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ABSTRACT
In the last two decades, considerable increases in computing power and available data have led 
to an analytics and machine learning (ML) revolution. To make knowledge management less 
cumbersome for human operators, a team of researchers at the Johns Hopkins University Applied 
Physics Laboratory (APL) proposes an ML–based method to help automate knowledge manage-
ment. This method discovers new data, represents it with descriptive metadata, automatically 
categorizes the metadata, auto-populates a data catalog with data sets, and evaluates the new 
data sets for data fusion options. We focus on a framework that can potentially leverage human–
machine teaming to significantly reduce the human resource burden to develop and maintain 
an accurate accounting of existing data and capabilities within an organization. We explored 
numerous ML options to test our core hypothesis—that ML techniques can be employed to reli-
ably determine the fundamental topic that an unknown data set represents, leading to increas-
ingly granular data set recognition as more characterization and context information can be 
mined in the metadata extraction phase. Ultimately, we demonstrated that multiple classifier 
techniques exist that can predict data set topics with close to 90% accuracy, and some with 60%–
80% accuracy, across multiple topics.

inaccurate parts of the data. Surveys2 and studies3 esti-
mate that data scientists spend 50% to 80% of their time 
gathering and preparing the data. Labeling metadata 
for organization and storage is another daunting task. 
Reducing these costs through machine assistance has 
enormous potential to free up time and resources to 
focus on analytics and decision-support automation for 
all fields and disciplines.

BACKGROUND
In the last two decades, considerable growth in com-

puting power and available data have led to an analytics 
and machine learning (ML) revolution; yet, anywhere 
from 60% to 73% of all data within an enterprise remain 
unused.1 In addition, only a minuscule fraction of the 
zettabytes of data on the web is being used for analyt-
ics. Not only is finding relevant data costly, so is clean-
ing the data—that is, detecting and correcting corrupt/
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RELATED WORK
A data catalog is an organized inventory of metadata, 

or “data about data,” such as a digital image’s time and 
date of creation, file size, or means of creation. Modern 
data cataloging platforms include access controls, search, 
discovery, metadata curation, and collaboration.4 Many 
data cataloging systems assume that all data sets have 
corresponding subject-matter experts who can readily 
label the data set with metadata. Existing data catalog-
ing products have recently begun integrating ML to 
recommend actions based on prior user interaction and 
column matching learned from previous labels.5 How-
ever, these products do not perform well with unseen 
data sets in the wild—meaning real-world data sets not 
presented to the algorithms during training—without 
the help of subject-matter experts, especially in situa-
tions with novel data demands.

A graph-analytics–based data set search method is 
introduced in a patent disclosure;6 however, it relies on 
metadata labels being known beforehand.

One academic paper discusses a new algorithm that 
can recommend common data sets cited by research 
papers. However, this algorithm relies on prior research 
paper text and citations and cannot be immediately 
extended to instances that do not have paper–data set 
associations.7

Some supervised learning methods can classify 
table types such as relational/nonrelational, genuine/
nongenuine, and table format. Unsupervised table rep-
resentation learning approaches have also appeared in 
academic literature.8–10 These approaches train a model 
on a combination of tasks that include row population, 
column population, table retrieval, masked token pre-
diction, cell prediction, and cell type annotations using 
the Wikitable, WDC WebTable, and Common Crawl 
data sets.11–15 Some of these approaches can also retrieve 
tables based on keyword input. However, retrieval differs 
from labeling in that retrieval tasks do not store asso-
ciated labels for further analytics. Finally, one method 
can name tables based on table contents and page meta-
data.16 This approach can generate a title but cannot 
rank and select the best topic among a set of topics. 
Overall, these methods are based on web tables often 
from single sources like Wikipedia, which are quite dif-
ferent from data sets found in the wild.

INTRODUCTION
To make knowledge management less cumbersome 

for human operators, a team of APL experts called the 
Rosetta Data Stone team proposes an ML-based method 
to help automate knowledge management. This method 
discovers and categorizes new data through a process of 
acquisition, representation, and model-driven recogni-
tion (Figure 1).

