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ABSTRACT
The Johns Hopkins University Applied Physics Laboratory (APL) is leading Dragonfly, a mission to 
study the prebiotic chemistry of Titan, one of Saturn’s moons. Given Titan’s diverse surface envi-
ronments, mobility is crucial to the science mission, so controls engineers are faced with the chal-
lenge of designing an autonomous flight-control system for an aerial vehicle that will operate in 
uncertain environments. Part of the flight controller development approach involves testing with 
a half-scale test vehicle in an Earth environment; and one part of this process is system identifica-
tion. Here, we detail the design and testing of the first round of system identification experiments 
with the test vehicle in which random-phase multisines were injected into the attitude commands 
during hover. Four experiments were performed using the half-scale test vehicle. Because of signifi-
cant wind disturbances, the collected data had low coherence and were ultimately unsuitable for 
nonparametric frequency response estimation. System identification is an iterative process, and 
we present several planned ways to improve the coherence of the flight data.

INTRODUCTION
In the mid-2030s, if all goes to plan, a Mini Cooper–

sized lander will gently touch down on Saturn’s moon 
Titan. The APL-led NASA mission is called Dragonfly, 
and its goals are to characterize Titan’s habitability, study 
prebiotic chemistry, and search for signs of life.1 Titan 
has a thick nitrogen atmosphere, methane clouds and 
rain, and a carbon-rich surface of lakes, rivers, craters, 
and dunes.2 The engineering challenge is to relocate the 
scientific instruments to multiple high-interest sites to 
sample materials and measure compositions, so lander 
mobility is key. Taking advantage of Titan’s dense atmo-
sphere, low wind speeds, and low gravity, the lander has 
been designed as an uncrewed aerial vehicle (UAV), spe-
cifically an octocopter (Figure 1). It will explore terrains 

Figure 1. Artist’s rendition of Dragonfly on the surface of Titan. 
The scientific instruments on the self-contained rotorcraft lander 
will sample materials and measure composition. The lander is 
planned to gently touch down in the mid-2030s. 
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separated by more than 110 miles (~177,000 m) over the 
3-year nominal mission duration.

But how do we design a control system for this unsta-
ble system in an uncertain environment? To start, we 
need a dynamics model of the UAV. Traditionally, we 
would build a dynamics model of the UAV and use it 
to develop the control system, and we would validate 
the model on flight-test data with the actual aircraft. 
That way, we could be reasonably certain that the 
control systems would function as expected. However, 
the full-size Dragonfly UAV that will be sent to Titan 
could not fly in Earth’s atmosphere, so it is impossible 
to validate the model and controller response on flight-
test data. Instead, we have created a dynamics model 
that can represent the lander on Earth or Titan with a 
change in model parameters. Both the model itself and 
the approach to generating the model parameters will be 
validated in the Earth environment with flight tests of 
a half-scale test vehicle. A comparison of the test vehi-
cle’s simulated behavior and flight-test telemetry will 
guide the iterative refinement of the model parameters 
and ultimately validate the approach to generating the 
model parameters.

System identification is a collection of techniques to 
accurately characterize the dynamic response of a physi-
cal system, subsystem, or individual component from 
measured data. In particular, a method called frequency 
domain system identification has proven useful for rotor-
craft. Sinusoidal perturbations to the control inputs 
while the UAV is at steady-state operating conditions 
(e.g., hover or steady, level flight) result in changes to the 
UAV’s attitude. By computing the frequency responses 
with Fourier analysis, one can identify the model param-
eters and uncertainties. This method has been used to 
analyze the handling qualities of modern military and 
civilian aircraft,3,4 design and optimize control laws 
for octorotors,5,6 estimate an aircraft’s dynamic model 
in real time,7,8 and identify the plant dynamics of the 
Mars helicopter.9

We have developed a process to identify the dynam-
ics of the Dragonfly UAV using frequency system identi-
fication. It consists of (1) designing and performing the 

system identification experiments, (2) preprocessing the 
flight data before starting system identification, (3) com-
puting the frequency response function, (4) performing 
parametric modeling, (5) validating the Simulink model 
of the flight dynamics by comparing it with the paramet-
ric model, and (6) analyzing the sensitivity of relevant 
parameters. At this early stage in the project, we are iter-
atively improving the experimental stimuli to increase 
the coherence of the flight-test data (steps 1 and 2), and 
some of those methods and results are presented here.

