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ABSTRACT
Forensics and military investigators often assess sites of interest, searching for evidence of bio-
logical hazards. The application of metagenomics provides genomic data for all microorganisms 
present in a sample, enabling advanced analysis for detection of biological signatures and threat 
detection from such sites. DNA sequence segments (digitally represented as “reads”) from metage-
nomics samples are commonly compared with reference libraries in order to identify microor-
ganisms present in the sample. However, this approach does not capture the complete biological 
signature, as there always remains a subset of reads that are unable to be successfully mapped 
to a known organism. The Johns Hopkins University Applied Physics Laboratory (APL) Machine 
Learning for Metagenomics (MLM) pipeline characterizes these unidentified reads in terms of 
composition and alignment with sequences of known organisms. Since these reads are unable 
to be mapped directly to a known organism, our models classify each read according to one of 
five threat levels, ranging from 0 to 4 (with threat level 4 the most severe). Our pipeline consists 
of random forest, Bayesian network, and clustering models. When testing this pipeline against 
simulated and real sequencing data, we achieved high threat level classification accuracy: 95% 
for clusters of related reads. Based on these results, we are preparing for deployment of our pipe-
line on far-forward devices, providing investigators with real-time threat assessment of biological 
materials to inform an appropriate rapid response.

Metagenomics enables detailed screening of biologi-
cal samples from sites of interest. Collected samples can 
be passed through a sequencer, yielding reads of DNA 
nucleotides. A read is a digital representation of a seg-
ment of a DNA molecule. In an attempt to identify the 
organisms present in a sample, the reads are compared 
with reference libraries of DNA sequences from known 

INTRODUCTION
Forensics and military investigators often assess sites 

of interest, searching for evidence of biological hazards 
due to malicious actors or natural phenomena.1 When 
hazards are present, it is ideal to identify them precisely. 
However, if this is not possible, characterizing the sever-
ity of the threat provides vital insights for guiding the 
investigators’ response.
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organisms. Close matches with reference sequences 
infer the presence of specific organisms in the sample. 
However, there always remains a subset of reads that 
are unable to be successfully mapped to a known organ-
ism based on the set of matches, if any, to reference 
sequences. For instance, emerging, mutated, or modified 
threats all potentially pose concern to investigators but 
often do not have matches within reference libraries. 
Additionally, reference sequences exist only for a small 
percentage of microorganisms.

Our Machine Learning for Metagenomics (MLM) 
project focuses on these unmapped reads (i.e., “uniden-
tified” reads). We developed a pipeline of models that 
characterizes unidentified reads in terms of composition 
and alignment with sequences 
of known organisms. Since 
these reads are unable to be 
mapped directly to a known 
organism, our models classify 
each read according to one of 
five threat levels (TLs), rang-
ing from 0 to 4. We developed 
this scale of TLs by combin-
ing the bioterrorism categories 
from the US Centers for Dis-
ease Control and Prevention2 
and the biosafety risk groups 
from the US National Insti-
tutes of Health.3 Within our 
scale, organisms that pose the 
greatest threat have TL4, while 
organisms that do not pose a 
threat have TL0. By predict-
ing the TL of the organism(s) 
represented by unidentified 
reads through carefully trained 
classification models, MLM 
provides rapid TL assessments 
of unidentified organisms pres-
ent in biological samples (e.g., 
organisms that are unknown 
or are not represented within a 
reference library). We focus spe-
cifically on detecting bacterial 
and viral threats because they 
comprise the large majority of 
organisms that pose threats to 
human health.

The remainder of this article 
proceeds as follows. We first 
give a detailed overview of the 
components of our MLM model 
pipeline. Then, we describe 
how we trained the models 
within the pipeline, enabling 
the models’ training algorithms 

to search for patterns between reads with the same TLs. 
Next, we highlight the pipeline’s results on both simu-
lated and real reads and offer observations on practical 
considerations for deploying our pipeline. Finally, we sug-
gest possible next steps for ongoing and future research.

MODEL SETUP
Our MLM pipeline consists of interconnected pro-

cessing steps, random forest (RF) models, Bayesian 
network (BN) models, and clustering steps. Figure  1 
illustrates the progression of reads through these steps 
and models. Within the pipeline, unidentified reads 
are gathered and filtered, features are extracted from 
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Figure 1.  Data flow through model pipeline. Unidentified reads are gathered and filtered, fea-
tures are extracted from remaining reads, and these features are passed through a combina-
tion of models. The ensemble of RF models provides preliminary prediction of the TLs of the 
reads’ organisms, as well as other characteristics. The initial BN (BN1) fuses the RF predictions. 
The final BN (BN2) incorporates features computed from the predictions of each individual 
read’s closely related reads (CRRs). The clustering step is based on the density-based spatial 
clustering for applications with noise (DBSCAN) method and enables a single aggregate TL 
prediction for the organisms represented in each cluster of reads.
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remaining reads, and these features are passed through 
a combination of models. The ensemble of RF models 
provides preliminary prediction of the TLs of the 
unidentified organisms represented by the reads and of 
other characteristics. The initial BN (BN1) fuses the RF 
predictions. The final BN (BN2) incorporates features 
computed from the predictions of each individual read’s 
closely related reads (CRRs). The clustering step is based 
on the density-based spatial clustering for applications 
with noise (DBSCAN) method and enables a single 
aggregate TL prediction for the organisms represented 
in each cluster. Each of these steps is further described 
in the following subsections.

