alaska, home to the Army’s 11th Airborne Divi-
sion “Arctic Angels.” The division’s mission is to con-
duct expeditionary operations within the Indo-Pacific 
theater, but it is specialized to conduct multi-domain 
operations in the Arctic.22

RESULTS
Biothreat Diagnostics

The results of the scenario testing support the gen-
eral idea that when the agent being tested for is known, 
qPCR—and not sequencing—should be used. Only cases 
with an unknown causative agent could begin to justify 
the cost and time required to implement sequencing to 
detect microbial and viral infections. Table  2 demon-
strates the significant cost and time to obtain results for 
the Illumina-based sequencing protocols tested. All pro-
tocols took between 88.2 and 107.3 h to reach a result, 
and the minimum materials cost was $1,730. In con-
trast, qPCR took only 4.25 h to reach a result on aver-
age, while costing only $420. Furthermore, this qPCR 
cost estimate is probably high, as the materials would 

generally be bought and implemented at scale, whereas 
this was a single-usage test.

qPCR performance was also excellent, with zero false 
positives and nominal detection of each organism con-
sistent with the amount of spiked material (Table  3). 
This supports the case for qPCR to continue to be the 
gold standard when using the diagnostic test to confirm 
or deny the presence of a known agent.

The sequencing tests generally performed well, 
but some conflicting results made interpretation dif-
ficult. As shown in Table  4, all sequencing protocols 
detected the Bacillus anthracis Ames ancestor bacteria, 
generating no false positives or false negatives. SISPA 
and SISPA-RACE failed to detect the vaccinia dsDNA 
virus infectious agent in both whole blood and serum. 
For VEE, the ssRNA (+) virus, SISPA was adequate, 
but SISPA-RACE failed to detect the virus in whole 
blood. The most difficult taxon to detect was clearly the 
ssRNA (–) hantavirus. This pathogen typically grows to 
low titers in the lab and in infections, so it was expected 
to be difficult to detect. Hantavirus reads were detected 
in the SISPA-RACE protocol, but not enough to fall 
above the threshold of the EDGE bioinformatic filter 
that makes the decision to call the organism present in 
the sample (data not shown).

Across all tested protocols, the hybrid capture proto-
col performed the best and failed to detect only the han-
tavirus. This was not surprising because, as noted above, 
hantavirus typically grows to low titers in clinical infec-
tions and can be difficult to detect in clinical samples. 
The ability to enrich viral targets in large amounts of 
background was a core strategy of the ARTIC protocol 

Table 2.  Time and cost per answer for sequencing vs. qPCR

Sequencing 
Protocol or 

qPCR
Source

Time to 
Answer 

(h)

Materials 
Cost per 

Answer ($)

Nextera XT Illumina 92.85 2,906

SISPA USAMRIID 88.5 3,069

SISPA-RACE USAMRIID 88.2 1,730

Hybrid Capture USAMRIID 107.3 2,352

Table 3.  qPCR performance for detection of spiked organisms

Target Organism
Spiked Organism 

Concentration (PFU/mL)
Ct Value

Whole Blood Serum

Bacillus anthracis Ames ancestor
BA-negative control

1.00E + 05
0.00E + 00

27.8
0

28.7
0

Vaccinia virus Wyeth
VV-negative control

1.00E + 05
0.00E + 00

23.1
0

22.9
0

Venezuelan equine encephalitis virus TC-83
VEEV-negative control

7.50E + 03
0.00E + 00

27.2
0

24.0
0

Seoul hantavirus Baltimore
HA-negative control

1.10E + 03
0.00E + 00

29.6
0

29.6
0
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that was used to detect SARS-CoV-2 and improved 
throughout the pandemic, allowing whole-genome 
modeling of geotemporal viral dispersion by variants in 
human populations throughout the world.23

DISCUSSION
These results clearly show the difference between uti-

lization of PCR for targeting known pathogens versus 
utilization of sequencing to characterize an unknown 
organism. Generally, if the target organism is known, 
the best guidance is the gold standard of PCR. PCR is 
cheap, timely, and reliable, and its easily interpretable 
results minimize false positives. However, a negative 
result may lead to more questions than answers, leaving 
the operator without a diagnostic call and yet still with 
a febrile patient with a likely infectious disease. In this 
case, sequencing with the hybrid enrichment protocol 
described in this article offers the best opportunity to 
detect a causative agent. In addition, using the protocol 
offers the best chance to obtain sequence-based infor-
mation that could indicate whether the agent is a new 
strain or variant or, in the case of a microbe, whether 
there is any antimicrobial resistance, as well as any other 
countermeasure-relevant information present.

The information payoff gained from sequencing 
rather than PCR is apparent, and in many cases, even a 
positive PCR result could be important for confirmation. 
One intriguing option is direct sequencing of the ampli-
cons from a PCR result. Through support and direction 
from the Defense Biological Product Assurance Office 
(DBPAO), APL has developed a methodology to do 
exactly this. An APL team modified biothreat-specific 
PCR primers to add library adapter sequences so that 

the amplicon product could be directly inserted into the 
Oxford Nanopore sequencing protocol. The resulting 
approach allows a user to run a PCR assay for a biothreat 
agent and quickly confirm via sequencing the agent and 
its abundance.24

Biothreat Detection in Cold Regions
Work is ongoing to package the hybrid detection tech-

nology into a handheld, field-portable sequencing-based 
viral detection capability. It was first demonstrated 
during the Ebola outbreak in West Africa just prior to 
the COVID-19 pandemic in 2019.25 Commercial prod-
ucts offer handheld sequencers and informatics hard-
ware. Computational power is limited, but future models 
of field-portable sequencing devices could overcome 
these limitations. These products also have the poten-
tial to be utilized in adverse environments, such as in 
subfreezing conditions. In February 2024, APL attended 
a DTRA-supported US Army Special Operations Com-
mand (SOCOM) demonstration of a handheld sequencer 
in arctic conditions at the Cold Regions Research and 
Engineering Laboratory (CRREL) permafrost tunnel 
facility in Fox, Alaska (Figure 3). During the 5 days of 
testing, temperatures ranged from 15°F to –25°F. During 
the first few runs of these exercises, operators had diffi-
culty correctly loading the sequencer flow cells without 
adding disruptive air bubbles that confounded results. In 
addition, the cold weather dictated innovations such as 
using body heat to keep reagents from freezing before 
use. By the last 2 days, however, the soldiers were able 
to operate the sequencer and achieve the expected 
results nominally (data not shown). More information 
on the exercise is available in CBNW Magazine.26 The 
exercise illustrated that the technology could be used in 

Table 4.  Performance of agnostic sequencing workflow without enrichment (Nextera XT) and with the three enrichment 
protocols (SISPA, SISPA-RACE, and Hybrid Capture)

Protocol Database

Target Organisms

gram+ bacteria:  
Bacillus anthracis 

Ames ancestor

dsDNA virus:  
Vaccinia virus Wyeth

ssRNA (+) virus: Ven-
ezuelan equine enceph-

alitis virus TC-83

ssRNA (–) virus: 
Seoul hantavirus  

Baltimore

Whole 
Blood

Serum
Whole 
Blood

Serum
Whole 
Blood

Serum
Whole 
Blood

Serum

Nextera 
XT

Bacterial TP,TN,TP TP,TN,TP TN,TN,TN TN,FP,TN FN,TN,– TN,TN,– TN,TN,– TN,TN,–
Viral TN,TN,TN TN,TN,TN TP,TN,TP TP,TN,TP TN,TN,– TN,TN,– TN,TN,– TN,TN,–

SISPA
Bacterial TN,TN,– TN,TN,– TN,TN,– TN,TN,– TN,TN,TN TN,TN,TN TN,TN,– TN,TN,–
Viral TN,TN,– TN,TN,– FN,TN,– FN,TN,– TP,TN,TP TP,TN,TP FN,TN,– FN,TN,–

SIS-
PA-RACE

Bacterial TN,TN,– TN,TN,– TN,TN,– TN,TN,– TN,TN,TN TN,TN,TN TN,TN,– TN,TN,–
Viral TN,TN,– TN,TN,– FN,TN,– FN,TN,– FN,TN,TP TP,FP,TP FN,TN,– FN,TN,–

Hybrid 
capture

Bacterial TN,TN,– TN,TN,– TN,TN,– TN,TN,– TN,TN,TN TN,TN,TN TN,TN,– TN,TN,–
Viral TN,TN,– TN,TN,– TP,TN,– TP,FP,– TP,TN,TP TP,TN,TP FN,TN,– FN,TN,–

The data in each square represent (1) the spiked sample, (2) the negative control, and (3) the positive control. For example, 
TP,TN,TP indicates that the spiked sample is detected (true positive), the negative control is undetected (true negative), and the 
positive control is detected (true positive). Green shading, expected result; yellow shading, conflicting result; red shading, false 
positive result; dashed red outline, non-scenario-linked result.
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a training scenario in cold environments with several 
modest adaptations.

CONCLUSION
Robust, deployable diagnostics are an important 

component of a military unit’s medical surveillance 
and biothreat detection capability. A central question 
in field-forward, molecular diagnostics and detection 
is when to use qPCR versus when to use sequenc-
ing, particularly in a far-forward environment and in 
wide-ranging environmental conditions. The work 
described here illustrates that for suspected (i.e., known) 
pathogens, qPCR is still superior to sequencing in terms 
of cost, complexity, and time to answer. For novel out-
breaks, or orthologous confirmation of a new outbreak, 
agnostic and pathogen-enrichment sequencing has sig-
nificant utility. In addition, the field demonstration by 
DEVCOM CBC and SOCOM in the extreme cold and 
the ability to deploy sequencing to remote locations also 
offers important advantages for molecular detection of 
biothreats in austere environments. As costs decrease 
and ease of use increases, the utility of sequencing 
should continue to increase.

ACKNOWLEDGMENTS: Distribution Statement A—Approved 
for public release; distribution is unlimited.