METHODS
Simulation

The Closed Loop Sim is a Simulink (MathWorks) 
parameterized dynamical model of the lander. It is used 
for control algorithm development, sensor and actuator 
sizing analysis, and various design trade studies. The 
simulation includes parameters for Earth and Titan, 
and the same onboard guidance, navigation, and con-
trol (GNC) algorithms apply to both environments. It 
contains simplified models for all flight systems, includ-
ing the plant, the system we aim to identify (Figure 2). 
Every experiment was thoroughly tested in the simula-
tion prior to being loaded onto the onboard controller.
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Figure 2. Control diagram of the lander. The mobility guidance, navigation, and control (MGNC) code is common to the Titan and Earth 
landers. The plant contains the Dragonfly dynamics (e.g., aerodynamics, wind conditions), the rotor drive electronics, and battery.

Figure 3. Dragonfly test UAV during flight test. The test vehicle 
is an approximately half-scale version of the Dragonfly lander, 
designed and fabricated at APL. It weighs 43.2 kg and measures 
1.3 m × 1.2 m × 1.2 m, including the rotor arms, landing skids, sen-
sors, batteries, and computing elements.
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Test Vehicle
The test vehicle is an approximately half-scale ver-

sion of the Dragonfly lander, designed and fabricated 
at APL (Figure 3). It weighs 43.2 kg and measures 
1.3 m × 1.2 m × 1.2 m, including the rotor arms, landing 
skids, sensors, batteries, and computing elements.

The test article has an inertial measurement unit 
(HG5700, Honeywell Aerospace) running at 100 Hz, a 
navigation camera to measure horizontal displacements 
(Basler), a laser altimeter for range-to-ground sensing, 
and a barometric pressure sensor for altitude. It is pro-
pelled by eight rotors with electronic speed controllers, 
and power comes from two 5,000-mAh lithium poly-
mer batteries. The flight software is generated directly 
from the closed-loop simulation’s GNC code using 
MATLAB’s Code Generation Toolbox and loaded onto 
the onboard processor (MCP750, Motorola).

Experiment Design
Some of the most important decisions that need to 

be made during the system identification process per-
tain to the stimulus design. To maintain system stability, 
these experiments are closed loop, so the control system 
is actively keeping the test vehicle near the hover condi-
tion at approximately 15 m altitude. We modified the 
GNC code to inject periodic perturbations to the lateral, 
longitudinal, yaw, and collective 
(thrust) commands computed by 
the onboard controller (Figure 4). 
We measure the resulting Euler 
angles, angular velocities, and 
acceleration of the vehicle body 
frame located at the center of 
mass. For this analysis, we assume 
that the axes are decoupled, so 
they are treated as four indepen-
dent single-input, multiple-output 
systems. During flight, the opera-
tor manually triggers a sequence 
of periodic excitations, and the 
axes are perturbed sequentially.

The stimulus we sequentially 
apply to the individual attitude 
commands is called a multisine 

(Figure 5). The perturbation to each axis, xxx in 
Figure 4, is a linear combination of sinusoids,

 

System Identification for Model Validation

Erin Sutton, PhD

December 22, 2021

u(t) =

Nf∑
k=1

Ak sin (2πfkt+ ϕk)

f = 0.1 ∗ [1, 3, 7, 13, 19, 29, 37, 43, 53, 61, 71, 79, 89, 101, 107]
ϕ = rand([0, 2π])

G(jωk, θ) =
Y (jω)

U(jω)
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where Nf is the number of harmonics in the signal. Ak, 
fk, and k are the amplitude, frequency, and phase of kth 
harmonic, respectively. A good excitation signal should 
excite the system in the frequency band of interest. After 
a literature search, we decided to start with 15 frequen-
cies: 0.1, 0.3, 0.7, 1.3, 1.9, 2.9, 3.7, 4.3, 5.3, 6.1, 7.1, 7.9, 8.9, 
10.1, and 10.7 Hz. The base frequency, 0.1 Hz, is slower 
than the lowest bandwidth of the controller. A lower base 
frequency would have been preferred for studying the 
lower-frequency structural modes, but the experiment 
length is constrained by the battery life. The frequencies 
are prime multiples of the base frequency to eliminate 
harmonic coincidence and enable measurement of non-
linear distortions.10 The stimulus period is 10 s, so we 
chose an experiment length of 20 s. The integer number 
of periods eliminates spectral leakage, and having two 
periods per experiment increases the spectral resolution. 
In fact, more periods of input would enable time-domain 
averaging to reduce noise, but again, the duration was 
constrained by the battery capacity. Each harmonic was 
assigned a constant random phase between 0 and 2. 
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Figure 4. Control diagram. The stimuli were applied as perturbations to the deflection commands prior to the inner loop attitude controller.
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The amplitude was tuned in the simulation to keep the 
throttle commands under 65% and limit the vertical dis-
placement. The amplitudes were 9°, 9°, and 5° for roll, 
pitch, and yaw, respectively. The throttle disturbance 
was 20%. The axes are excited individually and sequen-
tially, with 15 s of settling time between axes, so a single 
experiment lasted 265 s.