Read Source
Among the multitude of available sequencing 

devices, we focus our analysis on sequencing data from 
the Oxford Nanopore MinION sequencer.4 We opted 
for the MinION device because of its portability, low 
cost, and ease of use—characteristics that are impor-
tant in many use cases for military investigators. All of 
the reads within this analysis have either come from a 
MinION simulator (refer to the Read Simulation subsec-
tion) or have been collected with a MinION device or 
similar nanopore sequencing device (refer to the Results 
on Real Reads subsection).

If desired, our process for extracting features and 
developing and evaluating models could be similarly 
implemented for reads from other sequencing platforms 
for which data are available. For instance, we have previ-
ously demonstrated this capability for Illumina’s MiSeq 
and iSeq platforms.

Read Mapping with Reference Library
Before mapping, we pass reads through an algorithm 

that flags reads that are highly likely to originate from 
macroorganism (host organism) contamination. This 
algorithm searches for matches in a set of short overlap-
ping k-mers between the read and a database of plant and 
animal reference sequences that are extremely unlikely 
to have occurred by chance. (A k-mer is a subsequence 
of nucleotides of length k.) We discard reads that cor-
respond to such matches.

To identify remaining reads that can be mapped to 
known microorganisms, we developed a pair of match-
ing and alignment algorithms. Relying on clever index-
ing of large reference libraries and overlapping short 
k-mer matches, the first algorithm is very fast but at the 
cost of some accuracy. The second algorithm verifies 
matches identified by the first algorithm by performing 
targeted alignments between a given read and the por-
tion of the reference sequence in which the potential 
match was found.

The matching algorithm yields an alignment 
score between each read and the top N reference 
sequence matches, where N is a user-defined parameter. 

Ultimately, an alignment hit occurs when the alignment 
score between the read and a reference sequence exceeds 
a specified threshold. This alignment score is also used 
for feature extraction in the cases where the scores do 
not exceed the threshold (refer to the Feature Extraction 
subsection).

Currently, we use as our reference library the Octo-
ber 2, 2021, version of the Nucleotide database from the 
National Center for Biotechnology Information.5 We 
plan to update our reference library periodically as we 
move forward with this project.

After this matching step, we annotate reads for which 
we have identified alignment hits with known organ-
isms and provide them to the end user for analysis. The 
remaining reads without alignment hits (i.e., unmapped 
reads) are then processed by our MLM pipeline to search 
for any undetected threats from emerging, mutated, or 
modified microorganisms. By assessing the unmapped 
reads, our MLM pipeline aims to complement the 
insights obtained from reads mapped to known organ-
isms. The MLM pipeline can also be used to assess the 
unidentified reads from any other alignment or taxo-
nomic classifier tool.

Filtering Unidentified Reads
To select the best set of reads from a given sample to 

run through our model pipeline, we employ a variety of 
filtering steps.

First, we check the number of nucleotides that are 
suitable for assessment. After masking likely MinION 
sequencing adapters6 and low complexity regions,7 we 
discard reads that do not have at least 100  unmasked 
nucleotides.

We also consider the quality scores of each read, 
checking whether a read has enough high-quality nucle-
otides and a sufficiently long sequence of contiguous 
high-quality nucleotides. We discard reads that do not 
meet both of these conditions.

Each of the filtering steps is based on parameters that 
can be tuned to be more or less aggressive based on the 
use case and end user needs. Our default parameter values 
are somewhat conservative, yielding greater confidence 
in the results. In contrast, a more liberal approach would 
enable greater sensitivity to traces of potential threats, 
but at the cost of an increased false alarm rate (FAR). A 
false alarm (FA) occurs when the MLM pipeline predicts 
a high TL but the true TL is not high. We regard TL2, 
TL3, and TL4 as high TLs.

Feature Extraction
For all unidentified reads remaining after filtering, 

we extract 163  features, including 19  alignment-based 
features and 144  composition-based features. These 
features are ultimately used as inputs to six subsequent 
RF models.
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We obtain the alignment-based features by compar-
ing each read with sequences of reference organisms for 
which we know the TL. These alignment-based features 
include the TL of the reference sequence most closely 
aligned to the read under consideration, the top align-
ment scores for reference sequences from each TL (i.e., 
one feature for each of the five TLs), and the percentage 
of alignment hits from each TL.

While alignment-based features seek to quantify 
and represent a read’s similarities to known organ-
isms, composition-based features focus directly on the 
nucleotides that make up a given read. Most of the 
composition-based features correspond to the frequencies 
of the 136 unique tetramers. Other composition-based 
features include the GC (guanine-cytosine) content of 
the read and minimum compositional distances to refer-
ence sequences from each TL.

Taken together, the alignment- and composition-based 
features provide a detailed representation of each read. 
Subsequent supervised machine learning (ML) models 
leverage this representation to find patterns between 
reads’ features and the TLs of the organisms from which 
they have come.