Figure 3.  Field demonstration of field-forward sequencing 
for biothreat detection. This demonstration took place at the 
February 2024 Arctic Edge exercise facilitated by the US North-
ern Command at the CRREL permafrost tunnel facility in Fox, 
Alaska. During the exercise, US Army Special Operations Com-
mand demonstrated use of a handheld sequencer developed by 
DEVCOM CBC through the F-FAST program.

REFERENCES
  1S. Yang and R. E. Rothman, “PCR-based diagnostics for infectious 

diseases: uses, limitations, and future applications in acute-care set-
tings,” Lancet Infect. Dis., vol. 4, no. 6, pp. 337–348, 2004, https://doi.
org/10.1016/S1473-3099(04)01044-8.

  2H. R. Boehringer and B. J. O’Farrell, “Lateral flow assays in infectious 
disease diagnosis,” Clin. Chem., vol. 68, no. 1, pp. 52–58, 2022, https://
doi.org/10.1093/clinchem/hvab194.

  3C. E. Bradburne, “Personalizing environmental health for the 
military—Striving for precision,” in Total Exposure Health: An Intro-
duction, K. A. Phillips, D. P. Yamamoto, and L. Racz, Eds., 1st ed., Boca 
Raton, FL: CRC Press, 2020, https://doi.org/10.1201/9780429263286.

  4C. Bradburne, D. Graham, H. M. Kingston, R. Brenner, M. Pamuku, 
and L. Carruth, “Overview of ‘omics technologies for military occupa-
tional health surveillance and medicine,” Mil. Med., vol. 180, suppl. 10, 
pp. 34–48, 2015, https://doi.org/10.7205/MILMED-D-15-00050.

  5K. A. Wetterstrand, “DNA sequencing costs: Data,” National Human 
Genome Research Institute Genome Sequencing Program, https://
www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-
Costs-Data.

  6F. Luh and Y. Yen, “FDA guidance for next generation sequenc-
ing-based testing: Balancing regulation and innovation in preci-
sion medicine,” npj Genom. Med., vol. 3, art. 28, 2018, https://doi.
org/10.1038/s41525-018-0067-2.

  7“Infectious disease next generation sequencing based diagnostic 
devices: Microbial Identification and detection of antimicrobial resis-
tance and virulence markers — Draft guidance for industry and Food 
and Drug Administration staff,” US Food and Drug Administration, 
May 13, 2016, https://public4.pagefreezer.com/content/FDA/16-12-
2022T08:12/https:/www.fda.gov/media/98093/download.

  8D. H. Song, W.-K. Kim, S. H. Gu, D. Lee, J.-A. Kim, et al., 
“Sequence-independent, single-primer amplification next-genera-
tion sequencing of Hantaan virus cell culture-based isolates,” Amer. 
J. Trop. Med. Hyg., vol. 96, no. 2, pp. 389–394, 2017, https://doi.
org/10.4269/ajtmh.16-0683.

http://www.jhuapl.edu/techdigest
https://doi.org/10.1016/S1473-3099(04)01044-8
https://doi.org/10.1016/S1473-3099(04)01044-8
https://doi.org/10.1093/clinchem/hvab194
https://doi.org/10.1093/clinchem/hvab194
https://doi.org/10.1201/9780429263286
https://doi.org/10.7205/MILMED-D-15-00050
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://doi.org/10.1038/s41525-018-0067-2
https://doi.org/10.1038/s41525-018-0067-2
https://public4.pagefreezer.com/content/FDA/16-12-2022T08:12/https:/www.fda.gov/media/98093/download
https://public4.pagefreezer.com/content/FDA/16-12-2022T08:12/https:/www.fda.gov/media/98093/download
https://doi.org/10.4269/ajtmh.16-0683
https://doi.org/10.4269/ajtmh.16-0683


C. E. Bradburne et al.

8 Johns Hopkins APL Technical Digest, Volume 37, Number 4 (2025), Article 2400429-7 
www.jhuapl.edu/technical-digest

18	S. C. Weaver, R. Salas, R. Rico-Hesse, G. V. Ludwig, M. S. Ober-
ste, J. Boshell, et al., “Re-emergence of epidemic Venezuelan equine 
encephalomyelitis in South America,” Lancet, vol. 348, no. 9025, 
pp. 436–440, 1996, https://doi.org/10.1016/S0140-6736(96)02275-1.

19	K. H. Rubins, L. E. Hensley, P. B. Jahrling, A. R. Whitney, T. W. 
Geisbert, et al., “The host response to smallpox: Analysis of the gene 
expression program in peripheral blood cells in a nonhuman primate 
model,” Proc. Natl. Acad. Sci., vol. 101, no. 42, pp. 15190–15195, 2004, 
https://doi.org/10.1073/pnas.0405759101.

20 E. M. Mucker, A. J. Goff, J. D. Shamblin, D. W. Grosenbach, I. K. 
Damon, et al., “Efficacy of tecovirimat (ST-246) in nonhuman pri-
mates infected with variola virus (smallpox),” Antimicrob. Agents 
Chemother., vol. 57, no. 12, 2013, pp. 6246–6253, https://doi.
org/10.1128/aac.00977-13.

21	R. E. Barnewall, D. A. Fisher, A. B. Robertson, P. A. Vales, K. A. 
Knostman, and J. E. Bigger, “Inhalational monkeypox virus infec-
tion in cynomolgus macaques,” Front. Cell. Infect. Microbiol., vol. 2, 
art. 117, 2012, https://doi.org/10.3389/fcimb.2012.00117.

22	US Army 11th Airborne Division website, https://11thairbornedivi-
sion.army.mil (accessed Mar 1, 2024).

23 J. Merlet, J. Lagergren, V. M. Vergara, M. Cashman, C. Bradburne, et 
al., “Data-driven whole-genome clustering to detect geospatial, tem-
poral, and functional trends in SARS-CoV-2 evolution,” in PASC ‘23: 
Proc. Platform for Adv. Sci. Comput. Conf., June 2023, art. 26, pp. 1–7, 
https://doi.org/10.1145/3592979.3593425.

24	R. Player, K. Verratti, A. Staab, C. Bradburne, S. Grady, et al., “Com-
parison of the performance of an amplicon sequencing assay based on 
Oxford Nanopore technology to real-time PCR assays for detecting 
bacterial biodefense pathogens,” BMC Genom., vol. 21, art. 166, 2020, 
https://doi.org/10.1186/s12864-020-6557-5.

25	E. Kinganda-Lusamaki, A. Black, D. B. Mukadi, J. Hadfield, P. Mba-
la-Kingebeni, et al., “Integration of genomic sequencing into the 
response to the Ebola virus outbreak in Nord Kivu, Democratic 
Republic of the Congo,” Nat. Med., vol. 27, pp. 710–716 , 2021, https://
doi.org/10.1038/s41591-021-01302-z.

26	J. P. Lee, “Polar pathogens,” CBNW Magazine, Sep. 15, 2024, http://
nct-cbnw.com/polar-pathogens/. 

9  J. Quick, N. D. Grubaugh, S. T. Pullan, I. M. Claro, A. D. Smith, 
et al., “Multiplex PCR method for MinION and Illumina sequenc-
ing of Zika and other virus genomes directly from clinical samples,” 
Nat. Protoc., vol. 12, pp. 1261–1276, 2017, https://doi.org/10.1038/
nprot.2017.066.

10	A. W. Lambisia, K. S. Mohammed, T. O. Makori, L. Ndwiga, M. W. 
Mburu, et al., “Optimization of the SARS-CoV-2 ARTIC network V4 
primers and whole genome sequencing protocol,” Front. Med., vol. 9, 
art. 836728, 2022, https://doi.org/10.3389/fmed.2022.836728.

11	Centers for Disease Control and Prevention Office of Readiness and 
Response, “Division of Regulatory Science and Compliance: What 
is a select agent?,” https://www.cdc.gov/orr/dsat/what-is-select-agents.
htm (last reviewed October 2, 2023).

12	C. A. Rossi, M. Ulrich, S. Norris, D. S. Reed, L. M. Pitt, and E. K. 
Leffel, “Identification of a surrogate marker for infection in the African 
Green monkey model of inhalation anthrax,” Infect. Immun., vol. 76, 
no. 12, pp. 5790–5801, 2008, https://doi.org/10.1128/IAI.00520-08.

13	M. Terajima, J. D. Hendershot III, H. Kariwa, F. T. Koster, B. Hjelle, 
et al., “High levels of viremia in patients with the Hantavirus pulmo-
nary syndrome,” J. Infect. Dis., vol. 180, no. 6, pp. 2030–2034, 1999, 
https://doi.org/10.1086/315153.

14	M. Evander, I. Eriksson, L. Pettersson, P. Juto, C. Ahlm, et al., “Puum-
ala hantavirus viremia diagnosed by real-time reverse transcriptase 
PCR using samples from patients with hemorrhagic fever and renal 
syndrome,” J. Clin. Microbiol., vol. 45, no. 8, pp. 2491–2497, 2007, 
https://doi.org/10.1128/jcm.01902-06.

15	D. C. Sellon and M. T. Long, Equine Infectious Diseases, 2nd ed., St. 
Louis, MO: Elsevier, 2014.

16	S. Vilcarromero, P. V. Aguilar, E. S. Halsey, A. Laguna-Torres, 
H.  Razuri, et al., “Venezuelan equine encephalitis and 2 human 
deaths, Peru,” Emerg. Infect. Dis., vol. 16, no. 3, pp. 553–556, 2010, 
https://doi.org/10.3201/eid1603.090970.

17	E. Quiroz, P. V. Aguilar, J. Cisneros, R. B. Tesh, S. C. Weaver, “Ven-
ezuelan equine encephalitis in Panama: Fatal endemic disease and 
genetic diversity of etiologic viral strains,” PLoS Negl. Trop. Dis., vol. 3, 
no. 6, art. e472, 2009, https://doi.org/10.1371/journal.pntd.0000472.

