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Link-Layer Identification of Device Signatures: Wi-Fi 
Sensing for Crowd Analytics
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ABSTRACT
The Johns Hopkins University Applied Physics Laboratory (APL) Link-Layer Identification of Device 
Signatures (LLIDS) research effort uses machine learning  techniques to identify unique wireless 
device signatures from patterns in link-layer data. Identifying signatures can increase situational 
awareness, assist in estimating crowd sizes, provide pattern of life, and protect facilities and infra-
structure through activity surveillance. Link-layer Wi-Fi data are unique because they can be col-
lected without access to a network and with devices that have low size, weight, and power (SWaP) 
requirements. The LLIDS multilayer system design breaks down link-layer data into unique device 
signatures using a combination of pattern recognition and state-of-the-art algorithms.

people present in a location is strongly correlated to the 
number of devices.3

The research described in this article primarily 
focuses on wireless link-layer signatures, specifically 
Wi-Fi (IEEE 802.11)4 signatures. Most Wi-Fi link-layer 
analyses use probe request frames as the data source. 
These frames are broadcast messages that devices use 
to look for wireless networks in the area to connect to. 
Devices broadcast these messages continuously when 
Wi-Fi is enabled. The frames are unencrypted plain-text 
messages that can easily be processed into identifying 
features for further analysis.

Link-layer data have historically been used for a 
variety of analytics. For example, retailers in shopping 
malls previously used link-layer data for retail analytics 
to better understand the trends and behaviors of cus-
tomers.5 These historical analyses typically utilized the 

INTRODUCTION
The link layer is the second layer of the Open Sys-

tems Interconnection (OSI) model.1 It consists of the 
physical addressing of devices to networks and resides 
between the physical layer, which consists of the physical 
signals, and the network layer. Link-layer data are easy 
to collect because of their location in the OSI model. 
Since the data are in the form of frames and not raw 
signals, specialized hardware is not needed, unlike in the 
physical layer. Since the data are not connected to a net-
work, they can be collected right out of the air, unlike 
in the network layer. Any device with Wi-Fi enabled is 
transmitting link-layer data, and it is very easy to collect 
the data with devices with low size, weight, and power 
(SWaP) requirements. In addition, the number of wire-
less devices is rapidly increasing, so the amount of data 
available is also increasing.2 Most Americans (85%) own 
a smartphone and carry it regularly, so the number of 
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device MAC address, a globally unique identifier, which 
could be used to identify and track individual devices. 
However, in 2014 manufacturers started implementing 
MAC address randomization on their devices to increase 
privacy,6 making these previous analyses impossible 
because the globally unique identifier was removed.

The research described in this article focuses on 
extracting other identifying information to differentiate 
device signatures from probe requests since the broad-
casted MAC address is no longer a unique identifier. 
The proposed identification system enables some of the 
previously described analyses, such as crowd analytics, 
to be conducted again. However, since the broadcasted 
MAC address is not the globally unique address spe-
cific to that device, the identified devices cannot be 
tied to an individual or the device itself without some 
additional intelligence (camera feeds, etc.). By identify-
ing link-layer device signatures, a variety of analyses are 
possible to aid various missions, such as crowd analysis, 
threat detection, and anomaly detection. This work was 
completed under APL’s Asymmetric Operations Sector 
Independent Research and Development program.

BACKGROUND
Since the onset of MAC address randomization, 

there have been many studies on techniques to circum-
vent MAC address randomization for identification and 
characterization purposes. Some studies have focused on 
reverse engineering randomization from probe requests 
to better understand the methods used.7,8 While these 
techniques provide valuable insight into randomization 
techniques used by manufacturers, they are not gener-
alizable since randomization is not standardized. Other 
studies have looked at active methods to differentiate 
devices, but these methods require interaction with the 
devices and a response, rather than using the passive 
frames already sent by the device.9