Random Forest Classifiers
RF models are supervised ML models consisting of 

numerous decision trees, each trained by a statistically 
strategic random subset of the available data.8 The 
random selection of each tree’s training data reduces the 
correlation in the trees’ prediction, amounting to less 
prediction variance and less overall prediction error for 
the RF. Within the RF, each decision tree yields a sepa-
rate prediction based on a set of logical rules, which can 
be evaluated by progressing down the tree. For our data, 
examples of such logical rules might include “top normal-
ized alignment score for a TL3 reference sequence < 0.4” 
or “normalized frequency of tetramer #1 > 0.05.”

Our MLM pipeline includes six RF classification 
models (or “classifiers”). Four of the RF classifiers predict 
TLs. Each of these TL classifiers is trained with a differ-
ent set of simulated reads. (We describe our simulation 
process in the Read Simulation subsection.) Each set 
is characterized by whether its reads originated from a 
bacterium or virus and which clade (species or strain) of 
“neighbors” has been removed from the reference library 
before those reads’ features have been computed. We 
remove the neighbor clade as a way to mimic the sce-
nario in which a read from a previously unseen species 
or strain is collected. We refer to the RF TL classifiers 
according to the set of reads on which they were trained: 
BSp (bacteria reads with their species removed from 
the reference library), BStr (bacteria reads with their 
strains removed from reference library), VSp (virus reads 
with their species removed from the reference library), 
and VStr (virus reads with their strains removed from 

reference library). We train separate RF classifiers for 
each set of reads to cover a range of possible unidenti-
fied organisms from which reads might be collected. The 
predictions from these RFs are ultimately fused (along 
with other values) by the BNs later in the pipeline.

The other two RF classification models predict other 
characteristics of the reads. The BV classifier predicts 
whether a given read corresponds to bacterium or virus. 
Likewise, the NN classifier predicts whether the clos-
est related organism in the reference library is in the 
same species or not (“nearest neighbor”). The outputs of 
these additional RF classifiers also are inputs to the BNs 
within the MLM pipeline.

Initial Bayesian Network
BNs represent probability relationships between vari-

ables, enabling the state of one or more variables to be 
assessed as data are observed. In particular, BNs provide 
an estimate of the “belief level” for each possible state of 
each variable, based on prior knowledge of these vari-
ables and observed data.

In a BN, each variable is defined by a node, which 
has two or more possible discrete states. The “target” 
node has special importance; this node represents the 
variable for which the state is being estimated. Pairs of 
nodes with conditional probability relationships have a 
directed edge between them; the edge originates at the 
node corresponding to the variable on which the other 
variable is conditioned. A node may be the terminus for 
more than one directed edge (i.e., a variable may be con-
ditioned on more than one other variable).

The structure of a BN’s nodes and edges may be 
determined through expert knowledge or “learned” via 
training data. We determined through experimenta-
tion that learning the BN structure yields better predic-
tion performance. Our approach for training our BNs is 
described in the Model Training Details subsection.

Each node also has a conditional probability table 
(CPT), which describes the conditional probability 
relationships between nodes connected by edges. The 
dimension of each node’s CPT is determined by the 
number of variables on which the variable correspond-
ing to that node is conditioned. In general, the values in 
each column of a CPT sum to 1.

BN1 includes nodes for nine variables: the outputs of 
the six RF classifiers, the true type of read (bacterium 
or virus), the true removed clade (species or strain), and 
the read’s TL (i.e., TL of the organism from which the 
read has come). For each read, we compute values for 
the first six variables. When these values are propagated 
through BN1, the BN1 inference step estimates values 
for the remaining three variables, including the read’s 
TL. Figure 2 gives an example of a possible structure for 
BN1. Based on this particular BN1 structure, Table 1 
gives an example of a CPT for one of the nodes (BSp RF 
TL Prediction).
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The output of the BN is a set of belief values for each 
node, with one belief value for each state of the variable 
represented by that node. The belief values range from 0 
to 1 and must sum to 1 for a given node. (In Table 1, the 
sum of each column may slightly differ from 1 because of 
rounding.) For BN1, these values can be used to predict 
a discrete TL by identifying the state in the target vari-
able’s node (“Threat Level”) with the largest belief value.

Identifying Closely Related Reads
Within metagenomic analysis, reads are not col-

lected in isolation but rather in samples with sets of 
thousands to millions of other reads from many different 
organisms. These sets generally include multiple reads 
obtained from each organism present. To predict the 
TL for an individual read, we use features from the read 
itself as well as from other CRRs that are likely to have 

come from the same organism 
or a very closely related one. 
This mix of features helps us to 
fine-tune our threat assessment 
for each read and ultimately 
reduce FA assessments. Our 
methods for computing features 
based on CRRs is described in 
the Features Based on Closely 
Related Reads subsection. The 
model for which these fea-
tures are inputs is described in 
the Final Bayesian Network 
subsection.

To determine the CRRs for 
each read, we use a method 
based on rank-biased over-
lap (RBO).9 For each read, 
we use segments within the 
read to match the read with 
sequences from our refer-
ence library. For the refer-
ence sequences that match, we 
align the reads with targeted 
portions within the reference 
sequences based on where the 
segments matched to obtain 
alignment scores characteriz-
ing how well the reads match 
the reference sequences. These 
alignment scores are used to 
produce a ranked list of similar 
organisms for each read. The 
list consists of the reference 
library organisms with the best 
alignment scores. We repeat 
this process, obtaining rank-
ings or reference library organ-

isms for each unidentified read. Given these rankings, 
we compute “distances” between pairs of unidentified 
reads by comparing the reads’ lists using the RBO 
method. These distances do not correspond to physi-
cal space but instead measure the dissimilarity between 
reads; reads with similar lists have smaller distances. 
Originally developed for comparing results of internet 
search engines, the RBO method enables comparison 
of ranked and possibly incomplete lists to identify simi-
larities between lists.

