
C. R. DeMay et al.

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest154    

AlphaDogfight Trials: Bringing Autonomy to 
Air Combat

Christopher R. DeMay, Edward L. White, William D. Dunham, and 
Johnathan A. Pino

ABSTRACT
The Defense Advanced Research Projects Agency (DARPA) Air Combat Evolution (ACE) program 
“seeks to increase trust in combat autonomy by using human–machine collaborative dogfight-
ing as its challenge problem. This also serves as an entry point into complex human–machine col-
laboration” (https://www.darpa.mil/program/air-combat-evolution). To set the stage for ACE, the 
AlphaDogfight Trials program was created to explore whether artificial intelligence (AI) agents could 
effectively learn basic fighter maneuvers. DARPA contracted the Johns Hopkins University Applied 
Physics Laboratory (APL) to create an arena to host simulated dogfights—close-range aerial battles 
between fighter aircraft—where autonomous agents could be trained to defeat adversary aircraft. 
During the dogfight trials, AI agents competed against each other and the winner competed against 
a human pilot. By the end of the trials, the program demonstrated that AI agents could surpass the 
performance of human experts. APL was critical to the success of this program: the Lab created 
the simulation infrastructure, developed the adversary AI agents, and evaluated the competitors’ 
AI solutions. This article details APL’s role in advancing combat autonomy through this program.

platforms, coordinating and collaborating to complete 
mission objectives. To most effectively team with their 
autonomous partners, pilots will need to develop trust 
in their actions and capabilities. The Defense Advanced 
Research Projects Agency (DARPA) launched its Air 

INTRODUCTION
The vision for the future of air combat is one where 

unmanned aerial vehicles (UAVs) are operated by arti-
ficial intelligence (AI) algorithms in highly complex 
and dynamic environments. These AI-driven UAVs 
will need to function seamlessly in teams with manned 

Sponsored by Defense Advanced Research Projects Agency Strategic Technology Office: Air Combat Evolution (ACE) Program; Purchase Request 
HR0011942236; Program Code MCAC0 under Contract No. HR0011-17-D-0001/Task Order HR001119F0091. The views and conclusions contained in 
this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the Defense 
Advanced Research Projects Agency or the US government.

Some content in this article is based on C. DeMay, M. Rich, E. White, W. Dunham, J. Pino, W. Li, Z. Akilan, B. Barkley, K. Brady, and C. Cooke, 
“AlphaDogfight Trials final report,” FPS-R-20-0698 (report to DARPA), Laurel, MD: APL, 2020, Unclassified/For Official Use Only.

http://www.jhuapl.edu/techdigest
https://www.darpa.mil/program/air-combat-evolution


AlphaDogfight Trials: Bringing Autonomy to Air Combat

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest 155    

Combat Evolution (ACE) program1 to develop trusted, 
scalable AI capabilities for air combat. The ACE program 
seeks to accomplish this goal by building and evaluating 
AI algorithms first in a modeling and simulation envi-
ronment and then flying those algorithms on subscale 
UAVs and finally on full-scale aircraft such as F-16s.

A precursor to ACE, the AlphaDogfight Trials 
(ADT) program was created as a risk-reduction effort 
for the larger program. This competition-based activity 
sought to answer three core questions:

1. Is it possible to teach an AI algorithm to perform 
within-visual-range air combat?

2. Can we engage a diverse set of companies, including 
those that are not traditional defense contractors, to 
capture innovative AI concepts?

3. Can a novel program structure accelerate the devel-
opment of new AI technologies and applications?

OVERVIEW
Working closely with DARPA, APL played a critical 

role in shaping and developing the ADT program. In our 
first responsibility as the trials coordination team (TCT), 
we assisted DARPA with developing the announcement 
to solicit proposals and then served as subject-matter 
experts to advise the DARPA team that evaluated pro-
posals. Competitors were solicited under the Autonomy 
Research Collaboration Network (ARCNet), a con-
sortium that brings together experts from academia, 
industry, and the government to develop autonomous 
technologies for the warfighter. From the proposals, 
DARPA selected eight technically and organizationally 
diverse companies, from a university research institute 
to several small companies to a large defense contractor, 
to compete in the trials. Through-
out ADT, we served as the primary 
conduit between DARPA and the 
eight competitor teams, working 
collaboratively to advance the state 
of play throughout the program.

