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ABSTRACT
This article introduces and reviews some of the principles and methods used in Bayesian reliability. 
It specifically discusses methods used in the analysis of success/no-success data and describes a 
simple Monte Carlo algorithm that can be used to calculate the posterior distribution of a system’s 
reliability. This algorithm is especially useful when a system’s reliability is modeled through the reli-
ability of its subcomponents, yet only system-level data are available.

in the Bayesian reliability literature. The efficiency of 
this algorithm is illustrated with an example.

BAYESIAN METHODS
This section introduces the basics of Bayesian prin-

ciples and Bayesian statistical methodology. The most 
effective way to introduce this concept is to contrast it 
with the principles and methodology of classical statis-
tics. The biggest difference between Bayesian and classi-
cal statistics is in how probability is defined. In classical 
statistics, probability is the long-run frequency of an 
event. So for a fixed (and unknown) parameter such as a 
population mean, µ,
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1 Introduction
A common reliability metric of a system is the probability that it will pass, or survive, a stress test. Several tests of the system are

typically necessary to learn about such a probability, but conducting many tests of a sophisticated system may be prohibitively expensive.
Examples of such systems include air-to-air missiles (see [12]) and medical devices (see [4]).

Bayesian statistical methods can help in such a situation, since they make it possible for one to include other types of data (such as
computer simulation experiments or the opinion of a subject-matter expert) into the statistical analysis. Bayesian methods may also be
necessary because many modern systems do not fail during testing. With no failures, it is difficult for classical statistics to accurately
quantify the probability of failure.

This paper first provides a brief and general review of Bayesian methods. Section 3 then discusses how these methods can be used
to learn more about the probability of a system surviving a test. This section concludes by reminding the reader of a straightforward
algorithm for calculating a total system’s reliability once it has been tested. This algorithm is simple, produces an exact answer, and is
not mentioned in the Bayesian reliability literature. The efficiency of this algorithm is illustrated in Section 4.

2 Bayesian methods
In this section we introduce the basics of Bayesian principles and Bayesian statistical methodology. The most effective way to

introduce this concept is to contrast it with the principles and methodology of classical statistics. The biggest difference between Bayesian
and classical statistics is with regard to how probability is defined. In classical statistics, probability is the long-run frequency of an event.
So for a fixed (and unknown) parameter such as a population mean, µ ,

P(3.66 ≤ µ ≤ 4.11) =
{

1 if true
0 if not

. (1)

In words, Equation (1) states that the fixed parameter µ is either in the stated interval or it is not.
Bayesian statisticians think about probability in a different way. In Bayesian statistics, probability is the belief that a statement is true.

So if one believes (based on their experience and/or the data that they have seen) that µ is within the stated interval with 95% probability,
it would be fair to say that

P(3.66 ≤ µ ≤ 4.11) = .95. (2)

The objective and point of Bayesian statistics is to calculate probabilities like the one in Equation (2), and to assure that this calculation
is scientifically respected.

1

.	 (1)

In words, Eq. 1 states that the fixed parameter µ is either 
in the stated interval or it is not.

INTRODUCTION
A common way to measure the reliability of a system 

is to determine the probability that it will pass, or sur-
vive, a stress test. This typically requires several system 
tests, but it may be prohibitively expensive to conduct 
many tests of a sophisticated system, such as an air-to-air 
missile1 or medical device.2

Bayesian statistical methods can help in such a 
situation, since they enable inclusion of other types 
of data (such as computer simulation experiments or 
subject-matter-expert opinions). Bayesian methods may 
also be necessary because many modern systems do not 
fail during testing. With no failures, it is difficult for 
classical statistics to accurately quantify the probability 
of failure.

This article begins by briefly reviewing Bayesian 
methods. It then discusses how these methods can be 
used to learn more about the probability of a system 
surviving a test, and it concludes by describing a 
straightforward algorithm for calculating a total system’s 
reliability once it has been tested. This algorithm is 
simple, produces an exact answer, and is not mentioned 
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Bayesian statisticians think about probability in a dif-
ferent way. In Bayesian statistics, probability is the belief 
that a statement is true. So if one believes (based on 
their experience and/or the data that they have seen) 
that µ is within the stated interval with 95% probability, 
it would be fair to say that
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typically necessary to learn about such a probability, but conducting many tests of a sophisticated system may be prohibitively expensive.
Examples of such systems include air-to-air missiles (see [12]) and medical devices (see [4]).

Bayesian statistical methods can help in such a situation, since they make it possible for one to include other types of data (such as
computer simulation experiments or the opinion of a subject-matter expert) into the statistical analysis. Bayesian methods may also be
necessary because many modern systems do not fail during testing. With no failures, it is difficult for classical statistics to accurately
quantify the probability of failure.

This paper first provides a brief and general review of Bayesian methods. Section 3 then discusses how these methods can be used
to learn more about the probability of a system surviving a test. This section concludes by reminding the reader of a straightforward
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introduce this concept is to contrast it with the principles and methodology of classical statistics. The biggest difference between Bayesian
and classical statistics is with regard to how probability is defined. In classical statistics, probability is the long-run frequency of an event.
So for a fixed (and unknown) parameter such as a population mean, µ ,

P(3.66 ≤ µ ≤ 4.11) =
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In words, Equation (1) states that the fixed parameter µ is either in the stated interval or it is not.
Bayesian statisticians think about probability in a different way. In Bayesian statistics, probability is the belief that a statement is true.

So if one believes (based on their experience and/or the data that they have seen) that µ is within the stated interval with 95% probability,
it would be fair to say that

P(3.66 ≤ µ ≤ 4.11) = .95. (2)

The objective and point of Bayesian statistics is to calculate probabilities like the one in Equation (2), and to assure that this calculation
is scientifically respected.
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.	 (2)

The objective and point of Bayesian statistics is to calcu-
late probabilities like the one in Eq. 2 and to ensure that 
this calculation is scientifically respected.