For each read, we identify up to 1,000  CRRs from 
among those with the smallest distances to the read. Not 
all reads have the full set of 1,000 CRRs. This occurs 
when there are a limited number of reads present from 
a given organism. It can also occur with reads that have 
fewer matches with the reference library. Some reads 
may even have no CRRs.

BSp RF TL
prediction

BSt RF TL
prediction

VSt RF TL
prediction

True BV

True NN
BV RF

prediction
VSp RF TL
prediction

NN RF
prediction

Target node
RF output
True attribute

True
TL

Figure 2.  Example of BN1 with learned structure. Included are nodes for nine variables: the 
outputs of the six RF classifiers, the true type of read (bacterium or virus), the true removed 
clade (species or strain), and the TL.

Table 1.  Example of BN1 CPT

BSp RF TL 
Prediction

True TL

0 1 2 3 4

0 0.9442 0.5895 0.1863 0.3639 0.8501
1 0.0185 0.3672 0.0351 0.5391 0.0954
2 0.0018 0.0379 0.6970 0.0280 0.0348
3 0.0277 0.0046 0.0001 0.0665 0.0003
4 0.0077 0.0008 0.0816 0.0023 0.0194

Rows correspond to TLs predicted by the BSp RF model for each read, and columns correspond to 
the true TL of the organism that each read represents. Each cell shows the probability of the TL 
predicted by the BSp RF (indicated by the row), given the true TL (indicated by the column). Hence, 
the values within a given column sum to 1.
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Features Based on Closely Related Reads
Given each read’s CRRs, we compute 13 additional 

features for use as inputs for BN2. These features char-
acterize the predictions of the RF TL classifiers and 
BN1 for the neighbor reads. Table 2 summarizes these 
additional features. If a read has no CRRs, CRR_BN1_
TLPred_Mode and CRR_BN1_TLPred_Max are set to 
the BN1 prediction for that read. Likewise, CRR_RF_
TLPred_Mode is set to the most common prediction 
from the RF TL classifiers. All other CRR-related fea-
tures are set to 0.

BNs expect features with discrete states. Thus, a dis-
crete value must be set for each feature, and special care is 
needed when there are ties for TL-based features. For the 
CRR_RF_TLPred_Mode and CRR_BN1_TLPred_Mode 
features, ties are handled by computing the mean value 
among all TLs involved in the tie and rounding to the 
nearest TL. A tie may occur for a given read if multiple 
TLs are predicted equally often by the CRRs for that read.

Final Bayesian Network
BN2 is similar to BN1 but leverages information 

from CRRs and incorporates additional features. BN2 
involves the 9 nodes from BN1, as well as nodes for the 
13 features from Table 2. Similar to BN1, the output of 
BN2 is a predicted TL for the given read, determined 
from the TL with the largest belief value in the target 
node (“Threat Level”).

Clustering
The unidentified reads within our pipeline are com-

posed of very noisy data with a variety of limitations, 
such as low quality. There are also errors in the reference 
library. Additionally, reads from low-threat organisms 
that are somewhat closely related to high-threat organ-
isms may be assessed as posing higher threat than is war-
ranted because of shared genomic regions. As a result, 
TLs may be incorrectly predicted for individual reads.

To provide a robust alternative to predictions for indi-
vidual reads, we group the reads within a sample into 
clusters using the DBSCAN method.10 For each result-
ing cluster, we obtain cluster-level TL predictions by 
identifying the most commonly predicted TL for indi-
vidual reads within the cluster.

The DBSCAN method uses high- and low-density 
data regions to identify clusters and outliers, charac-
terizing density in terms of reads’ distances from each 
other. We compute distances between reads as part of 
the RBO-based CRR identification step (refer to the 
Identifying Closely Related Reads subsection).

DBSCAN involves two parameters that generally 
guide the size and number of clusters. The assignment 
of points to clusters is determined by whether they are 
in the “neighborhood” of one or more core points. (For 
our analysis, each read corresponds to a point.) The eps 
parameter defines the radius of each point’s neighbor-
hood. It can be set as any positive number. Larger values 
of eps permit more points to be included in a single neigh-
borhood, thus prompting more points to be clustered 
together and encouraging smaller numbers of clusters. 
We typically use eps = 0.1. Secondly, the minPts param-
eter sets the minimum number of other points within 
a given point’s neighborhood to qualify that point as a 
“core point.” A point is within another point’s neighbor-
hood if the distance between the points is less than eps. 
As a result, larger values of minPts make the requirements 
for a core point to be regarded as a core point more strict 
and therein also encourage smaller numbers of clusters. 
Wanting to encourage detection of smaller clusters, we 
typically set minPts as the minimum of 100 and 0.05NP, 
where NP is the number of points in a given sample.