Flight Tests
Flight tests are performed with Federal Aviation 

Administration approval at a private airfield. A licensed 
pilot closely monitors the flight and has the ability to 
override the flight software commands with manual 
joystick inputs. The guidance system ensures that the 
system identification commands are only accessible from 
hover mode. The test stimuli were preprogrammed into 
the flight computer and initiated by the remote opera-
tor. For this study, four experiments were performed over 
2 days in July 2021.

Preprocessing
After the flight test, we load the data into our pre-

processing script in MATLAB to prepare it for the later 
system identification scripts. We crop the data to times 
during which a stimulus is applied to a given axis. We 
visually inspect the data to look for a response, and 
then we compute the magnitude-squared coherence of 
the angular rates and deflection commands. The coher-
ence measures how much of the output power is lin-
early related to the input power. Using the roll axis as 
an example,
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where Sroll(j) is the cross power 
spectral density of roll angle, , 
and the roll deflection command, 
roll, at the input frequency, j. 
The power spectral densities for 
the roll angle and roll command 
are S(j) and Srollroll(j), 
respectively. As a rule of thumb, 
the minimum acceptable coher-
ence for estimation is 0.6.3 If an 
experiment does not reach that 
threshold, it is excluded from fur-
ther analysis. As a final prepro-
cessing step, the input and output 
data are detrended through mean 
subtraction and saved.

Frequency Response Function
The broad goal of system iden-

tification is a parametric model of 
the underlying system, in our case, 

the lander. That is, we aim to find the unknown param-
eters  (e.g., mass properties, motor torque constants) 
in the transfer function that governs the closed-loop 
system dynamics,
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where Y(j) is the Fourier transform of the system output 
y(t) (e.g., roll angular rate). Similarly, U(j) is the input 
to the system in the frequency domain (e.g., roll angle 
deflection command). Parametric modeling is a com-
plicated process requiring a series of user decisions—for 
instance, the order of the numerator and denominator of 
G(j,). Thus, it is recommended to obtain some knowl-
edge about the system before performing parametric 
modeling. One tool that can provide information about 
model order, delays, and noise characteristics is the 
empirical, nonparametric frequency response function,
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(k) = |Ĝ(jωk)|2

1− γ2(ωk)

γ2(ωk)

1

. (4)

Here, Y(k) is the discrete Fourier transform of the 
output at the kth harmonic of the input, U(k). The 
frequency response function quantifies the frequency 
response of a system to an excitation, normalized by the 
magnitude of the excitation. It is essentially the trans-
fer function of the system at discrete frequencies. Our 
analysis code computes the frequency response func-
tion between the angular rates and the deflection com-
mand for each axis at each stimulus frequency. In the 
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experiments presented here, the input 
for each axis is the deflection com-
mand, and the outputs are the corre-
sponding Euler angle and angular rate.

RESULTS
Preprocessing

First, we visually inspected the raw 
data from each experiment (Figure 6). 
The signals appear noisy in the time 
domain (Figure 7 shows roll axis data). 
In the frequency domain, there are 
clear angle and angular rate responses 
to a few stimulus frequencies, and there 
is significant noise (Figure 8). Interest-
ingly, there is variation in the deflection 
command between the experiments, 
especially at low frequencies. The roll 
rate amplitude response is very small 
compared with the input command. 
Again, these closed-loop experiments 
were conducted with the active flight-
control system, so angular rates and atti-
tude estimate from the navigation filter 
are fed into the inner loop attitude con-
troller. The roll axis data were the most 
coherent (Figure 9), and pitch, yaw, and 
heave data from these four experiments 
were unsuitable for frequency response 
function estimation because of low 
coherence. A weather station near the 
testing site reported high wind speeds 
during the approximate times of each 
experiment (Table 1).

Frequency Response Function
For periodic excitations, the fre-

quency response function is obtained by 
dividing the output by the input spec-
trum (Eq. 4), and it is commonly repre-
sented as a discrete Bode plot. For this 
set of experiments, only the roll axis 
data had sufficient magnitude-squared 
coherence for estimation, so only the 
roll axis frequency response function is 
presented here (Figure 10).