Christopher E. Bradburne, Asymmetric 
Operations Sector, Johns Hopkins Univer-
sity Applied Physics Laboratory, Laurel, MD

Christopher E. Bradburne is a biologist in 
APL’s Asymmetric Operations Sector. He 
has a BS in biology and a BS in biochemis-
try from Virginia Polytechnic Institute and 
State University (Virginia Tech), an MS 

in biochemistry from Clemson University, and a PhD in bio-
science from George Mason University. He has experience in 
genomics, personalized medicine, biodefense and infectious dis-
ease, nanotechnology, and astrobiology projects. His genomics 
and personalized medicine experience includes managing clin-
ical utility studies collecting and using personal genomic infor-
mation for preventative and precision care, as well as applying 
sequencing technologies to clinical diagnostics, environmental 
genomic surveillance, and national security applications. His 
email address is chris.bradburne@jhuapl.edu.

Robert A. Player is a bioinformatician. He 
previously worked in the Sequencing and 
Computational Biology Section in APL’s 
Asymmetric Operations Sector. His email 
address is player.bioinfo@gmail.com.

Sarah L. Grady, Asymmetric Operations 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Sarah L. Grady is a biologist in APL’s 
Asymmetric Operations Sector. She has 
a BS in biology from St. Mary’s College of 
Maryland and an MS and a PhD in molec-
ular biology from Princeton University. 

She has over 12 years of experience in a wide variety of virolog-
ical, molecular, and microbiology techniques with an emphasis 
in classical molecular biology/microbiology, virology, synthetic 
biology, field-forward polymerase chain reaction (PCR) sen-
sors, and -omics technologies (RNA-seq, ribosome profiling, 
metabolomics, proteomics, etc.). Her email address is sarah.
grady@jhuapl.edu.

Ellen R. Forsyth, Asymmetric Operations 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Ellen R. Forsyth is a molecular biologist in 
APL’s Asymmetric Operations Sector. She 
has a BS in biology and a BS in chemistry 
from Pennsylvania State University and an 
MS in biotechnology from American Uni-

versity. She is pursuing a post-master’s certificate in sequence 
analysis and genomics from Johns Hopkins University. She 
has an extensive background in next-generation sequencing 

http://www.jhuapl.edu/techdigest
https://doi.org/10.1016/S0140-6736(96)02275-1
https://doi.org/10.1073/pnas.0405759101
https://doi.org/10.1128/aac.00977-13
https://doi.org/10.1128/aac.00977-13
https://doi.org/10.3389/fcimb.2012.00117
https://11thairbornedivision.army.mil
https://11thairbornedivision.army.mil
https://doi.org/10.1145/3592979.3593425
https://doi.org/10.1186/s12864-020-6557-5
https://doi.org/10.1038/s41591-021-01302-z
https://doi.org/10.1038/s41591-021-01302-z
http://nct-cbnw.com/polar-pathogens/
http://nct-cbnw.com/polar-pathogens/
http://nct-cbnw.com/polar-pathogens/
https://doi.org/10.1038/nprot.2017.066
https://doi.org/10.1038/nprot.2017.066
https://doi.org/10.3389/fmed.2022.836728
https://www.cdc.gov/orr/dsat/what-is-select-agents.htm
https://www.cdc.gov/orr/dsat/what-is-select-agents.htm
https://doi.org/10.1128/IAI.00520-08
https://doi.org/10.1086/315153
https://doi.org/10.1128/jcm.01902-06
https://doi.org/10.3201/eid1603.090970
https://doi.org/10.1371/journal.pntd.0000472
mailto:chris.bradburne@jhuapl.edu
mailto:player.bioinfo@gmail.com
mailto:sarah.grady@jhuapl.edu
mailto:sarah.grady@jhuapl.edu


Assessment of Sequencing for Pathogen-Agnostic Biothreats

9Johns Hopkins APL Technical Digest, Volume 37, Number 4 (2025), Article 2400429-7 
www.jhuapl.edu/technical-digest

(NGS) and sample preparation and experience in polymerase 
chain reaction (PCR), clustered regularly interspaced short 
palindromic repeats (CRISPR), nucleic acid extractions, 
and other molecular techniques. She is also interested in 
high-containment sequencing and advanced molecular detec-
tion methods. Her email address is ellen.forsyth@jhuapl.edu.

Kathleen J. Verratti, Asymmetric Opera-
tions Sector, Johns Hopkins University 
Applied Physics Laboratory, Laurel, MD

Kathleen J. Verratti is a molecular biologist 
in APL’s Asymmetric Operations Sector. 
She has a BS in psychology from Catholic 
University of America. She has an exten-
sive background in genomics and next-gen-

eration sequencing technologies, and her focus has been work-
ing with and developing the latest next-generation sequencing 
technology to solve hard problems. She is the APL project 
manager for a Defense Biological Product Assurance Office 
(DBPAO)-funded project focused on applying sequencing 
technologies to biothreat detection assays. Her email address is 
kathleen.verratti@jhuapl.edu.

Jeffrey B. Bacon, Asymmetric Operations 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Jeffrey B. Bacon is a science and tech-
nology intelligence professional in APL’s 
Asymmetric Operations Sector. He holds 
a B.S. in environmental science from Nor-
wich University; master’s degrees in biol-

ogy (Norwich University), biotechnology (Air Force Institute 
of Technology), and engineering management (Missouri Uni-
versity of Science and Technology); and a PhD in international 
relations (Tufts University). Jeff is an expert in counterprolif-
eration and biosecurity and has served at the highest levels, 
including leadership roles in the Department of Defense’s 
response planning and policy implementation during the early 
phases of the COVID-19 pandemic. In addition to his extensive 
operational experience, he is also an associate professor and 
graduate educator at the National Intelligence University. His 
email address is jeff.bacon@jhuapl.edu.

http://www.jhuapl.edu/techdigest
mailto:ellen.forsyth@jhuapl.edu
mailto:kathleen.verratti@jhuapl.edu
mailto:jeff.bacon@jhuapl.edu


Wearables-Based Disease Surveillance: SIGMA+ Human Sentinel Networks CONOPS

1Johns Hopkins APL Technical Digest, Volume 37, Number 4 (2025), Article 2400429-8 
www.jhuapl.edu/technical-digest

Wearables-Based Disease Surveillance: SIGMA+ 
Human Sentinel Networks Concept of Operations

Ivan Stanish, Jane E. Valentine, Damon C. Duquaine, Robert A. Stoll, 
Ray H. Mariner, and Dorsey R. Woodson

ABSTRACT
The Defense Advanced Research Projects Agency SIGMA+ program developed a persistent, real-
time, early warning and detection system for the full spectrum of chemical, biological, radio-
logical, nuclear, and explosive weapon of mass destruction threats at the city to region scale. In 
support of this program, and leveraging technical expertise in modeling and simulation, applied 
mathematics, and epidemiology, the Johns Hopkins University Applied Physics Laboratory (APL) 
characterized and quantified the impact a wearables-based human sentinel network would have 
on the ability to provide advanced detection of a naturally occurring or intentional biothreat 
event. Modeling results demonstrate that instrumenting as few as 5% of the population could 
advance detection of seasonal influenza by 5–14 days and an anthrax attack by ~1 day as com-
pared with traditional public health surveillance. Early detection and geolocation of individuals 
exposed to biological threats enables timelier and more effective biothreat countermeasures and 
mitigation strategies.

to develop a concept of operations (CONOPS) frame-
work centered on an integrated two-tier, human sentinel 
network (HSN) to enhance current disease surveillance.

APL leveraged previous computational modeling and 
analysis, engaged stakeholders via formal tabletop exer-
cises (TTXs) and targeted discussions, and conducted 
additional research and fact-finding in support of pre-
liminary CONOPS development. This research identi-
fied key materiel and nonmateriel considerations and 
risks related to implementation of the proposed HSN, 
including additional materiel development needs, regu-
latory compliance issues, participant recruitment and 
engagement strategies, and data management topics. 

PROGRAM BACKGROUND AND INTRODUCTION
The Defense Advanced Research Projects Agency 

(DARPA) SIGMA+ program developed a persistent, 
real-time, early warning and detection system for the full 
spectrum of chemical, biological, radiological, nuclear, 
and explosive (CBRNE) weapon of mass destruction 
threats at the city to region scale.1 For biological threats, 
SIGMA+ developed novel methods of environmental 
and human-based sensing for improved real-time detec-
tion of naturally occurring or human-made biothreat 
events. Relative to the current state of the art, this effort 
aimed to provide days-earlier detection and geolocation 
of biological threats, enabling more effective counter-
measures and mitigation strategies. DARPA tasked APL 
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APL proposed several operational business models, with 
varying cost estimates and, in some cases, differing non-
materiel considerations and risks. This work, in con-
junction with the technological development described 
above, indicates that instantiation of an HSN program 
is feasible and would provide value to the public health 
community, the emergency response community, and 
individual participants.

PURPOSE AND SCOPE
Presented here is a CONOPS framework centered 

on an integrated two-tier HSN concept to enhance the 
current state of public health disease surveillance. The 
HSN concept is composed of wearable physiological 
monitors (hereafter, “wearable sensors”) (tier 1) distrib-
uted among a fraction of the adult population. Algo-
rithms processing an individual’s physiological data 
would generate alerts in the event of a possible biologi-
cal exposure; following a tier 1 alert, some individuals 
would be prompted to seek confirmatory testing for one 
or more pathogens (tier 2). Both the wearable alerts and 
test results would be reported in real time to a secure 
cloud-based platform via a dedicated application. The 
platform would aggregate the information and dissemi-
nate it to public health authorities and critical incident 
response entities.