Not only does our approach help address the cost 
issues associated with data management, but it also 
increases an organization’s level of data readiness with 
the ability to acquire or identify sufficient usable data 
in preparation for unknown future tasks. For example, 
adverse events like the COVID-19 pandemic left many 
organizations scrambling to acquire and organize data. 
Our approach enables organizations to discover the 
resources in the wild, discover the resources they have 
at hand, and mobilize data for unexpected situations at 
a moment’s notice. Furthermore, a fully matured version 
of this technology can organize and maintain a data 
bank from accessible data on the internet and an orga-
nization’s intranet.

We aimed to tackle the problem of data set categoriza-
tion and topic recognition. Our core hypothesis was that 
ML techniques can reliably determine a representative 
topic for a data set, leading to increasingly granular data 
set recognition as more characterization and context 

Data set �les

Parse data set/
metastats

Data card

Score and rank

Category and tag

Classi�cation Ontology match

Feature
extraction

Word
embedding Ontology

Figure 1. Overall pipeline predicting a category or creating a tag 
from a data set file or a set of data files. A corpus of data set files 
is used to create data cards, feature vectors, knowledge graph 
scores, classification, and similarity scores. Categories are used to 
mark relevant data set files for the ML models of interest. Tags are 
used to store the data set files in data set catalogs for faster and 
more relevant access.
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information can be mined in the 
metadata extraction phase. Much 
like how natural language pro-
cessing (NLP) has successfully 
determined the subject or topic 
of written passages, our ML tech-
niques can evaluate the subject 
matter of raw data sets.

METHODS
Data

The Rosetta Data Stone team 
initially faced the same data cura-
tion problem that we aimed to 
solve. We first had to find, collect, 
and extract the data set metadata 
for training and testing of our 
topic classifier models. At the 
start of the project, we only had 
access to the myriad of COVID-
19 public data sets published and 
collected for daily tracking of the 
status of the pandemic at the local 
level. However, these data sets 
had little variation and required 
many hours of manual labeling. 
We quickly pivoted from COVID-
19 data sets as our primary data 
source and developed additional 
collection agents for data.gov 
and Kaggle, both of which pro-
vided greater variation of topics, 
more text metadata, and preexist-
ing labels. The COVID-19 data 
focused on low-level variations in 
COVID-19 topics, and the data.
gov and Kaggle data sets spanned 
a broad set of topics.

We created a standardized 
representation of a data set’s 
metadata, called a data card, 
to establish a universal data set 
metadata template. Each data 
card contains information such as 
the data owner, source location (or URL, for web data), 
date/time of collection, and file name. Metadata are 
stored in a key-value pair format to flexibly support the 
vast differences in metadata fields between data cards 
and addition of new data fields in the future. Addition-
ally, the key-value pair format allows us to better capture 
hierarchical metadata such as table names (sheets in 
Excel), column names, and a set of computed attributes 
for the data in each column, shown in Figure 2.

We created 119 data cards from COVID-19 data sets 
from public web sources, with data on cases, deaths, 

tests, vaccinations, and hospitalizations. We also created 
11,013 data cards from data sets found on data.gov17 and 
1,460 data cards from data sets from kaggle.com,18 each 
with its own set of topic classes. The COVID-19 data 
cards were combined with the coronavirus data cards 
into a single coronavirus topic class inside the data.gov 
data card set.