Within DBSCAN, points that are not within 
the neighborhood of any core point are assigned to a 
“noise cluster.” The points in this cluster are not nec-
essarily similar to each other, but rather are relatively 
unlike other points assigned to other clusters. Smaller 
values of eps and larger values of numPts promote 

Table 2.  Summary of neighbor-based features for BN2

Feature Description Possible Values

CRR_RF_TLPred_Mode The most common output for all RF TL classifiers for all CRRs 0, 1, 2, 3, 4
CRR_RF_PredLevel_TL0

Discrete categories of the proportion p of the RF TL predictions 
for CRRs with a given TL (the feature value is Low if p < 0.2 for 
that TL, medium if 0.2 ≤ p < 0.5, and high if p ≥ 0.5)

Low, medium, high
CRR_RF_PredLevel_TL1
CRR_RF_PredLevel_TL2
CRR_RF_PredLevel_TL3
CRR_RF_PredLevel_TL4
CRR_BN1_TLPred_Mode The most common BN output for CRRs 0, 1, 2, 3, 4
CRR_BN1_TLPred_Max The highest TL among BN1 outputs of all CRRs 0, 1, 2, 3, 4
CRR_BN1_PredLevel_TL0

Discrete categories of the proportion p of the BN1 predictions for 
CRRs with a given TL (the feature value is low if p < 0.2 for that 
TL, medium if 0.2 ≤ p < 0.5, and high if p ≥ 0.5)

Low, medium, high
CRR_BN1_PredLevel_TL1
CRR_BN1_PredLevel_TL2
CRR_BN1_PredLevel_TL3
CRR_BN1_PredLevel_TL4
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more points to be assigned to the noise cluster. In our 
case, the noise cluster most likely includes reads from 
contaminating organisms.

MODEL TRAINING
We train and evaluate models using simulated reads, 

which provide the benefit of knowing the TLs of the 
organisms from which they have come. We use the 
DeepSimulator tool to simulate reads. We split the 
training reads into multiple sets to separately train the 
RF models, BN1, and BN2. The following subsections 
describe our training process in further detail.

Read Simulation
DeepSimulator11,12 is the first deep learning–based 

MinION read simulator. It seeks to accurately simulate 
the reads by simulating the entire sequencing process. 
DeepSimulator directly models the raw electrical sig-
nals produced by nanopores, rather than simply trying 
to mimic the sequencing results. In particular, it builds 
a context-independent pore model using deep learning 
methods to simulate the electrical signals produced by 
the actual nanopores. Given these signals, it uses stan-
dard base-calling software to convert the simulated sig-
nals into reads.

To train and evaluate the version of our pipeline 
shown in this analysis, we ran DeepSimulator version 1.5 
on selected reference sequences from the Nucleotide 
database, using the built-in error profile for the MinION 
sequencer. Additionally, we specified a mean read length 
of 8,000 nucleotides, a read coverage of 50× for bacterial 
genomes, and a read coverage of 250× for viral genomes. 
Read coverage refers to the average number of simulated 
reads in which a given nucleotide is included. These 
runs ultimately yielded approximately 372 million sim-
ulated reads for bacteria and approximately 70 million 
reads for viruses.

Simulating Unidentified Reads
To train models to make accurate predictions about 

unidentified organisms, we construct simulated datasets 
of “unknown” organisms by removing known organisms 
from the reference databases (i.e., “sanitizing” the data-
bases). To do this, we remove each clade one by one, 
compute the features on the simulated reads obtained 
from the organisms within the removed clade, and then 
put it back before removing the next clade. For both 
bacteria and viruses, we construct two datasets apiece. 
The first one set mimics the case in which an entire new 
species is encountered without being represented in the 
reference library. The second set similarly mimics the 
case in which a new strain is encountered.

We use our read mapping algorithm (refer to the Read 
Mapping with Reference Library subsection) to classify 

and then align each of the simulated reads with the sani-
tized reference database. We discard reads that align well 
to any reference sequence that remains in the database 
because these would not be considered to be unidenti-
fied reads. The remaining reads are those that would be 
unidentified if the given clade was in fact unknown; we 
use these reads for training and testing our models. We 
set the threshold for regarding a read as unidentified to a 
90% alignment match.

Defining Training and Test Sets
We gathered slightly more than 1.4 million unidenti-

fied reads from the simulated data described above. We set 
aside ~25% for testing and separated the rest into different 
training sets: 136,446 reads for BSp RF; 84,056 for BSt RF; 
52,138 for VSp RF; 15,419 for VSt RF; 284,925 for BN1; 
and 490,522 for BN2. The different types of reads used 
to train our four TL RF classifiers are described in the 
Feature Extraction subsection. We formed an additional 
training set as the union of the four training sets for RF 
TL classifiers (amounting to 288,059 reads) and used this 
aggregate set to train both the BV and NN RF classifiers.

For each training set we extract 163 features from 
each read within the set (refer to the Feature Extraction 
subsection). Training ML models involves allowing com-
puterized algorithms to find patterns that link input fea-
tures to the target value. We train six RF models using 
the feature data extracted from their individual training 
sets. As described in the Random Forest Classifiers sub-
section, the first four RF models predict the read’s TL; 
these models differ in the type of reads used to train 
them (BSp, BSt, VSp, VSt). The other two RF models 
predict whether the read is from a bacterium or virus for 
the BV classifier and whether the closest related organ-
ism in the reference library is in the same species or not 
for the NN classifier. Subsequently we run the feature 
data extracted from the BN1 training set through the 
trained RF models and use the outputs of these models 
to train BN1 to predict TL. As a final training step, we 
run the feature data from the BN2 training set through 
the trained RF and BN1 models, compute CRR-based 
features (summarized in Table 2), and use the resulting 
19  features to train BN2 to predict TL for individual 
reads (refer to the Final Bayesian Network subsection).