For the trials’ modeling and 
simulation environment, we devel-
oped a framework called the Coli-
seum where the AI algorithms 
were trained and tested in one-
versus-one (1-v-1) combat, and 
where the APL-developed algo-
rithms would face off against the 
selected competitors. To test the 
arena and to establish a baseline 
for the performance of competing 
autonomous agents, we developed 
numerous autonomous adver-
sary agents over the course of the 

competition. These agents became progressively more 
complex, with the most highly advanced agents devel-
oped using deep reinforcement learning (RL) techniques 
that trained via self-play without human input. Ahead 
of the first ADT competition event, these agents were 
provided to competitors so that they could train and 
improve their own algorithms. As the agents were con-
tinuously updated, the teams could progressively develop 
and train their AI agents against them.

So that DARPA could identify the most promising 
AI algorithms, ADT was planned around a series of 
competition events where the algorithms were put to the 
test. Between events, APL hosted scrimmages. During 
the first two competition events, teams faced the APL-
developed adversary agents in a series of constructive 
dogfight engagements. In a third event, added after the 
program was extended because of the coronavirus pan-
demic, teams competed against each other’s agents. The 
trials culminated in a 3-day virtual competition, broad-
cast to the public, where teams competed in simulated 
combat scenarios against the APL-developed AI agents 
and each other, and the champion competed against a 
human pilot. To date, the final event, ADT 3, has gar-
nered over 440,000 views on YouTube, and the game-
changing outcome has been recognized by the air and 
space community2 and the Pentagon.3

In this article, we first describe our technical approach 
for creating a common simulation environment. We then 
describe the scripted and AI adversary agents we devel-
oped for training. And finally, we outline the competi-
tion from program inception through the virtual finals.

SIMULATION ENVIRONMENT
For the simulation environment, we developed the 

Coliseum, an AI arena where AI agents train and 
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Figure 1. The ADT simulation environment. The framework was developed using a com-
bination of open-source (OS) and APL-developed middleware. ADT competitors were 
responsible for only their autonomous agents. Leveraging OS software enabled the team 
to rapidly create a framework to meet program timelines.
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compete. It is a constructive, 
faster-than-real-time frame-
work that combines the 
open-source flight dynam-
ics software JSBSim4 with 
APL-developed middle-
ware, autonomy algorithms, 
and visualization software 
to simulate 1-v-1 dogfights. 
An overview of the simula-
tion environment is shown 
in Figure 1. APL-developed 
and competitor-developed 
agent algorithms plug in to 
the ADT simulation envi-
ronment through the ADT 
autonomy framework. This 
framework connects to the 
ADT Gym-JSBSim environment using OpenAI Gym–
inspired standards that allow simple integration of com-
petitors’ agent development tools. The Gym-JSBSim 
environment calculates aircraft states derived specifically 
for ADT, manages the underlying JSBSim flight dynamics 
instances, and pushes information to visualization tools.

Visualization
To enable livestreaming of an engagement, the 

ADT simulation environment contains an ACE viewer 
application. The ACE viewer uses IEEE 1278 Distributed 
Interactive Simulation standard protocol data unit pack-
ets from the simulation environment to display the 
dogfights.5 The application is built on the open-source 
CesiumJS world renderer for 3-D geographical display and 
shows the aircraft in the engagement, trails of the aircraft 
trajectories, and the weapon engagement zones.6 Relevant 
information, such as engagement time, tactical data about 
each aircraft, the commanded inputs from the agents and 
actual flight control system response, and the health of 
each aircraft, overlays the 
Cesium display, as shown in 
Figure 2. The ACE viewer 
was developed to mimic 
capabilities used at Nellis 
Air Force Base and Naval 
Air Station Fallon to debrief 
pilots after training missions. 
For clarity and cohesiveness, 
a unique color scheme that 
matches the palette of the 
overall event scoreboard was 
used for each competitor.