To automate data card creation, we developed custom 
Python data collection agents for COVID-19 data collec-
tion, data.gov, and kaggle.com. We provided the COVID-
19 data collection agent with links to downloadable 

{
"catalog_id”: "nnnnnnnn",
"datacard_id": "nnnnnnnn",
"dataset_catalog_name": "sample_series-12-15-2020",
"dataset_classification": "UNCLASSIFIED",
"source_data_name": "COVID_19_Project",
"source_location": https://xx.dy.co/,
"source_organization":"a state department of health",
"source_filename":"xxyyy.csv",
"date_updated":"12-15-2020"
"datacard_generation_timestamp": "2021-06-13T00:00:00"
"data_topic":"/health/epidemiology/COVID-19/deaths",
"data_POC_name":"public",
"data_POC_email":"NONE",
"data_POC_phone":"NONE,
"notes":"additional free text notes about the data set go 

here",
"other_metadata":{

"metatags":"example1,example2,example3",
"page_title":"web page title",
?

},
"tables": [

{
"table_name": "name_of_table_one",
"num_rows":256,
"num_cols":13,
"header_size":1,
"norm_distribution":0.00,
"columns":[

{
"column_id": 0
"header": "Cases",
"column_heuristic_type":"sequential", 
"column_regex":"(\d5)",
"entropy":1,
"unique_value_count":1,
"percent_nan":0.05,
"prefix": "(",
"suffix": ")",
"column_correlation":"[column_index],[score]",
"data_type": "string",
"type_specific_metadata":{

"character_set": "0123456789ABCDEF",
"avg_spaces|_": 0,
"percent_word": 0,
"percent_capitalized": 0,
"min_length": 4,
"max_length": 8,
"percent_empty": 0

}
}

]
}

]
}

Figure 2. Example of a data card. The data card presents metadata in a standardized way. 
In addition to the expected metadata fields like file name or creation date, our data card 
contains a hierarchical set of attributes to capture table names, column names, and column 
attributes—all important pieces of information for training the ML algorithms.
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data files. In contrast, the data.gov and kaggle.com 
agents systematically crawled each website looking for 
data to download based on known website structure. 
In all cases, we configured the agents to download only 
comma-separated values (CSV) and Excel spreadsheet 
(XLSX) format files because of their popularity and ease 
of use. Upon collection, these agents then called a set of 
functions to analyze the data set to build a data card for 
that instance of the data set. The top eight categories 
were used for the combined data.gov and coronavirus 
data card set, and the top nine categories were used for 
the Kaggle data card set (Figure 3).

Models
We encoded characteristic metadata fields from the 

data cards into numerical matrix form for use in devel-
oping topic association models. The support vector 
machine, random forest, and knowledge graph matching 
on unsupervised word-vector encodings were the high-
est performing methods, but we also tested hierarchical 

clustering analysis (HCA), neural network (NN), and 
K-means clustering models.

We ran a set of experiments on each classifier and 
data card set. Data card set refers to a collection of data 
cards such as the combined data.gov and COVID-19 
public data sets and the and Kaggle data sets. We pre-
dicted the best fit category for each data card in a data 
card set and computed the multicategory accuracies in 
each experiment.

Within these experiments, both one-hot encodings 
and word embeddings were chosen as testable tech-
niques for vector encoding of the data cards (data signa-
ture approach). Word embeddings relied on a pretrained 
language model, GloVe,19 to transform elements of the 
data cards into 300-dimensional vectors. The efficacy of 
these vectors in distinguishing between different topics 
was then validated using 2-D principal component anal-
ysis. We showed that clustering was possible across the 
entire corpus of data sets we had collected. These vec-
tors were then used by the above classifier techniques to 
train the random forest (RF), support vector machine 
(SVM), and HCA topic classification models. Addition-
ally, one-hot encodings were used to produce vectors 
for training RF, NN, and K-means clustering models for 
other experiments. Finally, five-fold cross validation was 
used to produce the model hyperparameters.

Knowledge Graph Matching
A promising experiment relied on matching data card 

attributes with the Wikidata knowledge graph.20 This 
approach is an unsupervised classification technique 
that uses pretrained language models (such as GloVe) to 
compute the shortest distances between metadata word-
vectors and knowledge graph subtree vectors. To reduce 
computation time and hardware requirements, the team 
manually selected subtrees of the knowledge graph rel-
evant to the topics found within the collected data sets. 
These trees were recursively defined as children of a root 
node with a subclass or subinstance relation. We found 
that extracted topics were not comprehensive, so we aug-
mented the topic subtrees with entities based on human 
intuition and glossaries found on a respective topic.