To assess performance, we ran the 346,373 reads from 
the test set through the entire MLM pipeline. Because 
these reads were not at all involved in model training, 
the pipeline’s performance against them provides an esti-
mate of the pipeline’s performance against unidentified 
threats. The pipeline’s performance against these reads is 
described in the Results on Simulated Reads subsection.

Model Training Details
We use various R packages to train our models: ranger 

for the RF models13 and both bnlearn14 and gRain15 for 
BN1 and BN2.
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For the RF models, we use 50  trees per model and 
ranger default values for all other settings. The minimum 
number of reads at a terminal node in each decision 
tree is one, and trees are set to grow as large as the data 
permit. For each tree, reads are randomly sampled with 
replacement (i.e., reads can be sampled more than once 
for a given tree). Each split within each tree considers 
a subset of 12 randomly selected features (equal to the 
floor of the square root of the total number of features, 
floor (√163) ≈ 12).

For training the BN models, we use the hill-climbing 
algorithm from the hc function within the bnlearn pack-
age to learn the structure of the models. To aid the learn-
ing, we specify an initial network (with edges originating 
from the “Threat Level” node and terminating at each of 
the other nodes) and a list of forbidden edges (e.g., those 
that terminate at the “Threat Level” node). For BN2, we 
also limit the number of edges terminating any given 
node to 3. This constraint limits the size of any given 
node’s CPT and also decreases the time required to run 
the model. Likewise, we use the extractCPT, compileCPT, 
and grain functions within the gRain package to fit the 
nodes’ CPTs. To account for the possibility in which a 
given cell in the CPT has zero instances, we specify a 
smoothing constant of 0.01.

Supporting Evidence Check for False Alarm Reduction
During model development, we observed that FAs 

occurred because in certain cases reads from the train-
ing set with true high TL did not have any supporting 
evidence for the high TL (i.e., the extracted RF features 
corresponding to high TLs had low values, suggesting 
that there were no similarities to high-threat organisms 
for these reads). As a result, the BN models had learned 
to associate features that did not reflect similarities to 
high-threat organisms with high TL predictions. This 
aspect of the models can lead to FAs because these asso-
ciations do not generalize well. While there are reads 
from true high-threat organisms for which we do not 
find any similarities to known threats, we generally have 
low confidence in any high TL predictions for which 
such similarities have not been found.

To account for this phenomenon, we implemented a 
postprocessing step after BN2 to adjust predicted TLs for 
which there was no supporting evidence. In particular, 
if a predicted high TL is not consistent with RF feature 
values corresponding to that TL, we adjust the belief 
values for that TL so that it is no higher than any belief 
value for a low TL and renormalize all TLs’ belief values 
so that they sum to one. We repeat this step until the 
highest belief value for the read is for a low TL or for a 
high TL with supporting evidence. This step substan-
tially reduces the MLM pipeline’s FAR without impact-
ing cluster-level TL predictions for real reads (refer to the 
Results on Real Reads subsection).

RESULTS
To assess the performance of the MLM pipeline, we 

evaluated it on both simulated and real reads. For sim-
ulated reads, the true TL of the organism from which 
each read has come is known. The real reads come from 
collected samples for which the primary organisms pres-
ent are known. Thus, the true TL for each organism 
within a set of real reads is known, but the true TLs for 
individual reads are not necessarily known.

Results on Simulated Reads
As described in the Read Simulation subsection, 

we simulated reads using the DeepSimulator tool. To 
account for the randomness in how RF classifiers are 
constructed, we trained 10  sets of models, tracking 
results for the test set reads (refer to the Defining Train-
ing and Test Sets subsection) on each set of models. We 
measure performance in terms of accuracy (the propor-
tion of correctly predicted TLs across all reads), sensitiv-
ity (the proportion of reads with true high TL for which 
we predict high TL), and positive predictive value (PPV, 
the proportion of reads for which we predict high TL 
that have a true high TL). In other contexts, sensitivity 
and PPV are also called recall and precision, respectively.

Because the simulated reads are not grouped into 
samples, we analyzed these metrics at the read level. 
We did not conduct the clustering step as part of our 
analysis of simulated reads. While operational decisions 
are unlikely to be made in practice on individual reads, 
different models’ PPV and sensitivity on these reads 
characterize the models’ relative performance and point 
to which model is most promising for use with clusters 
of reads.

Figure  3 shows the accuracy results for each model 
type within our pipeline for each set of models. These 
models undertake the five-class classification problem of 
predicting a TL for each read from among one of five 
possible TLs. Incorporating the outputs of the RF models 
(Figure 1), the BN models perform better than the RF 
TL classifiers, consistently achieving classification accu-
racy among the five TLs of 70% or greater and averaging 
near 75% accuracy. Since the BN models leverage the 
predictions of the RF TL classifiers, the improved per-
formance with the BN models is expected.