A variety of methods successfully analyze probe 
requests across different manufacturers. The regularity 
of interarrival time of frames is a popular method to dif-
ferentiate devices by binning the times to recognize pat-
terns for each device.10,11 Cunche, Ali Kaafar, and Boreli 
look at the Service Set Identifiers (SSIDs), or network 
names, that devices are probing for to identify devices.12 
All these techniques have been successful with a small 
set of devices but have not proved successful for large, 
dense environments (50+ devices). Probe request analy-
sis has also been used for purposes other than identifica-
tion. Sequence numbers from probe requests have been 
used to identify MAC address spoofing by looking for 
multiple sequences occurring at the same time, which is 
indicative of multiple devices with the same address.13 
Vanhoef et al. track devices with probe requests using 
information element fingerprints, clustering, and 
sequence number techniques.14

LINK-LAYER IDENTIFICATION OF DEVICE 
SIGNATURES
Overview

As mentioned, link-layer data are unique in that 
they are very easy to collect, and with the explosion of 
smartphones in today’s markets, there is an abundance 
of Wi-Fi data available for collection. By collecting the 
unencrypted link-layer Wi-Fi data broadcast from smart 
devices, signatures for those devices can be formed to 
differentiate the devices and estimate the number of 
smart devices present. Since there is no standardiza-
tion for probe requests, the data can vary significantly 
depending on the operating system, manufacturer, 
device model, and user configuration and usage. With 
the many dimensions to these data, the Link-Layer 
Identification of Device Signatures (LLIDS) system pro-
vides a dynamic solution that is independent of device 
and manufacturer and does not require knowledge of 
the environment. This research uses a combination 
of machine learning techniques that are designed to 
handle large data sets that are more representative of 
public settings in today’s world.

Data Set
The identification system was created primarily using 

the Sapienza data set from Community Resource for 
Archiving Wireless Data at Dartmouth (CRAWDAD) 
for development and testing.15 The Politics 1 data set 
includes a packet capture collected during a political 
meeting in Rome, Italy, on February 22, 2013. The col-
lection occurred before MAC address randomization, so 
the addresses in the capture can be used as ground truth 
of devices. MAC address randomization was then added 
to the data set for testing. For all the probe requests from 
a given device, the one true MAC address was replaced 
with anywhere from three to ten total addresses. The 
data set includes roughly 8 h of data and 1.7 million 
probe requests. It was split into 2-h blocks and then split 
into separate development and testing data sets.

Feature Extraction
As with any machine learning algorithm, the output 

is only as good as the input data it is provided. To assign 
each frame to a final device signature, identifying fea-
tures needed to be extracted from each probe request. 
Each frame serves as the exemplar for all algorithms. To 
start, a large number of potential features were extracted 
from probe request frames, and the final list was chosen 
based on features with the highest average merit across 
the data set (i.e., features that provided the most iden-
tifying information to differentiate devices). Ultimately 
the features extracted as inputs to the different algo-
rithms include frame length, radio duration, frame 
length subtracted by SSID length, channel, first byte 
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of address, signal strength, sequence number, time, data 
rate, resolved Organizational Unique Identifier (OUI), 
and SSID. If the OUI or SSID field is empty, the feature 
is set to an empty string. This research only uses fields 
required in the 802.11 probe request specification as fea-
tures, rather than optional tagged fields, so the system 
will be compatible with future versions of 802.11 Wi-Fi.4

Identification System Design
The identification system concept is designed for 

scalability and robustness. The multilayer approach, 
shown in Figure 1, uses machine learning to break 
down large data sets into manageable sample sizes. Ini-
tial research using only clustering techniques found 
that devices of the same manufacturer were frequently 
grouped together, so additional layers were added to the 
system design. The system has three layers, as shown in 
Figure 1: (1) the manufacturer group classification layer, 
(2) the clustering layer, and (3) the device decision logic 
layer. The second layer uses unsupervised learning, also 
known as clustering techniques, to differentiate devices. 
The first layer was added to separate the frames by man-
ufacturer group so the clustering algorithm can detect 
device-specific differences rather than manufacturer-
specific differences. The third and final layer was added 
to ensure that the final device signature assignments 
are unique. This last layer uses a combination of state-
of-the-art algorithms to break down the clusters into 
unique device identifications. The identification system 
uses the following steps with the assumption that there 
is no MAC address spoofing (multiple devices with the 
same MAC address):

1. Extract features from each probe request exemplar.

2. Classify the exemplar to a manufacturer group 
(layer 1).

3. Cluster all exemplars in a manufacturer group into 
clusters (layer 2).

4. Regroup exemplars with the same MAC address to 
the same cluster assignment.

5. Break down each cluster into unique device signa-
tures by using a combination of state-of-the-art algo-
rithms and decision logic (layer 3).