The next step of the knowledge graph matching 
method was extracting a matrix representing the knowl-
edge graph subtrees. Word embeddings were extracted 
for each word in the knowledge graph subtree using 
the GloVe word-embedding model. The word embed-
dings were used to form an n by m matrix, where n is the 
number of words in the knowledge graph topic subtree 
and m is the embedding dimension, 300.

We then extracted a matrix representing word embed-
dings of semantic entities found in the data card. Words 
were parsed from the column names, file name, URL, 
and online summary information; these were then used 
as semantic entities. A word embedding was calculated 
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Figure 3. Data.gov and Kaggle data cards topic class distribu-
tion. Because the classes are highly imbalanced, the problem at 
hand is difficult.
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for each semantic entity and was used to form an m by 
k matrix, where k is the number of extracted semantic 
entities and m is the word-embedding dimension. Again, 
we used the GloVe language model to generate word 
vectors from the data cards.

The matrix multiplication of the two word-embed-
ding matrices obtained was computed, representing 
each pairwise similarity score of semantic entities in the 
knowledge graph topic subtree and the semantic enti-
ties of the data card. We found the topic score by taking 
the average of the top 30 elements of the matrix. The 
topic with the highest score with respect to a data card 
was deemed the predicted topic class for the respective 
data card.

RESULTS
Hierarchical clustering and one-hot encoded super-

vised learning methods scored below 40% on all data 
and were not included in any of the final evalua-
tions. RF and SVM yielded the highest accuracies for 
the data.gov data cards, achieving 82.0% and 86.3%, 
respectively (Figure 4). The knowledge graph matching 
method yielded 50.2% accuracy for the kaggle.com data 
cards, followed by 48.8% accuracy for the SVM model 
(Figure 5).

For the data.gov data cards, adding the knowledge 
graph subtree topic scores to the word-embedding data 
resulted a consistent 1% increase in the SVM model 

performance to 87.3% (best so far), and a consistent 2% 
increase in the RF model, demonstrating the benefit of 
hybrid approaches where statistical learning through 
word embeddings are improved by the rule-based learn-
ing from knowledge graphs.

Our experiments were run on two different data 
card sets or compilation of data sets from a single data 
repository. The data.gov data sets were more narrowly 
confined and had topic label associations that could be 
used for scoring the machine categorizations, and the 
Kaggle.com data sets were more diverse and represen-
tative of a data-in-the-wild ecosystem. Figures 4 and 5 
are confusion matrices of our classifiers on the data.gov 
and kaggle.com data sets, respectively; these offer a more 
detailed breakdown of classification performance. A 
perfect confusion matrix would have a completely dark 
diagonal with completely white squares in other loca-
tions. For example, our two best classifiers consistently 
classified data cards in the coronavirus, revenue, educa-
tion, and geospatial topic classes for the data.gov data 
set. Similarly, the knowledge graph matching method 
consistently classified data cards in the housing/finance/
business and education categories for the kaggle.com 
data set. However, the other topic classes were much 
lighter on the diagonal and had more misclassifications 
distributed elsewhere.

The rows represent misclassifications for a particular 
topic classes. For example, as shown in Figure 4, food data 
cards were commonly misclassified as housing/finance/
business, physical sciences, and social sciences data 
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Figure 4. Performance of RF and SVM classifiers using the data signature engineered feature on data.gov data cards. The RF method 
achieves 82.0% accuracy and the SVM 86.3%. The rows represent misclassifications for a particular category/topic; columns represent 
actual category/topic predicted.
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cards. The columns represent the actual topic classes 
that we predicted. Although we had a high prediction 
accuracy for housing/finance/business data cards, the 
knowledge graph matching classifier misclassified many 
other data cards as housing/finance/business.