To calculate such a probability, a Bayesian statisti-
cian begins with a prior distribution. Assuming that the 
unknown parameter of interest is θ, this prior distribu-
tion is typically denoted as π(θ). The prior distribution 
indicates where the user believes the parameter θ to be 
before data are observed or collected. Assume, for exam-
ple, that we purchased a coin at a magic shop. Upon 
the purchase, the shop owner tells us that the coin will 
more often turn up heads than tails. In this case, we 
will let θ = ℙ(H) and define the prior distribution π(θ) 
for all values of θ between 0 and 1. This prior will also 
be more heavily weighted toward values of 1 to indicate 
that, a priori, the coin is expected to turn up heads more 
frequently than tails.

Once the prior is formulated, data are collected. The 
distribution of the data conditioned on a value of θ is 
written as p(x|θ), i.e.,

	

To calculate such a probability, a Bayesian statistician begins with a prior distribution. Assuming the unknown parameter of interest is
θ , this prior distribution is typically denoted as π(θ). The prior distribution indicates where the user believes the parameter θ to be before
data is observed and/or collected. Assume, for example, that we purchased a coin at a magic shop. Upon the purchase, the owner of the
shop tells us that the coin will more often turn up heads than tails. In this case, we will let θ = P(H), and define the prior distribution
π(θ) for all values of θ between 0 and 1. This prior will also be more heavily weighted towards values of 1 to indicate that, a-priori, the
coin is expected to turn up heads more so than tails.

Once the prior is formulated, data is collected. The distribution of the data conditioned on a value of θ is written as p(x|θ), i.e.,

(X1,X2, . . . ,Xn)∼ p(x1,x2,x3, . . . ,xn|θ) = p(x|θ),
where x = (x1,x2, . . . ,xn) . The function p(x|θ) is also referred to as the likelihood of θ .

With the prior and the likelihood, the posterior distribution (typically denoted as π(θ |x)) can be calculated. The posterior is calculated
using Bayes’ rule (see [2]). This calculation is shown below.

π (θ |x) = p(x,θ)
p(x)

=
p(x|θ)π(θ)∫

Θ
p(x|θ)π(θ)dθ

∝ p(x|θ)π(θ), (3)

where Θ is the set of all possible values of θ . The formula given in Eqn (3) makes sense: the posterior is proportional to the prior
distribution of θ (where we thought θ was before collecting data) times the likelihood (where the data suggests θ to be).

In this paper, we focus on how someone can use Bayesian methods to learn more about the probability that a system survives a
test. Subsection 3.1 specifically discusses how Bayesian methods are used to learn about the survival probability of one system, and
Subsection 3.2 discusses the methods necessary to learn about the survival probability of one system composed of multiple subsystems.
The algorithm discussed in Subsection 3.2 is elementary and uses no approximations when calculating its answer.

3 Bayesian methods for Bernoulli experiments
3.1 The Prior and Posterior of One Subsystem

Let us first assume that we are interested in learning about the probability that a system passes an endurance test of some sort. We
will denote this probability as θ , and we will conduct n trials/tests on this system and record X , the number of times (out of the n trials)
that it passes a test.

To do a Bayesian analysis on θ , we begin by specifying a prior distribution for it. A prior often used for the probability of success in
a sequence of success/failure trials is the beta distribution (see [8] and [5]). The beta distribution is specified by two parameters and is
especially convenient in cases such as this since it is a conjugate prior, i.e., it produces a posterior distribution of the same form. The beta
prior takes the form

π (θ) =
Γ(α +β )
Γ(α)Γ(β )

θ α−1 (1−θ)β−1 0 ≤ θ ≤ 1,

where Γ(·) is the gamma function. This prior has mean

Prior Mean =
α

α +β

and variance

Prior Var =
αβ

(α +β )2 (α +β +1)
.

The values of α and β (α,β > 0) are selected to reflect a user’s prior belief. This prior belief is often informed in a variety of ways:
through expert opinion, computer simulation, prior experiments, etc. If one believed that θ is small (less than 0.5), one would set α < β
(making the prior mean less than 0.5). If one believed that θ was large (greater than 0.5), one would set α > β . The confidence in these
prior beliefs is, of course, reflected in the variance of the prior. If one wanted to set the prior mean of θ to be 0.4, he could set α = 2 and
β = 3, making the prior variance 0.04. If one wanted to elevate the confidence in this statement (that the prior mean of θ is 0.4), he could
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where x = (x1, x2, . . . , xn). The function p(x|θ) is also 
referred to as the likelihood of θ.

With the prior and the likelihood, the posterior dis-
tribution, typically denoted as π(θ|x), can be calculated. 
The posterior is calculated using Bayes’s rule.3 This cal-
culation is shown below:
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where Θ is the set of all possible values of θ. The formula 
given in Eq. 3 makes sense: the posterior is proportional 
to the prior distribution of θ (where we thought θ was 
before collecting data) times the likelihood (where the 
data suggests θ to be).

This article focuses on how to use Bayesian meth-
ods to learn more about the probability that a system 
survives a test. The subsection titled The Prior and 
Posterior of One Subsystem specifically discusses how 
Bayesian methods are used to learn about the survival 
probability of one system, and the subsection following 

that one, The Prior and Posterior of the Entire System, 
discusses the methods necessary to learn about the sur-
vival probability of one system composed of multiple 
subsystems. The algorithm discussed in the latter sub-
section is elementary and uses no approximations when 
calculating its answer.