Layer 1: Manufacturer Group Classifier
Layer 1 is a multiclass supervised learning classifier 

designed to classify each probe request frame to a manu-
facturer group. The purpose of this classifier is to break 
data sets into manufacturer groups since the manufac-
turer is a high-level identifier for devices. By separating 
a large data set into smaller manufacturer-specific sets, 
the clustering algorithms in layer 2 can better detect the 
device-specific differences rather than the manufacturer-
specific differences. The classifier was developed with 11 
phone manufactures as the output classes. The manufac-
turers include Apple, Google, Hon Hai, HTC, Huawei, 
LG, Murata, Nokia, Samsung, Sony, and TCL. These 
manufacturers were chosen based on prevalence in data 
sets and market share.16 While the results of this clas-
sifier provide some indication of the true manufacturer 
of the devices, the classifier is not optimized for profil-
ing the manufacturer of devices since it is only designed 

with 11 classes.
The following fea-

tures are used in the 
classification: frame length, 
radio duration, frame length 
subtracted by SSID length, 
channel, and first byte of 
address. These features are 
similar to those used in 
the clustering algorithms 
but optimized for classifi-
cation accuracy. Several 
classification model types 
were tested, and a subset 
of the results is shown in 
Table 1.17 As shown in 
the table, the ensemble – 
bagged trees model was 
the most accurate, with 
89.7% accuracy, and was 
ultimately used in the iden-
tification system. The deci-
sion tree model was close in 

(1) Manufacturer 
  group 
  classi�cation

(2) Clustering of
  manufacturer
  groups

(3) Device
  decision
  logic

Mfg:
Samsung

Mfg:
Apple

Raw data
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Cluster Cluster Cluster Cluster Cluster

Device Device Device Device Device

Device Device
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Figure 1. Identification system design. The multilayer approach uses machine learning to break 
down large data sets into manageable sample sizes. The system has three layers: (1) the manufac-
turer (Mfg) group classification layer, (2) the clustering layer, and (3) the device decision logic layer.
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accuracy to the ensemble model, but the Bayesian and 
support-vector machine (SVM) models performed nota-
bly worse. This is likely because the features chosen are 
mostly non-Gaussian.

Layer 2: Clustering
The clustering layer is the foundation of this research, 

which aims to differentiate devices on a frame-by-frame 
basis. The clustering algorithm cannot require a number 
of clusters as an input since the number of devices is 
unknown and handling non-Gaussian features. The fea-
tures used include frame length, radio duration, frame 
length subtracted by SSID length, first byte of address, 
and signal strength. Several algorithms were tested, but 
the density-based OPTICS (ordering points to identify 
the clustering structure) and agglomerative algorithms 
were ultimately chosen since they were the best fits for 
the algorithm requirements.18,19 The OPTICS algo-
rithm is the primary algorithm. However, the agglom-
erative algorithm requires all requests be assigned to a 
cluster, while OPTICS uses a “–1” assignment for out-
liers. This difference can be important for various use 
cases, so both were kept in the system for future modu-
larity. Initial testing showed that an average of 75% of 
frames were regrouped to the same cluster compared 
with the worst-case scenario of 35% where the devices 
were assigned using their random MAC address. While 
these algorithms perform well, multiple devices are often 
still found in each cluster in dense environments. Thus, 
for scalability, another layer was added to separate the 
unique devices.