We also assessed the models’ ability to accurately pre-
dict high TLs, i.e., to predict whether or not a read has 
come from an organism with a TL of 2 or higher. Since 
this amounts to a binary classification problem, the 
model’s prediction is determined by comparing its output 
score (i.e., sum of belief values for TL2, TL3, and TL4) 
with the decision threshold. It is important for models to 
not miss true TLs (i.e., achieve high sensitivity) and also 
to not falsely predict high TLs (i.e., achieve high PPV). 
Figure 4 shows the trade-off between sensitivity and PPV 
for each model with a decision threshold of 0.5. Again, 
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BN2 showed the best results, with 
relatively high PPV and moderate 
sensitivity. Other models, includ-
ing RF-VSp, showed higher PPV 
but very low sensitivity.

For some operational decisions, 
these values (PPV ~0.8, sensitiv-
ity ~0.5) may be unsatisfactory. 
Nevertheless, given the 3-to-1 
class imbalance within our test 
set (with more low TLs than high 
TLs), they still point to the poten-
tial of BN2 to efficiently detect 
high-TL organisms. Refer to the 
Results on Real Reads subsection 
for details on how these read-level 
performance values translate to 
success on clusters of reads.

In Figure 5, each model’s 
PPV-sensitivity curve (also known 
as a precision-recall curve) shows 
the values of PPV and sensitivity 
as the decision threshold is varied. 
These curves are constructed by 
aggregating the results from all 10 
sets of models. BN2 and RF-BSt 
show the best performance.

Results on Real Reads
We also assessed the MLM pipe-

line using 21 samples of real reads 
that were prepared, sequenced, 
and analyzed by an external 
organization. The samples were 
analyzed using a bioinformatics 
pipeline based on minimap2,16 and 
the unidentified reads were given 
to us for analysis. We ran each 
sample through the MLM pipeline 
(Figure 1). The number of uniden-
tified reads ranged between thou-
sands and hundreds of thousands 
per sample, and we first ran these 
through our filters (refer to the Fil-
tering Unidentified Reads subsec-
tion). After filtering, the number 
of reads remaining for analysis 
from each sample ranged from 
several dozen to several hundreds 
of thousands.

From each sample, we applied 
DBSCAN clustering (refer to the 
Clustering subsection) and pre-
dicted TLs at the cluster level. 
Accordingly, we evaluated our 
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Figure 3.  TL classification accuracy (out of five TLs) by model type. The BN models perform 
better than the RF TL classifiers, consistently achieving 70% or greater classification accu-
racy and averaging near 75% accuracy.
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Figure 4.  Trade-off between sensitivity and PPV by model type (with five original TLs con-
solidated to two low and high TLs). BN2 performed best, with relatively high sensitivity and 
moderate PPV. Other models showed higher PPV but very low sensitivity.
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Figure 5.  PPV-sensitivity curves (precision-recall curves) by model type. BN2 again per-
formed best. The RF-BSt model also shows good performance.

http://www.jhuapl.edu/technical-digest


B. D. Baugher et al.

10 Johns Hopkins APL Technical Digest, Volume 37, Number 4 (2025), Article 2400429-6 
www.jhuapl.edu/technical-digest

predictions at the cluster level, comparing the true 
TL of the highest threat organism (i.e., the true high-
est TL) with the highest TL predicted for any cluster 
within the sample. Table 3 shows this comparison, with 
nonzero counts shown in boldface and underlined for 
easy reference.

We correctly predicted the highest TL for 20 of 
21 samples (95%). These results include correct predic-
tions for 8 of 8 samples with TLs of 2 or higher. The 
one misclassified sample could arguably have been 
counted as correct as it contained a TL1 organism but 
only at a very low abundance (0.01%). Based on this 
abundance level, the expected number of reads present 
would be well below the MLM pipeline’s specified level 
of detection. For a given sample, the level of detection 
is determined by the minimum cluster size (refer to the 
Clustering subsection). For this sample, the minimum 
cluster size and level of detection would be 100  reads 
(i.e., 0.06% of this sample).

We also achieved low FAR against these samples. We 
did not predict a high TL (TL2 or above) for any of the 
13 samples with true low TLs (TL0 or TL1). Thus, our 
FAR for these cluster-level predictions was 0%. More-
over, for the ~1 million reads within these samples, we 
had a 0.01% read-level FAR.

DEPLOYMENT CONSIDERATIONS
Based on the results of the MLM pipeline on both 

simulated reads and collected samples, we are consider-
ing requirements for deployment, including physical size, 
cost, adaptability, runtime, and interpretability.

Requirements for size, weight, and power depend on 
whether our model pipeline is run at a nearby mobile 
laboratory as part of a follow-up analysis or in the field 
amid a real-time investigation. If the models are run 
in a laboratory, minimizing size, weight, and power 
needs is less crucial. Conversely, if the models are run 
in the field, they must be able to be implemented on 
devices carried during military missions and other 
investigations.

For the scenario in which our pipeline is run in the 
field, the computational requirements must not result in 

the need for a device that is overly heavy or that requires 
additional batteries. We are mindful of these con-
straints, and have selected more efficient design options 
whenever possible, and made numerous improvements 
to reduce the memory footprint and runtime of the pipe-
line. Some examples include a fourfold reduction of our 
overall memory footprint by implementing a database 
decimation technique developed for plagiarism detec-
tion; an analysis of the effect of the number of trees in our 
RF models that resulted in substantially smaller models, 
improving both memory use and runtime; and a rede-
sign of our BN inference implementation that reduced 
the inference runtime by three orders of magnitude.