DISCUSSION
System identification is an iterative 

process, and we are investigating how 
to improve the coherence of the data. 
Literature suggests that possible causes 
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of low coherence are extraneous 
noise, leakage errors from the dis-
crete Fourier transform (avoided 
with integer stimulus period), and 
other inputs besides u(t) (including 
disturbances) that contribute to 
the measured output.11 We expect 
that the high wind reported on the 
test days explains most of the poor 
coherence because we also saw 
high experiment-to-experiment 
variance. Atmospheric turbulence 
creates transient responses and 
acts as an unmeasured input to 
the system, so tests should be con-
ducted in calm air.4 To mitigate 
this disturbance, future tests will 
be conducted on days with wind 
lower than 2 m/s, as measured 
with a portable anemometer.

The challenge in designing 
stimuli is exciting the system with 
sufficiently high power to increase 
the signal-to-noise ratio but not 
drive it from its nominal operat-
ing point. With that in mind, we 
made some changes to the stimuli 
that should improve performance 
in future experiments. First, we 
changed the frequencies in the 
multisine stimulus to 0.04, 0.12, 
0.20, 0.28, 0.44, 0.52, 0.76, 0.92, 
1.48, 1.88, 2.68, 3.88, 5.24, and 7.16 
Hz. These 14 log-spaced frequen-
cies will focus the excitations on 
the lower frequencies, where we 
expect the largest response. Next, 
we optimized the phases to mini-
mize a measure called the relative 
peak factor.12 The optimization 

increased power at the input frequencies and decreased 
the peak-to-peak excursion of the system during an 
experiment, keeping the system near the hover condi-
tion (Figure 11). We have increased the battery capac-
ity since the first round of experiments, so we will also 
increase the stimulus duration to 75 s and discard the first 
period to remove transients, which leaves two periods of 
data for estimation. Additionally, time-domain averag-
ing has been shown to reduce random noise effects on 
the frequency response function,11 so we will increase the 
number of experiments to 10, discard experiments with 
low coherence, and average the remaining experiments 
before applying the Fourier transform.

To maintain stability, we conducted these experi-
ments with the control system active, so angular rates 
and attitude estimate from the navigation filter are fed 
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Table 1. Mean magnitude-squared coherence over all frequencies and approximate 
wind speed during each experiment

Mean(p2()) 
roll

Mean(q2()) 
pitch

Mean(r2()) 
yaw

Wind speed 
(m/s)

Experiment 1 0.9232 0.7491 0.5763 5.0

Experiment 2 0.9304 0.5433 0.6094 6.0

Experiment 3 0.9137 0.6045 0.524 6.0

Experiment 4 0.7687 0.6293 0.3876 6.5

Wind speed was obtained from the wunderground.com archive for a weather station near the 
flight-test location.

http://www.jhuapl.edu/techdigest
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rotor torque constant comes from wind tunnel experi-
ments. If the rotor torque constant value generated 
during flight tests with the half-scale UAV does not 
match the wind tunnel data, perhaps we need to make 
changes to the wind tunnel test parameters (e.g., speeds, 
angles). In this way, experiments on Earth inform the 
Titan parameters, since we cannot replicate Titan in 
a wind tunnel. Finally, we will perform Monte Carlo 
simulations with small perturbations to relevant param-
eters and analyze sensitivities. For the most sensitive 
parameters, we will attempt to reduce the uncertainty 
with further tests. As a final step, we will build robust-
ness into the control system around the parameters 
with the most uncertainty, such as those affected by 
unmodeled dynamics.
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into the inner loop attitude controller. As a result, we 
observed coupling in the input commands and degraded 
results on single axes, especially at low frequencies 
(Figure 8). The coupling does not affect the frequency 
response function for individual channels in the fre-
quency domain, but it does suggest that we should per-
form a multi-input, multi-output analysis in the future.4

NEXT STEPS
After we complete the nonparametric frequency 

response analysis, the next step of the model validation 
process is parametric modeling. An existing analytical 
linearized model of the plant will be the basis for the 
parametric model. Then, the system identification pro-
cess will fit parameters to the model that best capture 
the recorded flight dynamics. That will enable us to 
quantitatively evaluate the methods used to generate 
the parameter values. For instance, the value for the 

Figure 11. Comparison of the stimulus in the time domain (left) 
and frequency domain (right) with random-phase multisine (blue) 
and the proposed stimulus (red). The proposed stimulus is longer 
and has optimized phases, and the frequencies are log-spaced.
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