Layer 3: Device Decision Logic
The purpose of the third layer of the identification 

system is to ensure the uniqueness of the device signa-
tures. The layer is designed to look at each cluster and 
determine whether there are multiple devices in the 
cluster and, if there are, separate them. This is done by 
calculating a similarity score between the data of all 
MAC addresses in the cluster and using a threshold to 
combine data above a certain similarity where the data 
are assumed to be from the same device. The similarity 
score is calculated using a weighted combination of the 
result of two algorithms: interarrival time similarity and 

SSID set similarity.10,12 Both algorithms were derived 
from techniques found in published papers and imple-
mented based on their documentation, but the imple-
mentation may not be identical to that from the paper. 
The result of this layer is that each probe request frame 
is given a device signature assignment that is unique to 
that run of the identification system. This final assign-
ment can be used to determine the number of devices 
present for crowd analytics and other applications.

RESULTS
Identification System Performance

Since there are several layers and algorithms in this 
system, it is important to evaluate the system using 
several metrics. The main metrics of this system are 
the number of devices identified, homogeneity, and 
completeness. It is critical to look at all three metrics 
because it is possible to improve performance of one 
metric at the cost of another. Thus, all must be con-
sidered to ensure there are no performance trade-offs. 
The following results compare the LLIDS identification 
system with three algorithms found in the literature. 
The interarrival time similarity and SSID set similarity 
algorithms are discussed earlier. The sequence number 
correlation algorithm looks at the sequence number 
over time to look for discrepancies in the sequences 
(i.e., multiple sequences happening at the same time) to 
differentiate devices.

Figure 2 shows the average number of identified 
devices for the different techniques compared with the 
true number of devices in the data set, the goal. The 
data sets ranged from 10 to 1,000 devices, which is repre-
sented logarithmically on the x axis. LLIDS, interarrival 
time similarity, and SSID set similarity all perform well 
by closely estimating the number of true devices, shown 
by the bottom black line. The sequence number correla-
tion algorithm performs poorly by estimating the worst-
case result, the total number of MAC addresses present, 
which includes randomization and is significantly more 
than the number of devices. This plot demonstrates 
LLIDS’s ability to accurately identify the number of 
devices present, which is important for analyses such as 
crowd analytics among others.

The two plots in Figure 3 show the homogeneity and 
completeness scores for the identification techniques for 
the differently sized data sets.20 Each score is measured 
from 0 to 1, where a score of 1 is ideal. These scores are 
commonly used to evaluate the performance of unsuper-
vised learning algorithms. Completeness is a measure 
of whether all frames of a device are in the same sig-
nature (i.e., ability to regroup all frames from a device). 
Homogeneity is a measure of whether each signature 
contains only frames of a single device (i.e., ability to 
identify unique signatures). Figure 3, left, shows that the 

Table 1. Classification accuracy by model type

Classifier Model Type Accuracy (%)

Ensemble – bagged trees 89.7

Fine decision tree 82.7

Gaussian naive Bayes 62.4

Cubic support-vector machine (SVM) 72.0
The ensemble – bagged trees model was the most accurate and was 
ultimately used in the identification system.
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trade-offs and that the iden-
tification system is viable for 
many different use cases.

Potential bias in the 
system was also studied. First, 
the breakdown of perfor-
mance defined by the homo-
geneity and completeness for 
each manufacturer group was 
analyzed to ensure that the 
identification system is not 
biased toward certain manu-
facturers. For example, while 
Apple devices are much 
more prevalent (roughly 50% 
of devices in the CRAW-
DAD data set), their perfor-
mance was similar to that of 
other manufacturer groups. 
Thus, there was no signifi-
cant difference in perfor-

mance between manufacturer groups despite significant 
differences in frequency in the data set. Second, the 
amount of data available for each device was analyzed to 
ensure that the system is not biased toward devices with 
more data or more frequent probe requests. The system 
performed well for devices with as little as five samples, 
with an average score of 0.8 for completeness and 0.98 
for homogeneity. In fact, the system performed worse 
with large amounts of data (100+ samples) for a given 
device, where completeness decreased while homoge-
neity increased. This is likely caused by the clustering 
algorithms. Since the algorithms are density based, the 
device is split into multiple clusters when there are large 
amounts of data available, as observed in the complete-
ness and homogeneity scores. Because of this finding, 
it is recommended that the system be run on mid-sized 
batches of data where fewer than 100 samples are avail-
able for a device. Depending on the density of the envi-
ronment, this could be between 15 and 90 min.