DISCUSSION
We explored a variety of classification techniques to 

determine the data set topic. Ranging from traditional 
statistical classifiers to the latest NLP techniques, we 
assessed basic performance metrics and determined 
which techniques are most promising. Of the techniques 
tested, performance was largely based on the method 
used to translate the data card into the data points used 
by the classifier algorithm. For example, classifiers that 
relied on one-hot encoding performed poorly, while 
those that leveraged many-dimensioned word-embed-
ding vectors performed favorably.

The highest performing classifiers for the data.gov 
data card data set were the SVM and RF trained on the 
300-dimensional GloVe word embeddings. The data.
gov metadata set had large groups of data sets that were 
published by the same government agency for address-
ing specific issues. This method likely performed well 
because the learning algorithms were supervised, which 
enabled them to associate existing tightly grouped clus-
ters of similar data sets to the corresponding topic class 
without misclassifying too many other data cards. The 

knowledge graph matching method relied heavily on 
extracted semantic entities. The data.gov data cards 
often lacked semantic entities in their file titles, URLs, 
and online summary text, likely causing poor perfor-
mance for the knowledge graph matching method.

The best performing classifier for the kaggle.com 
data set was our knowledge graph matching approach. 
Kaggle.com data cards spanned a wider range of topics 
with broader class definitions. Data sets were created by 
a larger range of users for less specific problems and often 
belonged to multiple topics, which may suggest a higher 
inherent noise for the classification task. Kaggle.com 
data cards often had useful semantic entities in the file 
titles, URLs, and online data set summaries. As a result, 
the knowledge graph matching method performed mar-
ginally well in terms of average accuracy. Interestingly, 
the knowledge graph matching method performed sig-
nificantly better in terms of precision on rare topic class 
data cards. Additional benefits of the knowledge graph 
matching method are the high interpretability, unsuper-
vised nature, and potential integration with graph ana-
lytics. The method relies on language model embeddings 
of both the topic classes and data cards, and no labeled 
training examples were needed for learning. As a result, 
new candidate topic classes can be discovered through 
knowledge graph matching. Additionally, the set of can-
didate topics to classify can vary and only needs to be 
defined immediately before running the classifier. These 
benefits favor additional investigation into this method.
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Figure 5. Performance of SVM and knowledge graph matching approaches on kaggle.com data cards. Average accuracies are 48.8% 
and 50.2%, respectively. The lower accuracy percentages relative to the data.gov data cards are because the kaggle.com data cards 
spanned a wider range of topics, with broader definitions. The data sets also often belonged to multiple topics, meaning the classifica-
tion task may have encountered a higher inherent amount of noise.
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Overall, the current techniques rely heavily on gen-
eral-purpose open-source knowledge graphs and word-
embedding models. Open-source knowledge graphs 
and word-embedding models may not work well when 
used directly with classified data sets because they were 
not created with classified information and concepts 
in mind. However, fine-tuning general-purpose models 
and knowledge graphs with classified data can replicate 
or improve on our preliminary results. Conversely, aug-
menting proprietary and classified data with publicly 
and commercially available data could also yield perfor-
mance benefits for classified mission areas.

FUTURE WORK
While the current work focused on validating our 

hypothesis of using ML techniques to classify the topic 
of an unknown data set, we also believe that no model 
will be perfect. An ensemble of models will provide 
greater overall accuracy, further reducing the burden 
on a human data curation team. The best performing 
methodologies, namely those applying NLP techniques 
to transform the metadata in our data cards into numer-
ical vectors for training their models, are expected to 
be refined further and integrated into an ensemble. 
Future work will explore in-depth feature selection and 
fine-tune the classifiers using lessons learned from the 
current work.

While existing models are refined, more models 
will be developed in parallel for the ensemble in future 
work. Ensemble weighting approaches will begin basic 
assignments across models, with options to adjust indi-
vidual weights algorithmically or with expert input after 
reviewing initial results. The ensemble should improve 
on the validation metrics of the individual models, 
allowing individual solutions to be compared directly 
with the combined solution.