The SIGMA+ program demonstrated multiple proofs 
of concept of system components, including:

•	 High-accuracy presymptomatic/asymptomatic illness 
alerting via wearable sensors and alerting algorithms 
in an influenza-challenge cohort study2

•	 Communications platforms and information man-
agement systems to support collection, storage, dis-
tribution, and analysis of HSN data

•	 User interfaces and visualization platforms both for 
individual HSN participants and for end users and 
consumers of population-level or group-level data

These components have been integrated into a pilot 
wearable network instance with stakeholders from 
Marion County, Indiana. Key considerations related 
to implementation of an HSN, such as materiel and 
nonmateriel factors, regulatory compliance, participant 
recruitment and engagement, data management, and 
operational business models, are also presented briefly.

METHODOLOGY
The analysis approach of this study consisted of three 

primary activities to inform HSN concept of employ-
ment/CONOPS development.

1.	 Modeling. An agent-based model of seasonal influ-
enza and a custom-built probabilistic model for an 
intentional anthrax release were developed to assess 
the potential impact an HSN could have on acceler-
ating the timeline of detecting a public health emer-
gency. Each modeled disease characteristics, public 
health practices, tier 1 and tier 2 phenomena, and 
individual dynamics to simulate disease outbreaks 
and HSN detection in a given population. Results 
showed that if 5% to 25% of the population were 
instrumented within the proposed HSN, it could 
advance detection of seasonal influenza by 5–14 days 
and anthrax by ~1 day as compared with traditional 
public health surveillance.

2.	 Scientific partnership. This activity involved col-
laborative work with several SIGMA+ organizations:

	– Sandia National Laboratories: development of 
an integrated environmental-HSN CONOPS

	– RTI International: detection algorithm develop-
ment and physiological wearable studies

	– Two Six Technologies: consultation on data 
storage and processing at scale

	– Massachusetts Institute of Technology Lincoln 
Laboratory: knowledge sharing on related physi-
ological wearable studies and TTX planning

3.	 End user/stakeholder engagements. In coordina-
tion with the partners above, APL conducted TTXs 
and focus groups to elicit feedback on the utility of 
an HSN to support decision-making and incident 
response in the face of a public health emergency. 
Notional use cases, critical infrastructure and data 
elements, and gaps in planning and risks to opera-
tion were chief topic areas. The group engaged 
US  government parties at the national, state, and 
local levels.

PROPOSED HSN CONOPS
System Concept Overview

The US public health surveillance system is a multi-
layer (local, state, and national), heterogeneous network 
of private, public, and military entities. Surveillance may 
be active, passive, or syndromic. Traditional detection 
of outbreaks and public health emergencies is slowed by 
delays in diagnostic testing and reporting3,4 and is inad-
equate at estimating the magnitude of these events.5,6

The SIGMA+ program developed a scalable network 
of sensors and intelligence analytics for the advanced 
surveillance and detection of CBRNE threats. For bio-
logical threats, the proposed system consists of envi-
ronmental near-real-time aerosol biological sensors 
monitoring the atmosphere for pathogens (preferably in 
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mobile configurations), an HSN of individuals volun-
teering to share wearable sensor data (e.g., from smart-
watches), and a cloud-based platform that aggregates and 
analyzes data from the environmental sensors, wearable 
sensors, and public health sources (Figure 1).

Integrating these novel data sources with existing 
ones (e.g., syndromic surveillance7) into a single plat-
form will provide an opportunity for improved detection 
of emerging or crisis public health events through the 
fusion and analysis of all accessible data, providing com-
prehensive situational awareness to the public health 
and law enforcement response.

HSN Structure and Functionality
The purpose of the HSN 

is to significantly improve 
the speed and fidelity of sur-
veillance of outbreaks and 
exposures to harmful bio-
logical agents. The network 
would consist of individu-
als outfitted with wearable 
sensors (tier  1) to monitor 
physiological markers, such 
as heart rate, heart rate vari-
ability, peripheral oxygen 
saturation (SpO2), tem-
perature, sleep quality, and 
activity levels. Algorithms, 
currently in the prototype 
phase, embedded within 
a smartphone application 
analyze changes in these 
markers to detect pre- and 
asymptomatic illness at the 
individual level.

HSN Data Flow and Technical 
Stack

Currently, wearable sen-
sor data are insufficient to 
establish the cause of an 
infection. Therefore, devia-
tions from baseline mark-
ers would trigger an alert to 
prompt the wearer to seek 
diagnostic testing at loca-
tions such as sentinel phar-
macies or provider offices 
(tier  2). The alert, along 
with non-Personally Identi-
fiable Information/Protected 
Health Information meta-
data from the wearable de-
vice, such as demographics, 
algorithm parameters trig-
gered, and location, would 

be sent to the cloud-based platform, integrated with the 
other public health data streams, and analyzed in near 
real time (Figure 2 and Figure 3).

The strength of the HSN concept is its ability to 
monitor the health of a population and push real-time 
alerts to relevant stakeholders. In aggregate, these alerts 
could serve as early warning mechanisms, prompt-
ing a more expedient response than is traditional and 
subsequently mitigating the impact of the emergency 
(Figure 4). Further, the detection of pre- and asymptom-
atic illness provides critical data on the magnitude of 
the event that would otherwise be missed because some 
individuals never seek medical care and others may not 
know they have been impacted.

Public 
Health 
Information

Region of
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Human 
sentinels

Biosensors

Contextual
data

Watch 
of�cer

Data 
sources   Data

analyst

Figure  1.  The envisioned HSN program. Sensor and relevant contextual data are uploaded, 
aggregated, and analyzed for display and to support decision-making.
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Figure 2.  HSN data flow. Deviations from baseline markers would trigger an alert to prompt the 
wearer of the sensor to seek diagnostic testing. The alert, along with metadata from the wearable 
device, would be sent to the cloud-based platform, integrated with the other public health data 
streams, and analyzed in near real time.
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HSN Use Case
The following is a use case 

for the HSN functioning as the 
sole SIGMA+ adjunct to public 
health entities.

Within a period of a few 
weeks in early summer, public 
health entities monitoring 
the HSN in a major US  city 
notice an unseasonable and 
significant increase in wearable 
sensor-based alerts for respira-
tory illness. Local providers and 
hospitals are not yet reporting 
increases in visits or hospital-
izations for respiratory illness, 
and syndromic surveillance 
is not indicating increases in 
over-the-counter cold and flu 
medication. Alerts begin to 
show clustering in more densely 
populated neighborhoods.

Public health entities issue 
an alert to local providers and 
hospitals to be vigilant for 
respiratory illnesses and to 
test suspected cases for viruses 
such as influenza and respira-
tory syncytial virus (RSV). 
People receiving alerts begin 
reporting to providers for evalu-
ation and testing, and test-
ing is negative for common 
respiratory pathogens. Isolate 
samples are sent to state public 
health laboratories for testing, 
and results are inconclusive. 
Isolates are sent to the Cen-
ters for Disease Control and 
Prevention, and public health 
entities begin case investiga-
tion interviews with affected 
persons to determine potential 
exposures and timelines, moni-
tor symptoms, and characterize 
interaction networks.

Deployment of an HSN 
affords the following benefits:

•	 � Even without positive diag-
noses, the HSN can provide 
early warning of unusual dis-
ease activity to public health 
entities, permitting prompt 
and proactive investigation 
(including coordination with 
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Figure 3.  The wearable sensing and alerting architecture. Diagram of (a) the HSN subsystem, 
for collection, transmission, aggregation, and display of wearable data, and (b) its prototypical 
components for data collection (a commercial off-the-shelf fitness watch), data transmission 
(Bluetooth) to an auxiliary device (smartphone), local data analysis and transmission to HSN 
GovCloud for processing health risk scores and pushing alerts, and visualization (using Two Six 
Technologies’ proprietary “DTECT” platform). (Figure courtesy of RTI International)
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Figure 4.  Notional epidemiological curves of disease incidence. Shown are incidence curves 
captured by means of traditional public health surveillance (green) and the two-tier HSN com-
posed of wearable presymptomatic alerting (blue curve; tier 1), followed by presumptive iden-
tification through sentinel pharmacy testing (purple curve; tier 2).

http://www.jhuapl.edu/technical-digest


Wearables-Based Disease Surveillance: SIGMA+ Human Sentinel Networks CONOPS

5Johns Hopkins APL Technical Digest, Volume 37, Number 4 (2025), Article 2400429-8 
www.jhuapl.edu/technical-digest

•	 local care providers and hospital systems). This, in 
turn, enables earlier and more accurate determina-
tion of the seriousness of the situation.

•	 Temporal and geographic data in combination with 
testing results may be modeled to estimate asymp-
tomatic infection rates, attack rates, and areas at 
high risk of spread. These data can help refine assess-
ments of the outbreak’s significance. Further, these 
data can be used for more targeted epidemiological 
investigations, interventions, and testing strategies 
and to inform the use of nonpharmaceutical inter-
ventions such as wearing masks and limiting social 
gatherings.

•	 Enabling officials to investigate, mobilize resources, 
and intervene more quickly will reduce the spread of 
the virus and subsequently decrease morbidity and 
mortality associated with infection.

•	 During the early stages of the COVID-19 pandemic, 
after the virus was circulating in the United States, 
but before positive case identifications had begun in 
most cities, an HSN could have provided early indi-
cations of spread in specific regions, nuanced under-
standing of asymptomatic rates and disease severity, 
and information about transmission characteristics. 
This information could have supported government 
responses to the public health emergency and helped 
mitigate the impact of COVID-19.

HSN Stakeholder Landscape
Stakeholders in a notional HSN fall into three 

categories: participants, data providers, and end users. 
Participants include individuals outfitted with wearable 
sensors that actively transmit data to the HSN. This 
group may include members of the general public, first 
responders, and medical personnel. Data providers are 
nonparticipant entities that provide relevant contex-
tual and surveillance-related data to the HSN. These 
entities may include hospitals, laboratories, syndromic 
surveillance networks, and environmental sensors. End 
users include those individuals who actively monitor 
and leverage data and analyses generated by the HSN 
to make decisions in the interest of public health. End 
users may include people in various levels of govern-
ment public health, first responders, and members of 
law enforcement.