BAYESIAN METHODS FOR BERNOULLI 
EXPERIMENTS
The Prior and Posterior of One Subsystem

Let us first assume that we are interested in learn-
ing about the probability that a system passes an endur-
ance test of some sort. We will denote this probability as 
θ, and we will conduct n trials/tests on this system and 
record X, the number of times (out of the n trials) that 
the system passes a test.

To do a Bayesian analysis on θ, we begin by specify-
ing a prior distribution for it. The beta distribution is 
often used as the prior for the probability of success in 
a sequence of success/failure trials.4,5 The beta distri-
bution is specified by two parameters and is especially 
convenient in cases such as this since it is a conjugate 
prior (i.e., it produces a posterior distribution of the same 
form). The beta prior takes the form
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where Γ( · ) is the gamma function. This prior has mean
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(making the prior mean less than 0.5). If one believed that θ was large (greater than 0.5), one would set α > β . The confidence in these
prior beliefs is, of course, reflected in the variance of the prior. If one wanted to set the prior mean of θ to be 0.4, he could set α = 2 and
β = 3, making the prior variance 0.04. If one wanted to elevate the confidence in this statement (that the prior mean of θ is 0.4), he could
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The values of α and β (α, β > 0) are selected to reflect 
the user’s prior belief. This prior belief is often informed 
in a variety of ways, such as expert opinion, computer 
simulation, or prior experiments. A user who believes 
that θ is small (<0.5) would set α < β (making the prior 
mean < 0.5). A user who believes that θ is large (>0.5) 
would set α > β. The confidence in these prior beliefs is, 
of course, reflected in the variance of the prior. If a user 
wanted to set the prior mean of θ to 0.4, they could set 
α = 2 and β = 3, making the prior variance 0.04. If a user 
wanted to elevate the confidence in this statement (that 
the prior mean of θ is 0.4), they could adjust the values 
of α and β to α = 20 and β = 30, making the prior vari-
ance 0.004. And if a user knew absolutely nothing about 
θ, they would set α = β = 1, in which case the prior for θ 
is uniform over the interval (0, 1).
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There is no consistent selection of α and β in reliability studies. Leoni et al.6 set α = 3 and β = 1 in one of their 
reliability studies, Burke and Harman7 set α = 7.2 and β = 0.8 in one of their reliability studies, and Martz et al.8 set 
α = 27.3 and β = 0.5. When priors are informed by simulation results or previous experiments, analysts sometimes set

	

adjust the values of α and β to α = 20 and β = 30, making the prior variance 0.004. And if one knew absolutely nothing about θ , he
would set α = β = 1, in which case the prior for θ is uniform over the interval (0,1).

There is no consistent selection of α and β in reliability studies. Leoni et al. (see [10]) set α = 3 and β = 1 in one of their reliability
studies, Burke et al. (see [3]) set α = 7.2 and β = 0.8 in one of their reliability studies, and Martz et al. (see [14]) set α = 27.3 and
β = 0.5. In those cases where priors are informed by simulation results or previous experiments, analysts sometimes set

α = npr · θ̂ pr +1 and β = npr ·
(
1− θ̂ pr)+1,

where θ̂ pr is a prior estimate of θ , and npr is some positive number which represents the confidence the analyst has in the simulation
or experiment informing the prior (see [9]); one can think of npr as the effective sample size which informs the prior. The greater this
effective sample size which informs the prior, the more peaked the prior distribution is near the prior estimate of θ . If no confidence exists
in the simulation informing the prior, then npr = 0 and the prior would be flat.

Figures 1 – 2 illustrate what these prior distributions look like. The prior in Figure 1 puts large probability on low values of θ and
does so by setting the value of α to be significantly less than the value of β . The prior in Figure 2 puts large probability on high values
of θ , and does so by setting the value of β to be smaller than the value of α . Also observe that the prior is much more peaked for small
values of θ in Figure 1 than it is for large values of θ in Figure 2. This is a consequence of the difference in the values between α and β .
The difference is larger for the prior in Figure 1 than it is for the prior in Figure 2.
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Figure 1: The prior π (θ) with α = 2 and β = 10. With this
selection of α and β , the prior is peaked at low values of θ .
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where ˆ θ  pr is a prior estimate of θ, and npr is some positive number that represents the confidence the analyst has in 
the simulation or experiment informing the prior;9 think of npr as the effective sample size that informs the prior. 
The greater this effective sample size that informs the prior, the more peaked the prior distribution is near the prior 
estimate of θ. If no confidence exists in the simulation informing the prior, then npr = 0 and the prior would be flat.

Figures 1 and 2 illustrate what these prior distributions look like. The prior in Figure 1 puts large probability on 
low values of θ and does so by setting the value of α to be significantly less than the value of β. The prior in Figure 2 
puts large probability on high values of θ and does so by setting the value of β to be smaller than the value of α. Also 
observe that the prior is much more peaked for small values of θ in Figure 1 than it is for large values of θ in Figure 2. 
This is a consequence of the difference in the values between α and β. The difference is larger for the prior in Figure 1 
than it is for the prior in Figure 2.

Let us now assume that we observe x successes of the system out of n tests conducted. In this case, the likelihood 
is binomial,
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Figure 2: The prior π (θ) with α = 7 and β = 3. With this
selection of α and β , the prior is peaked at high values of θ .

Let us now assume we observe x successes of the system out of n tests conducted. In this case the likelihood is binomial,

p(x|θ) =
(

n
x

)
θ x (1−θ)n−x ,

making the posterior distribution of θ

π (θ |x) = p(x|θ)π (θ)∫

Θ
p(x|θ)π (θ)dθ

=

(
n
x

)
θ x (1−θ)n−x Γ(α +β )

Γ(α)Γ(β )
θ α−1(1−θ)β−1

∫ 1

0

[(
n
x

)
θ x (1−θ)n−x Γ(α +β )

Γ(α)Γ(β )
θ α−1(1−θ)β−1

]
dθ

. (4)

There is a simple way to calculate the posterior distribution in Equation (4) without having to evaluate the integral in the denominator.
First observe that the expression in the denominator is not a function of θ ; it is a normalizing constant independent of θ , and for this
reason we can write

π (θ |x) ∝ p(x|θ)π (θ) .