The devices must also have a low enough cost and 
size that they can be feasibly included within an investi-
gator’s tools. In its current setup, the MLM pipeline can 
run smoothly on a laptop or a miniature personal com-
puter (mini-PC). For instance, we demonstrated that the 
MLM pipeline can run on a mini-PC (connected wire-
lessly to the sequencing device) that has a footprint of 
20 in.2, weighs 1 lb., and draws only 6 W of power. We 
also developed a user-friendly web application to enable 
follow-up analysis on a laptop when desired.

New threats are prone to emerge at any time, and 
the reference library leveraged by our pipeline may fall 
out of date. Nevertheless, insofar as we target reads that 
are not mapped to reference organisms, our approach is 
robust to intervals without library updates. Moreover, we 
are able to update the reference library whenever new 
information becomes available, enabling the models to 
be retrained if time permits. Several weeks are typically 
required to fully train and validate the models.

Some investigators may need insights within short 
time frames to inform their decisions. Thus, we aim for 
our models to have efficient runtime. The current pipe-
line can process and analyze approximately 3,200 uniden-
tified reads per minute on a laptop and approximately 
1,800 unidentified reads per minute on the mini-PC. For 
context, MinION sequencers yield about 20,000 reads 
per hour. Our pipeline does not fully process all of these 
reads but only those that are unidentified. Although the 
percentage of unidentified reads can vary considerably 
between samples, on average the pipeline can process 
an hour’s worth of sequencing data in approximately one 
minute on a laptop and in less than two minutes on a 
mini-PC.

Decision support insights are also enhanced by com-
plementing TL predictions with explanations of how the 
predictions are determined. To achieve this, we incorpo-
rated SHAP (SHapley Additive exPlanations) into our 
pipeline, which is a popular ML technique for explain-
ing the particular influence that values of individual fea-
tures have had on the overall TL predictions.17,18 These 
explanations provide additional information to support 
decision-making and to increase user confidence in 
the models.

Table  3.  Confusion matrix of TL predictions by real read 
sample

Highest 
Predicted TL

True Highest TL for Sample

0 1 2 3 4

0 5 1 0 0 0
1 0 7 0 0 0
2 0 0 0 0 0
3 0 0 0 2 0
4 0 0 0 0 6

Nonzero counts are shown in boldface and underlined.
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POSSIBLE NEXT STEPS
The models within our MLM pipeline show prom-

ising performance, achieving over 74% accuracy in TL 
classification of individual simulated reads and 95% 
accuracy for predicting the highest TL present in real 
samples based on clusters of related reads (refer to the 
Results section). At the same time, work for this project 
is ongoing, and several additional capabilities or analy-
ses are underway or planned. These next steps focus on 
possible new features for the RF models, new features for 
BN2, and possible alternatives to BN2. Complementing 
the deployment considerations described in the preced-
ing section, these steps are aimed at further improving 
the accuracy of the pipeline.

Currently, we have 136  features tracking the fre-
quency of unique tetramers within each read. These 
features only consider DNA sequence segments of 
4 nucleotides. Considering sequences of different num-
bers of nucleotides might offer a broader space within 
which the pipeline models can find TL patterns, but 
increasing the sequence length greatly increases the 
number of possible sequences and, thus, the number 
of corresponding features. For instance, there are 
8,192  unique 7-mers. Deep autoencoders are neural 
networks that compress higher-dimensional inputs to 
a much smaller d-dimensional representation that is 
still able to reconstruct the original inputs. We envi-
sion using the smaller-dimensional representation 
(e.g., with d  =  25) from such a model to replace the 
high-dimensional feature space arising from frequen-
cies of tetramers, 5-mers, 6-mers, and 7-mers. This 
representation would replace the current 136 tetramer 
frequency features.

The current set of 19 BN2 input features builds on 
the results of the RF models and BN1, but additional 
metrics reflect other aspects of these models’ results 
and may be used as potential BN2 input features. For 
instance, rather than extracting features from the TL 
classifications for all of a given read’s 1,000 CRRs, com-
plementary features could consider only the 100 or 200 
closest CRRs. Also, the TL predicted by BN1 for a given 
read could be used as an input for BN2. These additional 
features could enable BN2 to more precisely identify pat-
terns distinguishing different TLs.

We previously opted to use BNs to fuse the predic-
tions of the RF models because of their ability to explic-
itly quantify the probabilistic relationships between the 
models’ outputs. However, as the space of BN2 input 
features (potentially) expands, other types of models 
may provide greater flexibility. For instance, we have 
considered replacing BN1 or BN2 or both BNs with one 
or more additional RF models. Alternative model types 
such as neural networks19 or gradient-boosted models20 
might also yield performance improvement.

CONCLUSIONS
As sequencing technology continues to increase 

in speed and portability, rapid threat assessment of 
unidentified organisms in complex biological samples 
has become increasingly desirable. Our MLM pipeline 
builds on the vast amount of available sequencing data, 
enabling objective characterization of the TL of any 
unidentified organisms present in the samples through 
the use of ML models that have been carefully trained to 
recognize patterns in sequencing reads that correspond 
to threat signatures. These insights offer the potential 
to provide crucial information for investigators in iden-
tifying appropriate responses to emerging, mutated, and 
modified threats.
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