Nonmateriel Considerations
Several nonmateriel factors must be considered and 

addressed to ensure successful HSN system design and 
operational deployment. These factors include partici-
pant considerations, regulations, and data protection 
and management.

Adequate system performance relies on a suffi-
cient number of participating adults in the popula-
tion. Approaches to achieve the required participation 
threshold may include government support through 
device donations, subsidies, or incentivization; private 
or philanthropic organizations, insurance providers, or 
wearable sensor manufacture support; and citizen sci-
ence or “bring-your-own-device” participation models. 
Further, factors such as lifestyle, privacy beliefs, or unfa-
miliarity with or distrust of commercial technology may 
preclude certain individuals from willingly participating.

The enabling technology of the HSN is the wearable 
physiological sensor, which can monitor physiological 
attributes, track location, and communicate the col-
lected data about the wearer. Wearable sensors may be 
subject to compliance with a variety of regulations (e.g., 
the Health Insurance Portability and Accountability 
Act, or HIPAA). Thorough analysis of each regulation 
and collaboration with relevant agencies will be required.

The protection of personal information must be the 
highest priority. Transparent disclosure of the types of 
data, how they are used, and methods for safeguarding 
data must be clearly communicated to would-be par-
ticipants. Safeguards at the highest level of government 
standards must be in place to protect against inadvertent 
or intentional release or access. The minimum amount 
of data must be collected to meet system performance 
thresholds, and data must be anonymized as much 
as possible.

Feedback on the CONOPS
A significant contributor to CONOPS development 

was feedback solicited during focus groups and TTXs. 
During these events, the infrastructure and function-
ality of the HSN were presented, followed by targeted 
questions and open discussion. Feedback on the HSN 
fell into two categories, capability and implementation 
and utilization, and is summarized below.

HSN Capability

•	 A wearable-based, two-tier HSN is conceptually 
well received and would add value to emergency and 
public health response.

•	 To be effective, high-fidelity data, such as GPS 
tracking/back-tracking and display of the trigger-
ing physiological parameters, should be displayed for 
cases requiring investigation.

•	 When possible, data should be integrated with bio-
sensor, agent-specific data to support response.

•	 The HSN provides data and situational awareness, 
demonstrating more utility to support broader public 
health response than first responders.
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HSN Implementation and Utilization

•	 Trust in the system is critical and may be low ini-
tially while it is unproven to individual users.

•	 Context is important: data from disparate sources 
must be aggregated and presented together to pro-
vide comprehensive situational awareness.

•	 Jurisdictional responsibility for data monitoring and 
action must be determined in advance.

SUMMARY AND IMPLEMENTATION 
CONSIDERATIONS

Based on computational modeling and analysis, stake-
holder engagements, pilot HSN studies, and CONOPS/
concept of employment analysis, an HSN network is 
both technologically and practically feasible and would 
provide value to public health authorities and other 
decision-makers, the emergency response community, 
and individual participants in the network. Wearable 
sensors with the required features, alerting algorithms, 
communications networks, analysis infrastructure 
(including algorithms), and user interfaces are all either 
demonstrated or achievable with current technology. 
Resolution of nonmateriel concerns, including meeting 
regulatory requirements, is likewise viable. Any imple-
mentation of an HSN will require close collaboration 
with stakeholders and end users to account for locally 
specific factors and will require cross-agency partner-
ships and development of a business model ensuring suf-
ficient public participation.

Continued development of the HSN capabilities will 
require interfacing with existing public health systems to 
test and ultimately verify, through well-defined metrics, 
the HSN’s ability to enhance disease surveillance. Thus, 
a transition partner (or partners) will likely need to 
conduct advanced development activities, evaluate the 
HSN capabilities as part of an initial operational test, 
conduct a pilot study of the proposed technology, and 
address and document full-system life-cycle challenges 
before deployment.

An HSN pushes the boundaries of traditional biosur-
veillance by providing real-time early warning updates 
to public health and law enforcement professionals. 
Information provided by the HSN will provide targeted 
and expedient situational awareness and subsequent 
decision support to mitigate the impacts of the emer-
gency in question.
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APL Achievement Awards and Prizes: The Lab’s Top 
Inventions, Technical Breakthroughs, and Staff 
Achievements for 2023 and 2024

APL Staff Writers

ABSTRACT
The Johns Hopkins University Applied Physics Laboratory (APL) is dedicated to delivering game-
changing technical solutions to our nation’s most critical challenges. In addition to making tech-
nical contributions, APL staff members advance enterprise services, participate in and expand a 
robust innovation ecosystem, and embody the organization’s core values in their work. Every year 
the Laboratory honors staff members’ accomplishments with an awards program. This article 
details the awards presented for achievements in 2023 and 2024.

literature. Departments and sectors may submit up to 
two nominations in each of the eight award categories. 
Judges consider nominated works’ significance and clar-
ity, emphasizing publications that significantly advance 
science, engineering, or APL’s mission.

Author’s First Paper in a Peer-Reviewed Journal or 
Proceedings

This award recognizes an early-career investigator 
who has published their first paper as lead author at 
APL. The award for a 2023 publication went to Gabri-
ella Hunt for “High Emissive Contrast of Adaptive, 
Thin-Film, Tungsten-Doped VO2 Composites.”1 This 
paper describes APL researchers’ work to develop a 
highly efficient adaptive thermal management solution 
by utilizing novel phase-change material. The design 
parameters they explored and selected will enhance 
the performance of thermal management devices, ulti-
mately reducing total energy consumption in homes and 
industries.

INTRODUCTION
APL honored a total of nearly 360 staff members for 

their exceptional contributions in 2023 and 2024. Staff 
members received awards for outstanding work in areas 
such as publications, research and development, inno-
vation, invention, and mission-driven programs. A new 
award debuted for 2023: The Courageous Achievement 
Award recognizes significant contributions to APL or the 
nation that exemplify courage, integrity, and leadership.

This article details the 2023 and 2024 awards and 
winning staff members. Although some of the honored 
efforts would not have been possible without external 
collaborators, the awards program is limited to current 
APL staff members, so only those contributors are named.

PUBLICATION AWARDS
The publication awards, first presented in 1986, are 

the genesis of APL’s annual Achievement Awards pro-
gram. Administered by the Johns Hopkins APL Technical 
Digest editorial board, these awards encourage and cele-
brate scholarship through publication in the professional 
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The 2024 award went to Car​los Braga for “A Coro-
nal Mass Ejection Impacting Parker Solar Probe at 14 
Solar Radii.”2 This paper describes the novel analysis 
and unprecedented measurements Parker Solar Probe 
made while crossing through a solar transient within the 
solar corona. These findings clarify long-standing ques-
tions on coronal mass ejection structure with important 
implications for space weather analyses.

Outstanding Paper in the Johns Hopkins APL Technical 
Digest (The Walter G. Berl Award)

This award recognizes excellence in APL’s own tech-
nical journal, which has been published since 1961. The 
honor is named for Walter Berl, who was editor-in-chief 
of the Digest when the publication awards program was 
created and who oversaw the program for many years.

Winners for 2023 were Andrew Cheng, Ralph 
McNutt, and Harold Weaver for “Science Highlights 
from NASA’s New Horizons Mission.”3 The paper 
details science discoveries from New Horizons, the first 
mission to explore Pluto and the Kuiper Belt. The mis-
sion transformed our understanding of Pluto and its 
giant moon Charon from mere points of light into geo-
logically complex worlds formed of exotic materials. It 
revealed the Kuiper Belt object Arrokoth to be a comet 
“contact binary” with an organic-rich surface.

The were two winning publications in 2024. The first 
was “A Multidimensional Cyber Threat Scenario Enu-
meration Model for Resilience Engineering” by Anurag 
Dwivedi.4 This article describes a threat scenario char-
acterization and enumeration approach that does not 
rely on intelligence or threat databases and allows for 
tailored abstraction of threat scenarios to inform mitiga-
tion decisions and facilitate cybersecurity and resilience 
engineering. The second award was presented to Kham-
phone Inboune, S. John Lehtonen, Nicholas Nowicki, 
and Vanessa Rojas for “Microelectronics Packaging at 
APL: Delivering Custom Devices for Critical Missions.”5 
This paper highlights APL’s advancements in microelec-
tronics packaging, focusing on custom, high-reliability 
solutions for mission-critical applications. It details novel 
processes, such as laser cutting and hermetic sealing, 
and showcases contributions to key programs, such as 
NASA’s Double Asteroid Redirection Test (DART) and 
Dragonfly missions, emphasizing APL’s unique capabili-
ties in prototyping and delivering specialized devices.

Outstanding Research Paper in an Externally Refereed 
Publication

This award recognizes research, including investi-
gations in basic and applied science and engineering, 
published in a peer-reviewed journal. The 2023 award 
went to Elena Adams, Olivier Barnouin, Nancy Chabot, 
Michelle Chen, Andrew Cheng, Terik Daly, Carolyn 
Ernst, Zachary Fletcher, Mark Jensenius, and Andrew 

Rivkin for “Successful Kinetic Impact into an Asteroid 
for Planetary Defence,” published in Nature.6 This paper 
describes the DART spacecraft’s autonomous kinetic 
impact into Dimorphos, a small moon of the near-Earth 
asteroid Didymos. Details include the timeline leading 
up to impact, the location and nature of the impact site, 
and the size and shape of Dimorphos. The impact event 
and the resulting change in Dimorphos’s orbit demon-
strated that kinetic impactor technology is a viable tech-
nique to defend Earth if necessary.