While our current efforts focused on publicly avail-
able data sets and associated topics, we hope that future 
work will focus on mission-specific topics and mission 
data sets. Work is ongoing to solidify a viable concept of 
operations document among the different departments 
and sectors at APL. Using cumulatively trained models 
to deal with a variety of data across domains, we can use 
transfer learning in future deployments in operational 
environments.

In addition to the mission-focused domain in future 
work, we intend to demonstrate the utility of the Rosetta 
Data Stone concept by developing an end-to-end system 
that automates data curation from data set discovery to 
fully published data sets in a searchable data catalog. 
This demonstration will integrate other prototyped 
capabilities from this work that are still in progress, 
including data crawlers and graph analytics on data 
cards. The demonstration will also incorporate addi-
tional functional components: the fine-tuned topic class 

prediction models, classifier ensemble, human–machine 
teaming interface, and live data catalog.

Another capability to be implemented is expanding 
the data catalog into a complete knowledge base. This 
expansion would capture metadata about data usage, 
answering the who, what, when, where, and why about 
data sets and their use. This capability would provide 
additional usage statistics, such as which data sets are 
commonly requested together, to inform future data 
fusion prediction models.

Finally, these experiments were conducted with no 
feedback loop from the envisioned human–machine 
teaming that the final architecture would offer. Ideally, 
as deployed classification models generate topic predic-
tions on new data sets, the human team would validate 
the results and make minor corrections, where neces-
sary, before the system updates the catalog with the new 
data set information. This human feedback is critical to 
refining the word models, knowledge graphs, and subse-
quent deployed classification models for improved accu-
racy from the automated systems.

CONCLUSION
The Rosetta Data Stone effort successfully showed 

that there are viable ML methods for determining 
the topic that an unknown data set is describing. We 
showed that a more in-depth, standardized represen-
tation of a data set’s metadata, which we call a data 
card, provided sufficient information about each data 
set to train classifiers that perform reasonably well. We 
also showed that our diversity of approaches was criti-
cal to addressing diverse data sets. We expanded data 
set metadata by building on common data set attri-
butes used to catalog data sets for filtering and human 
retrieval. Attributes such as data set name, location, 
and classification—all high-level attributes—were 
augmented with attributes describing the data con-
tained in the file, such as column names and entropy, 
data type, and column correlation for each column. 
Our goal was to use this augmented data card to train 
many classifiers on what data sets describing different 
topics “looked” like and to predict when new data sets 
resembled others of the same topic. This performance 
was achieved after transforming data cards into multi-
dimensional word vectors using the publicly available 
GloVe word-embeddings model.

The current results are especially valuable in filter-
ing out less viable approaches. However, more work is 
needed to study its relevance in classified contexts. In 
addition, accuracy can be improved with more data and 
by mining more contextual information on each data 
set. We look to complete our ensemble classifier for our 
end-to-end pipeline and investigate methods for using 
humans in the loop.
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The vision for our proposal is to build the founda-
tional capabilities needed in a data-driven ecosystem 
that will allow for variations in software analytic solu-
tions, data storage solutions, computing platforms, and 
changing environments/requirements. The data-driven 
ecosystem must be agnostic to the mission, workflow, 
and technology to enable solutions to meet fluid data 
and demands. Without tremendous effort, these goals 
are unobtainable using today’s commercial ecosystems, 
unless data are centrally stored within their environ-
ment—but even this leads to siloed and rigid capabili-
ties and vendor lock. Rosetta Data Stone will provide 
an accessible framework that lowers the cost of entry 
for knowledge management and a roadmap for future 
adoption, including analytic research, applications, and 
refinement. By turning the associated risk profile on its 
head and breaking down barriers, this system can poten-
tially disrupt the entire knowledge management ecosys-
tem, leading to APL’s next defining innovation.
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