Virtual Reality
To enable human expert 

pilots to dogfight the AI 

agents, we created an ADT virtual reality (VR) system 
for the human pilots. This system provides the pilots with 
information intended to match the information given to 
the AI agent. A graphical summary of this engagement 
information is provided in Figure 3. In addition to provid-
ing typical fighter displays, such as a traditional heads-up 
display, the VR headset also presents ADT simulation-
specific components to enhance the pilot’s situational 
awareness of the threat and their relative positioning.

Developing the ADT heads-up display was an itera-
tive process with current and former pilots who helped 
to optimize not only which information was displayed 
but also how it was displayed.

AUTONOMY DEVELOPMENT
For training and evaluation, APL developed numer-

ous adversary autonomous agents. The agents ranged in 
complexity from rudimentary agents, to scripted oppo-
nents using finite-state machines, to highly advanced 
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Figure 2. An annotated image of the ACE viewer used in ADT  3. The central image is the ACE 
viewer, and the information that it displays is labeled.
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Figure 3. Annotated image of the ADT 3 heads-up display. The information displayed to the pilot 
is labeled.
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agents developed using deep RL techniques that trained 
via self-play without human input. A graphical sum-
mary of the APL-developed adversary agents is shown 
in Figure 4.

Rudimentary Agents
As mentioned, the AI agents span a range of complex-

ity and capability. The least complex (and least capable) 
are the rudimentary agents. Their purpose is to test and 
verify that their actions propagate at the correct frequency 
and interval in the simulation environment. They are not 
intended to compete against or deceive their opponents 
and, in fact, do not react to their opponents at all.

Basic Agents
One level above the rudimentary agents are the basic 

agents. While some of these agents remain nonreactive, 
others have reactive logic based on rules inspired by 
simple basic fighter maneuvers (BFM). The basic agents 
are built on a simple proportional-integral-derivative 
controller with three loops (inner, middle, and outer). 
The controller allows the programmer to implement com-
mands in a more discrete fashion (e.g., set a desired alti-
tude) than the “hands on throttle and stick” (HOTAS) 
inputs that are native to the simulation environment. 
(Typical fighter aircraft are configured with various 
buttons and switches on the cockpit throttle lever and 
flight control stick; pilots can carry out all functions and 
fly the aircraft by keeping their hands on the throttle 
and stick and by using these buttons and switches.) The 
outer loop uses the relative positions, speeds, and head-
ings of the two aircraft to compute a desired speed and 
change in heading for the agent to intercept its target in 
a few simple profiles. The computations are derived by 
establishing a handful of cases of relative distance and 

angle and by defining a fixed 
command that is manually 
tuned to perform acceptably 
in each case. For example, at 
a large distance (10+ miles) 
and low relative angle (<60°), 
maximum speed with a head-
ing directly at the target is 
selected. The middle loop 
exposes set points for abso-
lute heading, altitude, and 
speed; these commands can 
come from the profiles in the 
outer loop or can be over-
ridden in the agent’s logic if 
desired. The inner loop takes 
the middle loop commands 
and maps them to HOTAS 
commands.

Scripted Agents
Agents in the next level are called scripted agents. 

These agents contain a small state machine that selects 
an engagement strategy based on the state of the fight. 
The agents then use the same set points as the other 
basic agents to employ or implement that strategy. For 
example, if an agent detects an opponent closing in 
from behind, it could select a “flare” strategy and rapidly 
reduce speed to force its opponent to overshoot.

AI Agents through RL and Adversarial Learning
Our most sophisticated agents were developed 

using deep RL. RL is a method of generating a desir-
able sequence of decisions (behaviors) through trial and 
error. This algorithmic approach has been shown to per-
form better than human experts in Atari games,7 GO,8 
and StarCraft II.9

The general paradigm for RL requires that an agent 
take one of a number of possible actions in an environ-
ment. The environment then provides feedback about 
the current state of the agent, along with a reward 
(either positive or negative). The agent can then learn 
the reward structure of the environment through 
repeated interactions, and it works to generate an action 
strategy (policy) that maximizes the cumulative reward 
at the end of a sequence of interactions with the envi-
ronment (game). The end result is a policy that maps 
environment states to agent actions and performs well, 
as indicated by high rewards.