Eliminating all multiplicative constants in p(x|θ)π (θ) that do not depend on θ , we get that

π (θ |x) = c ·θ x+α−1 (1−θ)n−x+β−1 ,

where c is some constant such that ∫ 1

0
c ·θ x+α−1 (1−θ)n−x+β−1 dθ = 1.

The posterior π (θ |x) takes the form of a beta distribution, making

c =
Γ(α +β +n)

Γ(α + x)Γ(β +n− x)
.

4
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making the posterior distribution of θ
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There is a simple way to calculate the posterior distribution in Eq. 4 without having to evaluate the integral in the 
denominator. First observe that the expression in the denominator is not a function of θ; it is a normalizing constant 
independent of θ, and for this reason we can write
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There is a simple way to calculate the posterior distribution in Equation (4) without having to evaluate the integral in the denominator.
First observe that the expression in the denominator is not a function of θ ; it is a normalizing constant independent of θ , and for this
reason we can write
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Eliminating all multiplicative constants in p(x|θ)π (θ) that do not depend on θ , we get that
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Eliminating all multiplicative constants in p(x|θ) π(θ) that do not depend on θ, we get that
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There is a simple way to calculate the posterior distribution in Equation (4) without having to evaluate the integral in the denominator.
First observe that the expression in the denominator is not a function of θ ; it is a normalizing constant independent of θ , and for this
reason we can write

π (θ |x) ∝ p(x|θ)π (θ) .

Eliminating all multiplicative constants in p(x|θ)π (θ) that do not depend on θ , we get that
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Figure 1.  The prior π(θ) with α = 2 and β = 10. With this selection 
of α and β, the prior is peaked at low values of θ.
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where c is some constant such that
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Let us now assume we observe x successes of the system out of n tests conducted. In this case the likelihood is binomial,
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There is a simple way to calculate the posterior distribution in Equation (4) without having to evaluate the integral in the denominator.
First observe that the expression in the denominator is not a function of θ ; it is a normalizing constant independent of θ , and for this
reason we can write

π (θ |x) ∝ p(x|θ)π (θ) .

Eliminating all multiplicative constants in p(x|θ)π (θ) that do not depend on θ , we get that
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The posterior π(θ|x) takes the form of a beta distribution, making
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There is a simple way to calculate the posterior distribution in Equation (4) without having to evaluate the integral in the denominator.
First observe that the expression in the denominator is not a function of θ ; it is a normalizing constant independent of θ , and for this
reason we can write
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The posterior of θ is thus a beta distribution with parameters αpst and βpst where

	

The posterior of θ is thus a beta distribution with parameters αpst and β pst where

αpst = α + x, and

β pst = β +n− x.

The plots in Figures 3 and 4 show the posteriors corresponding to the priors shown in Figures 1 and 2, respectively. In Figure 3 one
success was observed after ten trials, emphasizing even more that the value of θ is small. Observe how the posterior in this case is more
peaked at small values of θ than the prior was. In Figure 4 two successes were observed in ten trials, indicating that the probability
of success was much smaller than the prior anticipated. Observe how, in this case, the peak of the posterior has significantly shifted to
smaller values of θ .
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Figure 3: The posterior distribution with n = 10, x = 1, α =
2 and β = 10.
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The plots in Figures 3 and 4 show the posteriors corresponding to the priors shown in Figures 1 and 2, respectively. 
In Figure 3, one success was observed after 10 trials, emphasizing even more that the value of θ is small. Observe 
how the posterior in this case is more peaked at small values of θ than the prior was. In Figure 4, two successes were 
observed in 10 trials, indicating that the probability of success was much smaller than the prior anticipated. Observe 
how, in this case, the peak of the posterior has significantly shifted to smaller values of θ.

The Prior and Posterior of the Entire System
Let us now put this problem in the context of one large system that is composed of several subsystems. If all the 

subsystems have to work for the entire system to work, how do the posterior distributions of the subsystem reliabilities 
inform the distribution of the total system’s reliability? And how would testing the entire system (as a whole) affect 
the posterior of the total system reliability? The next two subsections address these questions.

Subsystem Test Sizing
This subsection focuses on how the distributions of the subsystem survival probabilities affect the distribution of 

the total system’s survival probability. If there are S subsystems, and the entire system fails if any one of the subsystems 
fail (i.e., the subsystems work in series), then the success probability of the total system, θTot Sys, is calculated as
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Figure 4: The posterior distribution with n = 10, x = 2, α =
7 and β = 3.

3.2 The Prior and Posterior of the Entire System
We now put this problem in the context of one large system that is composed of several subsystems. If all of the subsystems have to

work for the entire system to work, how do the posterior distributions of the subsystem reliabilities inform the distribution of the total
system’s reliability? And how would testing the entire system (as a whole) affect the posterior of the total system reliability? The next
subsection addresses the first question, and the second question is addressed in Section 3.2.2.