completeness score for all the algorithms is comparable. 
However, Figure 3, right, shows significant performance 
differences among the algorithms’ homogeneity scores. 
The sequence number correlation algorithm performs 
the best but at the cost of accurately estimating the 
number of devices, as shown in Figure 2. This indicates 
that the algorithm is doing well at differentiating the 
devices but is doing so by separating devices into many 
different signatures. On the other end of the spectrum, 
the interarrival time and SSID similarity algorithms 
accurately estimate the number of devices but at the cost 
of homogeneity. This indicates that these algorithms are 
mixing probe request frames across different signatures, 
so the results are not unique. LLIDS performed relatively 
well, with an average homogeneity score of 0.8 and a 
completeness score of 0.7, demonstrating the system’s 
ability to accurately identify individual device signatures. 
The LLIDS system’s good performance across all three 
metrics indicates that there are no clear performance 
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strates LLIDS’s ability to accurately identify the number of devices present.

LLIDS
Interarrival time 
similarity
Sequence number 
correlation
SSID set similarity

Identi�cation
technique

Si
gn

at
ur

e 
co

m
pl

et
en

es
s

No. of devices in data set

1.0

0.8

0.6

0.4

0.2

0
   10                      50      100               500   1,000    10                      50      100               500    1,000

No. of devices in data set

Si
gn

at
ur

e 
ho

m
og

en
ei

ty

1.0

0.8

0.6

0.4

0.2

0

Figure 3. Signature completeness (left) and homogeneity (right). LLIDS performed relatively well, with an average homogeneity score 
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The total numbers of identified LLIDS signatures and 
unique staff count for each 2-h collection are shown in 
Figure 4. The LLIDS identification system results closely 
correlate to the number of staff members present, which 
indicates that the system can accurately estimate the 
number of devices present. Provided with just the LLIDS 
results, one can see clear crowd trends from the week of 
the collection, including the high peaks, which indicate 
the workdays compared with the weekend days, and the 
large increases and decreases, which indicate the arrival 
and departure times of staff members.

DISCUSSION

Wi-Fi Sensing for Public Safety
This research has many potential applications, 

including Wi-Fi sensing for human movement feedback. 
Understanding human movement after emergency 
alerts are issued is important to determine the effec-
tiveness of alerts and strategies for future alerts.21 Wi-Fi 
sensing with LLIDS can be used for crowd estimation 
to provide feedback about human movement and the 
efficacy of alerts. This information would be delivered 

Crowd Estimation Demonstration
The results using the Sapienza data set proved prom-

ising, but since the data were from 2013, additional test-
ing was required to ensure that LLIDS can also identify 
modern devices. A collection was conducted on APL’s 
campus in a building lobby where staff members are 
required to swipe their badges to gain entry. APL has a 
substantial interest in advanced technologies to main-
tain the security of its property, and this building lobby 
is a prime location for assessing the potential benefits of 
the LLIDS identification system in an environment that 
contains modern devices deploying MAC address ran-
domization. The results of the collection were provided 
to APL’s head of facilities security. 

To protect the privacy of the device owners, the 
MAC addresses and SSIDs were hashed to obscure any 
potential identifier that could tie the identified device 
signatures to the owners. In addition, the packet cap-
tures collected were deleted after being processed into 
feature tables, so the raw data cannot be used for other 
purposes. Probe requests were collected for a week in 2-h 
blocks using a small, single-board computer in monitor-
ing mode. Each 2-h block was processed through the 
LLIDS identification system and interarrival time iden-
tification algorithm. These results were compared with 
the unique staff count in the area collected from APL’s 
badge reader data, which serves as the ground truth, and 
the number of MAC addresses, which serves as the worst 
case during each 2-h block.