The award for a 2024 publication went to another 
DART paper, this one by Ronald Ballouz, Olivier Bar-
nouin, Nancy Chabot, Andrew Cheng, Terik Daly, 
Carolyn Ernst, Andrew Rivkin, and Angela Stickle and 
titled “The Geology and Evolution of the Near-Earth 
Binary Asteroid System (65803) Didymos.”7 This paper 
describes the physical properties of Didymos and its 
moon Dimorphos, which were analyzed using data col-
lected during DART’s Dimorphos encounter and deflec-
tion demonstration. Didymos is mechanically weak, 
similar to other small rubble pile asteroids, and Dimor-
phos is even weaker, probably as a result of its formation 
from loose debris from Didymos.

Outstanding Development Paper in an Externally 
Refereed Publication

This award celebrates development efforts, includ-
ing applications of science or engineering to the devel-
opment of a system or a specific product or prototype, 
published in a peer-reviewed journal. The 2023 award 
went to Robert Armiger, Matthew Fifer, Priya Gajendi-
ran, Meiyong Pelos, Courtney Moran, Harrison Nguyen, 
Luke Osborn, Jonathan Pierce, Richard Ung, Rama 
Venkatasubramanian, and Jared Wormley for “Evoking 
Natural Thermal Perceptions Using a Thin-Film Ther-
moelectric Device with High Cooling Power Density 
and Speed,” published in Nature Biomedical Engineering.8 
The paper describes how APL researchers used novel 
thin-film thermoelectric devices, robotic systems, and 
targeted neurostimulation to enable amputees to intui-
tively perceive the temperature of objects they grasped 
with an advanced prosthesis. Evoking thermal sensa-
tions at biologically relevant timescales will help achieve 
advanced human–machine interfaces with enhanced 
realism and function.

Winners of the 2024 award were Debra Buczkowski, 
Katie Hancock, Yuki Itoh, Alexandra Matiella Novak, 
Frank Morgan, Scott Murchie, A. Hari Nair, Frank 
Seelos, Kim Seelos, and Christina Viviano for “The 
CRISM Investigation in Mars Orbit: Overview, His-
tory, and Delivered Data Products.”9 The APL-designed, 
-built, and -operated CRISM instrument and associated 
data have provided spectra that demonstrate the min-
eralogy of the surface of Mars. This paper details the 
wealth of data the CRISM instrument collected over the 
roughly 15 years that it operated.
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Outstanding Professional Book
This award recognizes outstanding books written by 

APL staff members. The award for a 2023 book went to 
Edward Birrane, Sarah Heiner, and Kenneth McKeever 
for Securing Delay-Tolerant Networks With BPSec, pub-
lished by John Wiley & Sons.10 This book examines 
how delay-tolerant networks can be secured when oper-
ating in environments that would otherwise break many 
of the common security approaches used on the terres-
trial internet today. The text includes considerations 
and tutorials for deploying Bundled Protocol Security, 
or BPSec, in both regular and delay-tolerant networks.

There were no nominations in this category for 2024.

Outstanding Special Publication
This award recognizes publications and publication 

activities, such as book chapters, review papers, tutori-
als, and book or proceedings editorship, that are outside 
of the other publication award categories. The award 
for a 2023 special publication went to Robert Allen, 
Robert Decker, Russell Howard, Vamsee Jagarlamudi, 
James Kinnison, Nour Rawafi, Guillermo Stenborg, and 
Angelos Vourlidas for “Parker Solar Probe: Four Years 
of Discoveries at Solar Cycle Minimum,” published in 
Space Science Reviews.11 This publication summarizes 
the scientific advances NASA’s Parker Solar Probe made 
mainly during the first four years of the mission.

The winner for a 2024 publication was Adrienn 
Luspay-Kuti, editor of the book Triton and Pluto: The Long 
Lost Twins of Active Worlds.12 Neptune’s moon Triton and 
the dwarf planet Pluto are near-twins with similar but 
distinct histories. This book, which Luspay-Kuti coedited 
with a former APL staff member, captures the current 
state of knowledge of these two worlds and is an impor-
tant reference on Kuiper belt objects and ice giant planets.

Outstanding Conference Publication
This award emphasizes the value of participating in 

conferences to meet colleagues and establish profes-
sional contacts. The 2023 award went to Michelle Chen, 
Musad Haque, Stephen Jenkins, Mark Jensenius, Daniel 
O’Shaughnessy, Carolyn Sawyer, and Emil Superfin for 
“SMART Nav Guidance: Ensuring Asteroid Impact 
for the DART Mission,” published in the Proceedings of 
the 45th Annual American Astronautical Society Guid-
ance and Control Conference.13 This paper describes the 
APL-developed Small-body Maneuvering Autonomous 
Real-Time Navigation, or SMART Nav, system that 
performed onboard, autonomous asteroid detection, tar-
geting, and guidance during DART’s four-hour terminal 
phase, enabling successful intercept.

The winners for a 2024 conference publication 
were Samuel Audia, Benjamin Estacio, Rachel Hartig, 
Greta Kintzley, Matt Landes, and Aayush Sharma for 
“Hypervelocity Impact Properties of Polyimide Aerogels 

for Space Debris Shielding and Capture,” published in 
Proceedings of the 2024 IEEE Aerospace Conference.14 
This paper describes RAVIOLI (Removing Articles Via 
In-situ On-orbit Localized Impacts), a technology that 
leverages the properties of aerogels and Kevlar materials 
to protect against a wide range of small particle impacts 
in space. Research has validated RAVIOLI as a candi-
date for spacecraft shielding, and current work is extend-
ing its use to hypersonic reentry systems.

Lifetime Achievement Publication Award
This award honors an author’s career of achievement 

through a substantial body of publications that are sig-
nificant in terms of peer recognition, prizes, citation fre-
quency, or influence on the innovation ecosystem. For 
2023, APL honored two staff members with this presti-
gious award: Barry Mauk,15 for his extensive and insight-
ful writing on space missions spearheaded by APL, 
illuminating the complexities and triumphs of space 
exploration; and Donald G. Mitchell,16 for advancing 
our understanding of the solar system through his pro-
lific contributions and significant research in planetary 
science and astrophysics.

For 2024, Brian Anderson,17 a space physicist and 
magnetic field measurement scientist, was recognized for 
his contributions to the geosciences community through 
participation in more than 300 scientific publications as 
either lead or contributing researcher.

R. W. HART PRIZES FOR EXCELLENCE IN 
INDEPENDENT RESEARCH AND DEVELOPMENT

The Hart Prizes—first presented in 1989 and named 
for former APL assistant director for research and explor-
atory development Robert W. Hart—recognize signifi-
cant contributions that advance science and technology 
through independent research and development. Sectors 
and departments recommend candidates, and managing 
executives judge the nominations on their quality and 
importance to APL. Prizes are awarded in two categories: 
best research project and best development project.

Best Research Project
The 2023 award went to Brian Bittner, Scott Gibson, 

Michael Kepler, Zachary Kurtz, Varun Madabushi, 
Christopher Moran, Jason Reid, Lee Schloesser, and 
Nick Zielinski for “Advanced Perception and Control 
for Autonomous UUV Manipulation.”

The award for the best research project in 2024 went 
to Rachel Altmaier, Stav Elazar Mittelman, Diarny 
Fernandes, Konstantinos Gerasopoulos, Evan Jacque, 
Michael Jin, Richard Korneisel, Courtney McHale, 
Adam Simmonds, and Jason Tiffany for “FABRICS: 
Fiber Architecture Breakthroughs In Conversion and 
Storage.”18
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Best Development Project
Winners for 2023 were Curt Albert, Scott Gibson, 

John Lindemon, Toni Salter, Andrew Skow, Paul 
Stankiewicz, and Vivek Viswanathan for “USV Percep-
tion and Autonomy Development and Demonstration.”

The 2024 honor went to Daniel Berman, Tom 
Curtis, Laura Dunphy, Rickey Egan, Libby Lewis, and 
Diego Luna for “Fung-AI: AI/ML-Driven Antifungal 
Discovery.”

INVENTION OF THE YEAR
The Invention of the Year Award was first presented 

in 2000 to encourage new technology and innovation at 
APL. To identify the top technology from the preceding 
year, an independent review panel judges invention dis-
closures. The judges, including technical and business 
consultants, technology transfer professionals, and intel-
lectual property attorneys, assess inventions’ creativity, 
novelty, improvement to existing technology, commer-
cial potential, and probable benefit to society.

Winners for their 2023 invention were Jarod Gagnon, 
Lisa Pogue, and Scott Shuler for “Method for Recycling 
Rare Earths from End-of-Life Electronics.”

The award for the best 2024 invention went to Alex-
ander Beall and Harley Parkes for “Behavioral Alerting 
Sets for Control Systems (BAS/CS).”

MASTER INVENTOR AWARD
Lab management first presented the Master Inventor 

Award in 2007 to honor those staff members who have 
demonstrated a career of innovation with 10 or more 
patents based on APL intellectual property. To date, 
only 35 staff members have attained the honor. The two 
newest master inventors are Konstantinos Gerasopoulos 
and Robert Osiander.19 Among Gerasopoulos’ notable 
patents are an unbreakable, incombustible lithium-ion 
battery; battery- and solar-powered fibers; and a safe, 
high-energy-density battery anode. Osiander’s patents 
address a range of challenges and gaps, from biomedical 
innovations to novel materials to navigation tools.

GOVERNMENT PURPOSE INVENTION
The first Government Purpose Invention Award, rec-

ognizing an invention that meets a critical sponsor need, 
was presented in 2011. Selected by a team of technical 
leaders from across the Lab who are acquainted with 
APL’s technology transfer practices, finalist inventions 
are judged on their novelty and potential impact to the 
sponsor community.

The award for 2023 was presented to Timothy 
Allensworth, Jonathan Bierce, Raymond Lennon,  
Matthew Shanaman, Clara Smart, Christopher Stiles, 

and Steven  Storck for “Novel Additive Structures for 
Pressure Vessels.”

Winners for a 2024 invention were Chuck Forrest, 
Christopher Gardner, Christopher Gifford, Juliana 
Illingworth, Zachary Kurtz, Jonathan Ligo, Samim 
Manizade, Denise Nemenz, Hee Won Pak, and Adam 
Watkins for “Tactical Agile Model Refinement (AMR).”