3.2.1 Subsystem Test Sizing

This subsection focuses on how the distributions of the subsystem survival probabilities affect the distribution of the total system’s
survival probability. If there are S subsystems, and the entire system fails if any one of the subsystems fail (i.e., the subsystems work in
series), then the success probability of the total system, θTot Sys, is calculated as

θTot Sys = P(Success of Subsys 1)×P(Success of Subsys 2)×·· ·
×P(Success of Subsys S)

=
S

∏
j=1

θ j, (5)

where θ j is the success probability of the jth subsystem.
If S = 5 and the block diagram of the subsystems is as shown in Figure 14, then the system fails if Subsystem 1, 4, 5, or both 2 and 3

fail. In this case, the success probability of the entire system would be calculated as

θTot Sys = P(Success of Subsys 1)×P(Success of Subsys 2 or 3)×P(Success of Subsys 4)×P(Success of Subsys 5)

= θ1 (θ2 +θ3 −θ2θ3)θ4θ5.
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Figure 3.  The posterior distribution with n = 10, x = 1, α = 2, and 
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where θj is the success probability of the jth subsystem.
If S = 5 and the block diagram of the subsystems is as shown in Figure 5, then the system fails if subsystem 1, 4, 5, 

or both 2 and 3 fail. In this case, the success probability of the entire system would be calculated as
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Figure 4: The posterior distribution with n = 10, x = 2, α =
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3.2 The Prior and Posterior of the Entire System
We now put this problem in the context of one large system that is composed of several subsystems. If all of the subsystems have to

work for the entire system to work, how do the posterior distributions of the subsystem reliabilities inform the distribution of the total
system’s reliability? And how would testing the entire system (as a whole) affect the posterior of the total system reliability? The next
subsection addresses the first question, and the second question is addressed in Section 3.2.2.

3.2.1 Subsystem Test Sizing

This subsection focuses on how the distributions of the subsystem survival probabilities affect the distribution of the total system’s
survival probability. If there are S subsystems, and the entire system fails if any one of the subsystems fail (i.e., the subsystems work in
series), then the success probability of the total system, θTot Sys, is calculated as

θTot Sys = P(Success of Subsys 1)×P(Success of Subsys 2)×·· ·
×P(Success of Subsys S)

=
S

∏
j=1

θ j, (5)

where θ j is the success probability of the jth subsystem.
If S = 5 and the block diagram of the subsystems is as shown in Figure 14, then the system fails if Subsystem 1, 4, 5, or both 2 and 3

fail. In this case, the success probability of the entire system would be calculated as

θTot Sys = P(Success of Subsys 1)×P(Success of Subsys 2 or 3)×P(Success of Subsys 4)×P(Success of Subsys 5)

= θ1 (θ2 +θ3 −θ2θ3)θ4θ5.

6

	

The value of θTot Sys is thus the product and/or sum of beta random variables. The resulting distribution of a 
random variable such as θTot Sys has been derived in a number of publications, but this distribution is very complicated 
and thus difficult to work with analytically.1,10,11,12,13 The distribution of θTot Sys is easy to work with and understand, 
however, using Monte Carlo methods. Since the posterior distribution of all the components of the system take the 
form of a beta distribution with known parameters, assuming independence of the subsystems, we can easily simulate 
nSim values from the prior distribution of θTot Sys. This requires simulating nSim S-tuples of (θ1, θ2, θ3,..., θS). With each 
simulated S-tuple, we can calculate a value of θTot Sys. The algorithm for generating nSim values of θTot Sys for a system 
in series is given in Procedure 1; that for a system as shown in Figure 5 is given in Procedure 2.

Figures 6–12 illustrate how the posterior distributions of subsystem reliability affect the distribution of θTot Sys. 
In the simulations performed, we assumed that the entire system was composed of three subsystems (S = 3) and 
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Subs4 Subs5

Figure 5.  Flowchart of system composed of five subsystems (Subs), two of which work in parallel.

Subsystem 1

Subsystem 2

Subsystem 3

Subsystem 4 Subsystem 5

Figure 5: Flow chart of system composed of five subsystems, two of which work in parallel.

The value of θTot Sys is thus the product and/or sum of beta random variables. The resultilng distribution of a random variable such as
θTot Sys has been derived in a number of publications, but this distribution is very complicated and thus difficult to work with analytically
(see [7], [13], [12], [16], and [17]). The distribution of θTot Sys is easy to work with and understand, however, using Monte Carlo methods.

Since the posterior distribution of all the components of the system take the form of a beta distribution with known parameters,
assuming independence of the subsystems, we can easily simulate nSim values from the prior distribution of θTot Sys. This requires
simulating nSim S-tuples of (θ1,θ2,θ3, . . . ,θS). With each simulated S-tuple, we can calculate a value of θTot Sys. The algorithm for
generating nSim values of θTot Sys for a system in series is given in Procedure 1; that for a system as shown in Figure 14 is given in
Procedure 2.

Procedure 1: Simulating nSim values of θTot Sys when the subsystems work in series

input : π (θ1|x1) ,π (θ2|x2) , . . . ,π (θS|xS) , and nSim, where xi is the number of successes of subsystem i
output: θ (1)

Tot Sys,θ
(2)
Tot Sys, . . . ,θ

(nSim)
Tot Sys

for i ← 1 to nSim do
θ (i)

Tot Sys ← 1
for j ← 1 to S do

Generate θ (i)
j ∼ π (θ j|x j)

θ (i)
Tot Sys ← θ (i)

Tot Sys ·θ
(i)
j .

Figures 6 – 12 illustrate how the posterior distributions of subsystem reliability affect the distribution of θTot Sys. In the simulations
performed, we assumed the entire system was composed of three subsystems (S = 3) and that these subsystems worked in series. The
priors of the three subsystems are shown in black in Figures 6 – 8. The subsystems are then tested with n1 = 2, n2 = 5, and n3 = 4, where
n j is the number of times the jth subsystem is tested. The resulting posteriors are shown in red in Figures 6 – 8, and 10,000 draws from
the resulting distribution of θTot Sys are shown in Figure 9. The subsystems were also tested at n1 = 11, n2 = 14, and n3 = 12, and the
corresponding posteriors are shown in blue in Figures 6 – 8. Observe that these posteriors are more peaked (more informed) than the
others since the sample sizes are larger. The distribution of θTot Sys corresponding to these larger sample sizes is shown in Figure 10.
Observe how the variance of this posterior is smaller than that shown in Figure 9; it should be since the subsystem sample sizes are larger.