Table 2 outlines the comparison of the target staff 
count with the different identification methods given by 
the total count from the identification method divided 
by the target staff count. The LLIDS output is very close 
to the target, with an average 1.2 times the staff count. 
This result would likely be improved by removing the 
devices found in the space at 
all times, such as laptops and 
other smart devices such as 
TVs. The interarrival time 
algorithm overestimates the 
target staff count by 14 times. 
The number of unique MAC 
addresses observed through the 
week severely overestimates 
the number of staff members, 
with an average 43 times more 
addresses than staff members. 
This demonstrates that the 
LLIDS system closely estimates 
the number of true devices 
(estimated here by the staff 
count), especially compared 
with the MAC address count, 
which grossly overestimates the 
number of devices and is the 
main identifier available today. 

Table 2. Comparison of identification methods

Identification Methods Comparison to Staff Count

LLIDS signatures 1.2×

Interarrival time signatures 14×

MAC addresses 43×

The LLIDS system closely estimates the staff count, especially 
compared with the MAC address count, which overestimates the 
number of devices.
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Figure 4. LLIDS signatures vs. unique staff count. The LLIDS identification system results closely 
correlate to the staff members present, and provided with just the LLIDS results, one can see 
clear crowd trends from the week of the collection.
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SUMMARY
Unsupervised learning methods, such as clustering, 

in combination with additional algorithms proved to be 
a successful technique for differentiating devices of vari-
ous manufacturers in dense environments. The multi-
layer identification system successfully breaks down 
large data sets and more accurately identifies device sig-
natures. More development and testing is necessary to 
create confidence in the identification system’s use for 
specific missions. However, the system’s initial results 
for crowd analysis are very promising. With the increas-
ing prevalence of wireless devices in people’s lives, the 
LLIDS system provides an important technique for 
crowd analytics for use cases such as public safety and 
disaster relief, among others.
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in near real time and could provide situational aware-
ness of movement to assist decision-making related to 
future alert implementation. Since this technique uses 
Wi-Fi signals, which have a range of roughly 60 m, 
this method is not appropriate for analyzing large-scale 
areas such as states or interstate highways. Instead, 
focusing on high-impact, high-density areas such as 
city hot spots, public transit locations, bridges, toll sta-
tions, and even gas stations would provide important 
indicators of the public’s movement. Observing these 
high-impact areas would provide decision-makers with 
near-real-time feedback on the movement of crowds 
and the effectiveness of alerts. In addition to identifying 
movement after alerts, this observation system could 
also notify officials of other emergencies, such as ter-
rorists threats or accidents, by discerning anomalies in 
human movement at these locations that are consistent 
with public emergencies.

Next Steps
The team is working with various collaborators to 

continue development and to apply the identification 
system to specific mission use cases such as the public 
safety case discussed. The next steps for development 
depend on the mission application and needs, but sev-
eral recommendations are listed here. For crowd analysis 
use cases such as the public safety example, more testing 
with larger data sets representative of dense, high-impact 
environments with modern devices is recommended. 
Other missions may require building out specific algo-
rithms for analysis and deploying units for collection. A 
near-real-time system will be of interest to groups with a 
need for rapid feedback. To collect data in near real time, 
the LLIDS system would need to be set up to run batch 
processing using a rolling time window to get frequent 
updates and enough data for accurate results. Many mis-
sions will also need to correlate results from different 
identification batches since the signatures found in the 
current LLIDS system are unique to that run. This cor-
relation would allow for more accurate identifications 
and understanding of long-term analytics. The correla-
tion algorithms would require a similar multilayer design 
but would compare device signature objects instead of 
the individual probe request frames. For data collec-
tion use cases, a hardware study is encouraged to survey 
various potential collection devices and determine the 
best devices and methods. The network interface of 
the small, single-board computer used for this research 
timed out after a few hours and required a reboot, which 
resulted in lost data during the downtime. The team will 
explore extensions of the frame/packet-based machine 
learning techniques of the research, such as Bluetooth 
or cellular device identifications. These applications 
require different features and optimized algorithms but 
would use the fundamentals of the research.
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