PROJECT CATALYST AWARDS
To position the organization to respond to increas-

ingly complex national challenges and to capitalize on 
rapid technological advances, APL’s leaders have intro-
duced several initiatives to encourage innovation.20 One 
of these initiatives, Project Catalyst, offers staff members 
three funding opportunities for bold, high-risk, trans-
formational ideas that will ensure our nation’s preemi-
nence in the 21st century. Staff members submit ideas 
in response to challenges posted during several cycles 
throughout the year. Peers and leaders vote on the sub-
missions, and finalists receive funding to develop their 
ideas. Awards recognize excellent work funded through 
Project Catalyst.

Ignition Grant Prize for Innovation
The inaugural Project Catalyst award, the Ignition 

Grant Prize, was presented for the first time in 2013 for 
the Ignition Grant project judged to be most creative 
and to have the greatest potential impact.

The winners of the 2023 prize were Xiomara 
Calderón-Colón, Spencer Langevin, and Michael D. 
Sherburne for “Strain Sensing Nanomaterial-Based 
Paint (SSNaP) for Naval Applications.”

For a 2024 project, Xiomara Calderón-Colón, Chris-
tine Chung, Savannah Est-Witte, Corrine Fuller, and 
Sarah Ton were recognized for “Lab Veins: Vasculature 
Model for Cell Growth.”

Combustion Grant Prize for Innovation
The Combustion Grant Prize, first presented in 2017, 

recognizes high-risk, high-impact technical ideas.
The award for 2023 went to Denise Hoover, Nich-

olas Pavlopoulos, and Nathan Rafisiman for “N2A: 
Nitrogen-to-Ammonia for Sustainable Energy.”

Daniel Berman, Amanda Ernlund, and Libby Lewis 
won for their 2024 project “MutaGAN: Boosting Sea-
sonal Vaccines with Deep Learning Farther.” 

Propulsion Grant Prize for Innovation
And, finally, presented for the first time in 2018, the 

Propulsion Grant Prize honors ideas that were selected 
for their third year of Propulsion Grant funding. 

The first 2023 prize went to Ben Baker, Bryan Bates, 
Daniel Binion, Richard Maltagliati, and Andrew Raab 
for “Poseidon’s Net Raid Neutralizer.” The second was 
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presented to Ian Bird, Molly Gallagher, Sarah Grady, 
Mika Helfers, and Jessica Resnick for “Immunity Twin: 
Developing Parallel Biological and Computational 
Immunological Model Systems.” And the third 2023 
prize went to Matthew Bailey, Walter Kelso, Ryan Seery, 
Daniel Shaefer, and Dajie Zhang for “Omega Prime – 
Reconfigurable Equipment Section.”

For 2024, the first prize went to Jeffrey Garstecki, John 
Hamilton, Stephen Mitchell, Olukayode Okusaga, and 
Sam Reynolds for “Neural Networked Clock Ensemble 
for Coherent Sensing.” Rylie Bull, Dawn Graninger, 
Max Harrow, Sabrina Pellegrini, and Devin Protzko 
for were awarded a 2024 prize for “LOCUST: Lots Of 
Cubesats Used to Survey a Target.” And Nick Andrejow, 
Sean Bailey, Michael Herman, Brice Pridgen, and Bryan 
Rex won for “Deep Diving Tuna — Targeting Demersal 
Objects.”

MISSION ACCOMPLISHMENT AWARDS
The Outstanding Mission Accomplishment Awards, 

first presented in 2014, recognize major achievements 
in mission-oriented programs and projects. Awards are 
given in two categories: a current challenge and an 
emerging challenge. For both types, a review team of 
managers and executives from APL’s sectors and mis-
sion areas solicits nominations for technical accom-
plishments in sponsored programs during the previous 
year. A program has to have achieved a significant 
milestone within the previous fiscal year to be eligible. 
The panel judges entries on technical excellence and 
potential impact.

Outstanding Mission Accomplishment for a 
Current Challenge

The 2023 award went to core team members Timothy 
Allensworth, TJ Coleman, Matthew DeHart, Douglas 
Haefeli, Justin Jones, Dillon Kasmer, Andrew Miller, 
David Orr, Thomas Sherman, and Tony Zampardo for 
“Anguilla.”

Two awards were presented for 2024 challenges. 
The first went to Simmie Berman, Carl Engelbrecht, 
Stuart Hill, Taejoo Lee, Adrienn Luspay-Kuti, Thomas 
Magner, Joseph Niewola, Sofia Stachel, Zibi Turtle, and 
Kyle Weber for “NASA’s Europa Clipper Mission.” The 
second was presented to E. David Beksinski, Brad Couto, 
Emily Gotowka, Matthew Kazanas, Armen Melikian, 
Eric Reidelbach, Josey Stevens, and Eric Uthoff for 
“Real-World Cell for Middle East Defensive Operations.”

Outstanding Mission Accomplishment for an 
Emerging Challenge

The 2023 award was presented to core team members 
Teck Choo, Chuong Dang, Mo DeVillier, Barry Fridling, 
Mick Marana, Trystan May, Dante Sanaei, Jack Santori, 

Joshua Sloane, and Benjamin Waida for “Electromag-
netic Maneuver Warfare Capabilities for Zumwalt.”

The 2024 award went to Daniel Araya, Dennis 
Berridge, Cameron Butler, Parth Kathrotiya, Rubbel 
Kumar, Prasad Kutty, Gregory McKiernan, John Melcher, 
Bradley Wheaton, and Thomas Wolf for “Boundary 
Layer Transition (BOLT-1B) Flight Experiment.”21

ALVIN R. EATON AWARD
The Alvin R. Eaton, or A – R – E, Award has been 

presented annually since 2001 but was not presented 
publicly during the awards ceremony until 2016. It honors 
staff members who have spent much of their careers 
leading remarkable achievements that we cannot talk 
about openly. Awardees are selected by APL’s director 
and assistant director for programs. The award is named 
for Al Eaton, who worked at APL for more than 65 years 
and, among other achievements, helped establish APL’s 
highly sensitive program structure. The A – R – E Award 
was first presented to Eaton himself.

The 2023 award went to Russell Popkin for delivering 
technical analysis and revolutionary system capabilities 
for service and joint sponsors.

The 2024 honor was presented to Robert Reichert for 
his extraordinary contributions to homeland defense.

ENTERPRISE ACCOMPLISHMENT AWARD
The Enterprise Accomplishment Award, first pre-

sented in 2015, recognizes the enterprise accomplish-
ment with the greatest impact on APL’s operations and 
culture of innovation. Winners are selected by a joint 
panel of APL’s operations executives and managing 
executives.

Winners for a 2023 accomplishment were David Cas-
selbury, David Harper, Kristine Harshaw, Scott Kim, 
Jillian Kingwood, Julia Mooney, Sylvie Porter, Gregory 
Schilsson, and Briana Vecchio-Pagán for “Slack Enter-
prise Launch and Adoption.”

The 2024 award went to Kenny Carter, Claire 
DeSmit, Janeen Kawabata, Lee Lachman, Christen 
McBeth, and Michelle Shirey for “Campus Enterprise 
Wayfinding Initiative.”

DIRECTOR’S AWARD FOR SPECIAL ACHIEVEMENTS
Sometimes a major accomplishment is outside the 

usual award categories. The Director’s Award for Special 
Achievements recognizes such accomplishments. This 
award was first presented in 2017.

The 2023 award went to Garret Bonnema, 
Michael  S. Brown, Benjamin Henty, Sara Margala, 
Katherine Newell, Xochitl Oliveros, Vincent Pagán, 
Daniel Tebben, Chad Weiler, and Christine Zgrabik for 
“TAMERLANE.”
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LIGHT THE FUSE AWARD
The Light the FUSE Award was first presented during 

the 2021 ceremony. This award recognizes significant 
contributions that promote a positive culture at the Lab-
oratory, increasing APL’s potential for innovation.

The award for 2023 was presented to David Díaz 
Márquez, Teresa Johnson, Hannah Kowpak, Ronald 
Ostrenga, Robin Qualls, Krista Rand, and Katie Zaback 
for “APL Accessibility Map Project.”

The 2024 award went to Greyson Brothers, Paul Hage, 
David Helmer, Sage Jessee, Willa Mannering, Griffin 
Milsap, Harrison Nguyen, Martin Veloso, Kerstin 
Vignard, and Robert Wilson for “Human–Machine 
Teaming Testbed.”

ANALYTICAL ACHIEVEMENT AWARD
The Analytical Achievement Award was first pre-

sented during the 2022 ceremony. It recognizes the most 
insightful analytic work that resulted in a critical con-
tribution to a government decision-maker or program.

Two teams were recognized in 2023: Dylan Carter, 
Bill Lee, Chris Najmi, Tahzib Safwat, John Schmidt, 
and Naruhisa Takashima for applying analysis to inform 
the establishment of a partnership between the United 
States and Japan; and Stephanie Allen, Xander Dawson, 
Jim Farrell III, Eric Gerdes, Jason Miller, Joshua Mueller, 
Jared Ott, Kevin Peters, and Andrew Ridenour for lead-
ing an effort to develop system-of-system requirements 
for the US Navy and US Air Force.

The 2024 award went to Richard Arnold, Dennis 
Evans, Matthew Lytwyn, and Mitch Nikolich for critical 
analysis of a novel adversary threat.

COURAGEOUS ACHIEVEMENT AWARD
The Courageous Achievement Award was estab-

lished in 2023 to recognize significant contributions to 
APL or the nation that exemplify courage, integrity, and 
leadership in how staff members engage with colleagues 
and serve the Laboratory or its sponsors. Winners are 
selected by the director, assistant directors, and chief 
of staff.