7

Procedure 2: Simulating nSim values of θTot Sys when the five subsystems work as shown in Figure 14 (series and parallel)

input : π (θ1|x1) ,π (θ2|x2) , . . . ,π (θS|xS) , and nSim, where xi is the number of successes of subsystem i
output: θ (1)

Tot Sys,θ
(2)
Tot Sys, . . . ,θ

(nSim)
Tot Sys

for i ← 1 to nSim do
θ (i)

2 ∼ π (θ2|x2)

θ (i)
3 ∼ π (θ3|x3)

θ (i)
2|3 ← θ (i)

2 +θ (i)
3 −θ (i)

2 ·θ (i)
3

θ (i)
Tot Sys ← θ (i)

2|3
for j ∈ {1,4,5} do

Generate θ (i)
j ∼ π (θ j|x j)

θ (i)
Tot Sys ← θ (i)

Tot Sys ·θ
(i)
j .
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Figure 6: The prior and posterior of the first subsystem with
α = 5, and β = 2.
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that these subsystems worked in series. The priors of 
the three subsystems are shown in black in Figures 6–8. 
The subsystems are then tested with n1 = 2, n2 = 5, and 
n3 = 4, where nj is the number of times the jth subsystem 
is tested. The resulting posteriors are shown in red in 
Figures 6–8, and 10,000 draws from the resulting distri-
bution of θTot Sys are shown in Figure 9. The subsystems 
were also tested at n1 = 11, n2 = 14, and n3 = 12, and 
the corresponding posteriors are shown in blue in Fig-
ures 6–8. Observe that these posteriors are more peaked 
(more informed) than the others since the sample sizes 
are larger. The distribution of θTot Sys corresponding to 
these larger sample sizes is shown in Figure 10. Observe 
how the variance of this posterior is smaller than that 
shown in Figure 9; this is because the subsystem sample 
sizes are larger.

Total System Test Sizing
Let us now investigate how testing the entire system 

(and not just its individual components) affects the pos-
terior distribution of θTot Sys. Updating the prior distri-
bution of θTot Sys given test results on the total system 
is more challenging than updating the subcomponent 
values of θ because, in this case, the original distribu-
tion of θTot Sys is not a beta distribution. Recall that the 
prior distribution of θTot Sys was analytically challenging 
to work with and, as a result, was obtained using Monte 
Carlo methods. It is not uncommon for practitioners 
to approximate this prior with another (perhaps beta) 
distribution1,11,14,15,16,17 to make the posterior analysis 
simpler and more convenient. Others redefine the priors 
of the independent components entirely just so the prior 
of the total system’s reliability is analytically tractable. 
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Zoh et al.,18 for example, set the priors of the compo-
nents to negative log-gamma distributions, yet they still 
had to execute complicated Markov chain Monte Carlo 
methods to do posterior analysis of the total system.

These workarounds and approximations to make 
posterior analysis easier are not necessary. This article 
describes a simple and quick Monte Carlo method that 
updates the prior distribution of θTot Sys after testing the 
entire system. This method is a simple application of the 
algorithm proposed by Rubin.19 Rubin observed that a 
sample from the posterior distribution of a parameter 
can be obtained by first generating values from its prior 
and then generating data conditioned on these sampled 
values. Those values of the parameter for which the gen-
erated data match the observed data follow the posterior 
distribution.

To apply this algorithm in our case, we begin by writ-
ing the posterior for θTot Sys as 

	

3.2.2 Total System Test Sizing

We now investigate how testing the entire system (and not just its individual components) affects the posterior distribution of θTot Sys.
Updating the prior distribution of θTot Sys given test results on the total system is more challenging than updating the subcomponent values
of θ because, in this case, the original distribution of θTot Sys is not a beta distribution. Recall that the prior distribution of θTot Sys was
analytically challenging to work with and, as a result, was obtained using Monte Carlo methods. It is not uncommon for practitioners
to approximate this prior with another (perhaps Beta) distribution (see [1], [6], [11], [12], [13] and [18]) to make the posterior analysis
simpler and more convenient. Others redefine the priors of the independent components entirely just so the prior of the total system’s
reliability is analytically tractable. Zoh et al. (see [19]), for example, set the priors of the components to negative log-gamma distributions,
yet they still had to execute complicated Markov chain Monte Carlo methods to do posterior analysis of the total system.

These workarounds and approximations to make posterior analysis easier are not necessary! In this paper we alert the reader
of a simple and quick Monte Carlo method which updates the prior distribution of θTot Sys after testing the entire system. This method
is a simple application of the algorithm proposed by Rubin (see [15]). Rubin observed that a sample from the posterior distribution of a
parameter can be obtained by first generating values from its prior and then generating data conditioned on these sampled values. Those
values of the parameter for which the generated data match the observed data follow the posterior distribution.

To apply this algorithm in our case, we begin by writing the posterior for θTot Sys as

π
(
θTot Sys|xTS

)
∝ p

(
xTS|θTot Sys

)
π
(
θTot Sys

)
,

where

p
(
xTS|θTot Sys

)
=

(
nTS

xTS

)
θ xTS

Tot Sys
(
1−θTot Sys

)nTS−xTS , (6)

nTS and xTS are the number of tests (and successes) of the total system. Given that x∗TS successes have been observed from nTS trials
of the total system, we sample from the posterior π

(
θTot Sys|xTS = x∗TS

)
by first simulating from the prior of θTot Sys, π

(
θTot Sys

)
.1 We

then condition on these sampled values of θTot Sys to generate candidate values of xTS from the likelihood shown in Equation (6). The
simulated values of θTot Sys for which the likelihood generates xTS = x∗TS are then considered to be an exact sample from the posterior.
The details of this algorithm (assuming the subsystems work in series2) are given below in Procedure 3.