Two awards were presented for 2023. The first award 
went to Tyler Boehmer, David Frankford, Yuriy Noyvert, 
Katrina Roarty, Antonio Trujillo Parra, and Kyle Weber 
for “Identification and Mitigation of Foreign-Sourced 
Printed Circuit Boards.” And the second award went to 
Sara McGarity for “Courage to Report Discrepancies.”

The 2024 award went to Matt Cilli, Charles Cros-
sett, Michael Hartigan, Christopher MacGahan, Royce 
Marsingill, Samantha Marsingill, George Pyryt, Doug-
las Roldan, Wes Rudy, and Sharon Singer-Barnard for 
“Strategic Systems Programs Trident II D5LE2 Life 
Extension Program.”

Two awards were presented for 2024. The first went 
to Matthew Cross, Kelly DeLawder, Radmil Elkis, 
Chad Orbe, and Gregory Stabler for “GroundHog Day.” 
The second award was presented to Kharl Bocala, Jona-
than Graf, Peter Green, Andy Im, Randy Maurizio, 
William McCollom, Jerry Richard, Eric Schuler,  
Mac Sparks, and Rose Trepkowski for “AMDS Special 
Study Team.”

THE “BOLDIES”
In early 2018, APL management asked a team of 

technical leaders and contributors for recommenda-
tions to increase APL’s boldness. This group, Team Bold, 
proposed instituting two formal awards to celebrate 
boldness.

Bumblebee Award
The first award, the Bumblebee Award, recognizes 

improbable designs that had remarkable results, much 
like APL’s historic Bumblebee program, whose name 
was inspired by a quote attributed to aviation pioneer 
Igor Sikorsky: “According to recognized aerotechnical 
tests the bumblebee cannot fly because of the shape and 
weight of his body in relation to the total wing areas. 
BUT, the bumblebee doesn’t know this, so he goes ahead 
and flies anyway.”

Winners for 2023 were Brad Bazow, Mary Daffron, 
Daniel Eby, Samuel Gonzalez, Andrew Lennon, Kyle 
Lowery, Salahudin Nimer, Vincent Pagán, Michael 
Pekala, and Steven Storck for “Debunking Current Mil-
itary Specifications for Additive Manufactured (AM) 
Part Qualification.”

The 2024 award recognized Andrew DiPrinzio, 
Brandon Filo, Manav Gandhi, Tyler Golden, Rachel 
Hartig, Garrett Krol, John O’Neill, William Shaw, 
Zachary Sweep, and Paul Venginickal for “SOUL 
TRAIN.”

Noble Prize
The second award in this category, the Noble Prize, 

celebrates work that was not fully successful but yielded 
valuable lessons. Its name is a play on Nobel Prize and 
noble failure.

The award for 2023 was presented to Hannah Col-
lins, Zachary Kiick, Steven Knowlden, Brian Koronkie-
wicz, Allison Moyer, and Scott Shuler for “OLD BAE: 
Operable Ligands for Decontaminating Befouled 
Aquatic Environments.”

For 2024, Jenny Boothby, Avi Bregman, William 
Fahy, Collin McClain, Nicholas Pavlopoulos, Nathan 
Rafisiman, Elizabeth Robinson, Clare Sabata, and 
Alexander Yuan were recognized for “Green Concrete: 
Handling CO2 Nature’s Way.”
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IN MEMORIAM

Harry K. Charles Jr. (1944–2025)

Dr. Harry K. Charles Jr., an APL Master Inventor, 
former department head, and deeply respected expert 
in electrical engineering and microelectronics, died on 
May 8, 2025, at the age of 80.

After earning his doctorate in electrical engineering 
at Johns Hopkins University in 1972, Harry began his 
career at APL in 1973 as a senior engineer in microelec-
tronics. As an expert in the development and packaging 
of miniaturized electronic, electro-optical, and electro-
mechanical devices, he created systems for use in a wide 
variety of challenging environments, including in space 
and underwater, and for an equally broad range of appli-
cations, including avionics and biomedicine.

Harry was recognized internationally for his work in 
interconnection, wire-bond testing, thin- and thick-film 
circuitry, multi-chip modules, and ultrathin and flex-
ible laminate packaging technology. He published more 
than 200 technical papers on his work. His outstanding 
record of 17 issued patents and more than 50 invention 
disclosures was recognized with an APL Master Inven-
tor Award in 2016. Harry was a member of APL’s Prin-
cipal Professional Staff and received an APL Lifetime 
Achievement Publication Award in 2012. He was also 
a Life Fellow of the International Microelectronics and 
Packaging Society. The citation for this honor expressed 
appreciation for Harry’s community leadership in the 
field of electronics packaging technology.

Harry served in many leadership roles at APL, includ-
ing section, group, and branch supervisor positions; a 
chief engineer position; and head of the Technology 

Services Department. From 2013 to the time of his 
retirement in 2024, he served as the editor in chief of 
the Johns Hopkins APL Technical Digest.

As a firm believer in lifelong learning, Harry was a 
dedicated educator. He served as the group supervisor 
of the APL Education Center from 2013 to 2024. In this 
position, he managed the Johns Hopkins University 
Whiting School of Engineering (WSE) master’s degree 
program, Engineering for Professionals (EP). This pro-
gram now serves more than 7,000 students across the 
world. He also served as chair of EP’s Applied Physics 
Program and as the associate dean for non-residential 
graduate programs at the Johns Hopkins Whiting 
School of Engineering. In addition to his contributions 
to EP, Harry led the APL Strategic Education Program, 
which continues to grow and thrive.

Harry was more than just a manager when it came to 
education. He developed and taught a dozen courses in 
electrical engineering and applied physics for EP. These 
courses include:

•	 Introduction to Electronics and the Solid State, I

•	 Introduction to Electronics and the Solid State, II

•	 Introduction to Electronic Packaging

•	 Semiconductor Device Physics

•	 Introduction to Electronic Materials

•	 VLSI Technology and Applications

•	 Microelectronics Topics

Harry K. Charles Jr. (1944–2025)
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• Solar Energy Technology and Applications

• Material Science

• Alternate Energy

• Solid State Physics

• Nanoelectronics

Enrollments in Harry’s courses over the years
exceeded 3,000. From 2008 to 2012, Harry taught classes 
in the Electrical Engineering Department at the United 
States Naval Academy and held the position of Office 
of Naval Research Distinguished Chair in Science and 
Technology. He developed and taught two new courses 
for electrical engineering majors and served as a mentor 
for Trident Scholars as well.

When the Doctor of Engineering Program was estab-
lished at Johns Hopkins University, the pilot program 
was carried out at APL. Harry served as central coor-
dinator for the program in its early years, even after the 
pilot program was completed. Once the program was 
well established, Harry turned the leadership over to a 
dedicated program director.

Harry was a nationally recognized expert on US 
postal stamps, and he had an extensive collection of rare 
stamps. He published many articles for postal journals 
and regularly attended national and international stamp 
conferences where he spoke and displayed items from his 
collection.

At the time of his retirement in 2024, many APL staff 
members had fond memories of working with Harry.

Allen Keeney, a chief engineer, noted, “When I 
started at the Lab 26 years ago, Harry was the depart-
ment head, but he continued to be very involved with 
the work, which I admired and respected. He also made 
time to mentor a lowly new grad throughout his early 
years at the Lab and encouraged me to pursue both 
technical excellence and my management degree. I am 
extremely grateful to Harry for his time and efforts.”

Mike Boyle, a group supervisor, recalled a very suc-
cinct quote from Harry’s time as head of the Technology 
Services Department: “Remember, I have n+1 votes!”

Howard Feldmesser, a principal staff engineer, noted 
another classic quote from Harry: “It takes a big man to 
make a small circuit!”

Chris Ratto, a group supervisor, recalled, “I had the 
pleasure of serving on the committee led by Harry to 
review APL–Whiting School research assistantships. He 
was always a pleasure to work with and was dedicated 
to supporting graduate students whose research could 
have national impact. As you might imagine, we had 
quite a few ‘out there’ applicants with some pretty wild 
ideas. Harry usually reacted to these with equal parts 
dry humor and genuine curiosity, which made our hot 
wash discussions something I always looked forward to. 
He will be missed.”

Hayley Beach, a program coordinator and e-learning 
technical specialist who worked with Harry in the 
Office of Education, expressed the thoughts of many 
in her words: “Harry inspired countless young profes-
sionals through his extensive experience and impres-
sive academic background. As a mentor and supervisor, 
the greatest lesson he shared with me was to never stop 
learning—a message that continues to guide me. Harry 
fiercely believed in the power of education as he encour-
aged others to embrace challenges, pursue advanced 
degrees, and seize opportunities to grow. His legacy as a 
lifelong learner and educator will live on.”

APL Director Dr. Ralph Semmel knew Harry well 
and respected him deeply. Ralph’s reflections capture 
the feelings that many of us had for Harry: “Harry was 
a wonderful colleague, sought-after mentor, and selfless 
leader. At various times throughout my career at APL, I 
turned to Harry for sage advice. He cared deeply about 
the Lab and our staff, and he served as a model for all of 
us. He held a variety of positions ranging from research 
scientist to department head, and in his final role at the 
Lab, he helped us significantly strengthen ties with the 
university through his stellar leadership of the APL Edu-
cation Office. We will miss him dearly.”

Harry was preceded in passing by his wife of more 
than 50 years, Virginia Wall Charles. He is survived 
by his loving daughter, Heather Kay Charles, and two 
grandsons, Blake and Weston.

Harry’s dedication to APL as a premier national 
research and engineering institution set a high standard 
of excellence, and everyone who knew and worked with 
Harry will remember him for his outstanding technical 
achievements and for exemplifying the APL core value 
of unquestionable integrity throughout his life.

Harry’s family plans to establish a memorial engineering scholarship in his name. To inquire about contributing to this scholarship 
fund or to share additional thoughts and favorite memories of your time with Harry, email rememberingdrharrykcharlesjr@gmail.com.
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