Procedure 3: Simulating nSim values of θTot Sys from π
(
θTot Sys|xTS = x∗TS

)

input : π (θ1|x1) ,π (θ2|x2) , . . . ,π (θS|xS) ,nSim,nTS,x∗TS

output: θ (1)
Tot Sys,θ

(2)
Tot Sys, . . . ,θ

(nSim)
Tot Sys

i ← 1
while i < nSim do

θ (i), cand
Tot Sys ← 1

for j ← 1 to S do
Generate θ (i)

j ∼ π (θ j|x j)

θ (i), cand
Tot Sys ← θ (i), cand

Tot Sys ·θ (i)
j .

Generate xTS ∼ Binomial
(

nTS,θ
(i), cand
Tot Sys

)
.

if xTS = x∗TS then
θ (i)

Tot Sys ← θ (i), cand
Tot Sys

i ← i+1

1An algorithm similar to the ones shown in Procedure 1 or Procedure 2 could be used to sample from the prior, π
(
θTot Sys

)
.

2Minor changes to the first ‘for’ loop of the algorithm would be necessary if the subsystems did not work in series.
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nTS and xTS are the number of tests (and successes) of the total system. Given that x∗TS successes have been observed from nTS trials
of the total system, we sample from the posterior π

(
θTot Sys|xTS = x∗TS

)
by first simulating from the prior of θTot Sys, π

(
θTot Sys

)
.1 We

then condition on these sampled values of θTot Sys to generate candidate values of xTS from the likelihood shown in Equation (6). The
simulated values of θTot Sys for which the likelihood generates xTS = x∗TS are then considered to be an exact sample from the posterior.
The details of this algorithm (assuming the subsystems work in series2) are given below in Procedure 3.

Procedure 3: Simulating nSim values of θTot Sys from π
(
θTot Sys|xTS = x∗TS

)

input : π (θ1|x1) ,π (θ2|x2) , . . . ,π (θS|xS) ,nSim,nTS,x∗TS

output: θ (1)
Tot Sys,θ

(2)
Tot Sys, . . . ,θ

(nSim)
Tot Sys

i ← 1
while i < nSim do

θ (i), cand
Tot Sys ← 1

for j ← 1 to S do
Generate θ (i)

j ∼ π (θ j|x j)

θ (i), cand
Tot Sys ← θ (i), cand

Tot Sys ·θ (i)
j .

Generate xTS ∼ Binomial
(

nTS,θ
(i), cand
Tot Sys

)
.

if xTS = x∗TS then
θ (i)

Tot Sys ← θ (i), cand
Tot Sys

i ← i+1

1An algorithm similar to the ones shown in Procedure 1 or Procedure 2 could be used to sample from the prior, π
(
θTot Sys

)
.
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,	 (6)

and nTS and xTS are the number of tests (and successes) 
of the total system. Given that x* 

TS successes have been 
observed from nTS trials of the total system, we sample 
from the posterior π(θTot Sys|xTS = x* 

TS) by first simulat-
ing from the prior of θTot Sys, π(θTot Sys). (An algorithm 
similar to the ones shown in Procedure  1 or 2 could 
be used to sample from the prior, π(θTot Sys).) We then 
condition on these sampled values of θTot Sys to gener-
ate candidate values of xTS from the likelihood shown 
in Eq. 6. The simulated values of θTot Sys for which the 
likelihood generates xTS  =  x* 

TS are then considered to 
be an exact sample from the posterior. The details of 
this algorithm (assuming the subsystems work in series; 
minor changes to the first “for” loop of the algorithm 
would be necessary if the subsystems did not work in 
series) are given in Procedure 3.

The plots in Figures 11 and 12 show how the distribu-
tion of θTot Sys changes when tests on the entire system 
are executed. The plot in Figure 11 shows how the dis-
tribution of θTot Sys changes from the distribution in 
Figure  9 when four successes are observed out of four 
tests on the entire system. Observe that with this extra 
evidence of success, the distribution of θTot Sys shifts to 
the right. The same story is told in Figure 12. It shows 
how the distribution of θTot Sys changes from the dis-
tribution in Figure 10 when five successes are observed 
out of seven tests on the entire system. This distribution 
moves to the right and is also more peaked.
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Figure 10.  The resulting distribution of θTot Sys when n1 = 11, 
n2 = 14, and n3 = 12.
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Figure 11.  The resulting distribution of θTot Sys when n1 = 2, 
n2 = 5, n3 = 4, and nTS = 4.

θTot Sys

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

Figure 12.  The resulting distribution of θTot Sys when n1 = 11, 
n2 = 14, n3 = 12, and nTot = 7.
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It is critical to understand the distinction between 
the two examples discussed above. In the first case 
(with the resulting distribution of θTot Sys shown in 
Figure 11), the total system was tested four times and 
four successes were observed. Because the system works 
in series, a successful test of the entire system implies a 
successful test of each component. The posterior distri-
bution of θTot Sys can thus easily be calculated by simply 
updating the posteriors of the system’s three compo-
nents and then applying Procedure 1. This is not true 
for the second example (with the resulting distribution 
of θTot Sys shown in Figure 12). Recall that in the second 
example, the entire system was tested seven times, but 
only five successes were observed. Since it is not clear 
which component(s) failed (causing the failure of the 
entire system), the posteriors of the components cannot 
be updated, and Procedure 1 cannot be applied. In this 
case, Procedure 3 is necessary in calculating the poste-
rior of θTot Sys.

EXAMPLE
This example illustrates the efficiency of Rubin’s algo-

rithm when calculating total system reliability. Consider 
two types of systems/fault trees, each with m different 
types of components. The first fault tree works in series, 
and in the second, every other component operates in 
series. Figures 13 and 14 illustrate these fault trees.

The efficiency of Rubin’s algorithm is demonstrated 
with a Monte Carlo study. We initially place Beta(α,β) 
priors on all the components with α = 999 and β = 0.5. 
(Such priors assume a prior reliability mean of 0.9995, 
which is not uncommon for highly reliable systems.) For 
each system/fault tree, and for a specific value of m, nj 
(the number of trials for subsystem j) and xj (the number 
of successful trials for subsystem j) can then be simulated. 
The number of trials is simulated from a Poisson(λ = 5) 
distribution, and the number of successful trials is simu-
lated from a binomial distribution with parameters nj 

3.2.2 Total System Test Sizing

We now investigate how testing the entire system (and not just its individual components) affects the posterior distribution of θTot Sys.
Updating the prior distribution of θTot Sys given test results on the total system is more challenging than updating the subcomponent values
of θ because, in this case, the original distribution of θTot Sys is not a beta distribution. Recall that the prior distribution of θTot Sys was
analytically challenging to work with and, as a result, was obtained using Monte Carlo methods. It is not uncommon for practitioners
to approximate this prior with another (perhaps Beta) distribution (see [1], [6], [11], [12], [13] and [18]) to make the posterior analysis
simpler and more convenient. Others redefine the priors of the independent components entirely just so the prior of the total system’s
reliability is analytically tractable. Zoh et al. (see [19]), for example, set the priors of the components to negative log-gamma distributions,
yet they still had to execute complicated Markov chain Monte Carlo methods to do posterior analysis of the total system.

These workarounds and approximations to make posterior analysis easier are not necessary! In this paper we alert the reader
of a simple and quick Monte Carlo method which updates the prior distribution of θTot Sys after testing the entire system. This method
is a simple application of the algorithm proposed by Rubin (see [15]). Rubin observed that a sample from the posterior distribution of a
parameter can be obtained by first generating values from its prior and then generating data conditioned on these sampled values. Those
values of the parameter for which the generated data match the observed data follow the posterior distribution.

To apply this algorithm in our case, we begin by writing the posterior for θTot Sys as

π
(
θTot Sys|xTS

)
∝ p

(
xTS|θTot Sys

)
π
(
θTot Sys

)
,

where

p
(
xTS|θTot Sys

)
=

(
nTS

xTS

)
θ xTS

Tot Sys
(
1−θTot Sys

)nTS−xTS , (6)

nTS and xTS are the number of tests (and successes) of the total system. Given that x∗TS successes have been observed from nTS trials
of the total system, we sample from the posterior π

(
θTot Sys|xTS = x∗TS

)
by first simulating from the prior of θTot Sys, π

(
θTot Sys

)
.1 We

then condition on these sampled values of θTot Sys to generate candidate values of xTS from the likelihood shown in Equation (6). The
simulated values of θTot Sys for which the likelihood generates xTS = x∗TS are then considered to be an exact sample from the posterior.
The details of this algorithm (assuming the subsystems work in series2) are given below in Procedure 3.

Procedure 3: Simulating nSim values of θTot Sys from π
(
θTot Sys|xTS = x∗TS

)

input : π (θ1|x1) ,π (θ2|x2) , . . . ,π (θS|xS) ,nSim,nTS,x∗TS

output: θ (1)
Tot Sys,θ

(2)
Tot Sys, . . . ,θ

(nSim)
Tot Sys

i ← 1
while i < nSim do

θ (i), cand
Tot Sys ← 1

for j ← 1 to S do
Generate θ (i)

j ∼ π (θ j|x j)

θ (i), cand
Tot Sys ← θ (i), cand

Tot Sys ·θ (i)
j .

Generate xTS ∼ Binomial
(

nTS,θ
(i), cand
Tot Sys

)
.

if xTS = x∗TS then
θ (i)

Tot Sys ← θ (i), cand
Tot Sys

i ← i+1

1An algorithm similar to the ones shown in Procedure 1 or Procedure 2 could be used to sample from the prior, π
(
θTot Sys

)
.

2Minor changes to the first ‘for’ loop of the algorithm would be necessary if the subsystems did not work in series.
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Figure 13.  Flowchart of system composed of m subsystems working in series.
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Figure 14.  Flowchart of system composed of m subsystems with every other subsystem working in series.
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and pj = α/(α + β) = 999/(999 + 0.5). With these simu-
lated test sizes, and assuming that the entire system is 
tested twice (with both tests being a success), the time it 
took to generate 10,000 draws from the posterior of the 
total system’s reliability can be calculated. Table 1 shows 
the results of doing this 100 times and calculating the 
average time it took to generate these posterior values 
for m = 10, 20, 30, 40, and 50.

It is clear from Table 1 that this algorithm efficiently 
calculates the posterior of the total system’s reliability.

CONCLUSION
This article reviews some of the methodologies 

related to Bayesian reliability. It initially focuses on suc-
cess/failure data of systems and their subsystems. The 
article specifically addresses how the number of subsys-
tem (or total system) tests affects the reliability of the 
entire system. It also presents a simple and efficient 
Monte Carlo method that can be employed to update 
the prior of a total system’s reliability when only data 
from the total system are available.
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Table 1.  Average time (in seconds) to generate 10,000 
values from the posterior of the total system’s reliability

m Fault Tree 1 Fault Tree 2

10 0.16 0.16
20 0.30 0.31
30 0.45 0.46
40 0.62 0.62
50 0.76 0.77
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