RL was particularly well suited for generating a highly 
skilled agent in the ADT environment because the 1-v-1 
dogfight simulation was much faster than real time, thus 
allowing for many interactions in quick succession. In 
addition, the game has fixed rules that are transferable 
to a rewards structure well suited for RL, and the soft-
ware hooks for an open-source learning environment 
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Figure 4. APL-developed AI agents. APL developed a number of adversary agents throughout 
ADT using a variety of approaches to simulate tactically relevant opponents.
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(AI Gym) were already 
largely in place. With the 
right learning architecture, 
algorithms, and training, an 
RL agent would have broad 
knowledge of how to react 
to other agents given their 
states in the environment, 
without actually having 
trained through trial and 
error against them.

To create the agent, we 
successfully used adversarial 
RL in the form of self-play in the Coliseum. We sought 
to develop a balanced learning algorithm that was easy 
to implement, capable of learning in complex environ-
ments, and sample efficient—meaning it required fewer 
simulation runs to perform well.

The Coliseum: Learning Framework Overview
In 2018, a team in APL’s Force Projection Sector 

began developing a general framework capable of train-
ing deep RL algorithms to play both symmetric and 
asymmetric games. In this independent research and 
development project, called Athena Inspired, the team 
developed a set of design principles that combined 
open-source libraries to create an adversarial learning 
architecture. The codified implementation of the archi-
tecture is called the Coliseum. The Coliseum supported 
advanced agent development during ADT, including the 
production of RL agents.

The Coliseum manages agent development using 
adversarial self-play, as shown in Figure 5. It maintains 
a repository of historical agents, and the newest agent 
trains by playing games against these historical agents. 
The new agent’s performance is periodically evaluated 
via calculation of its win ratio in these games. Once the 
new agent achieves a desired win ratio, it is copied into 
the repository as another historical agent, and the agent 
under training has its version number incremented. 
The process repeats as the new agents train in self-play 
against the historical agents. Using this process, the cur-
rent training agent will always be able to select from a 
distribution where the best agent in the pool is itself.

The Coliseum selects opponents for the training agent 
from the repository by using a probability distribution of 
the opponents based on skill. Opponents that are more 
skilled are more likely to be selected from the distribu-
tion, although the specific logic and distributions are cus-
tomizable. Likewise, opponents that are not as skilled are 
typically chosen less frequently. This process ensures that 
agents are trained against a diverse set of adversaries with 
similar skill levels; both are necessary to prevent overfit-
ting and to promote continuous skill improvement.

The Coliseum uses the Elo system to estimate the 
agents’ skill levels relative to one another. Elo, a rating 

system invented by Arpad Elo for ranking chess play-
ers,10 has been used for a wide variety of different sym-
metric zero-sum games (i.e., games where one agent wins 
and one loses). In the Elo system, a game’s result is con-
sidered a sample from a Gaussian distribution around 
the agent’s skill. To produce an accurate Elo rating, the 
agent must sample many games against an opponent to 
determine relative skill levels. Although there are other 
ranking systems, Elo remains the most popular for zero-
sum adversarial games.

The simulation environment for ADT provides a true 
score at the end of the game. There are two main tech-
niques for mitigating the effects of sparse reward signals: 
reward shaping and curriculum learning.

Reward shaping uses the current observation space 
and expert knowledge to provide a reward signal to the 
agent more frequently. Although using expert knowledge 
helps to ensure that a computed reward is frequently pro-
vided for “good” behaviors, it is prone to incentivizing 
behaviors that are often unintended or not in the spirit 
of the game. Reward shaping also limits the agent’s over-
all ability to find optimal policies, since part of the solu-
tion is prespecified by the developer.

In curriculum learning, the agent first learns to solve 
an easier task to develop a certain behavior or policy 
that will transfer to a harder task. Curriculum learning 
requires the game designer to create a set of scenarios 
that will gradually converge to the real task over multiple 
iterations. When developing agents, we used a combina-
tion of curriculum learning combined with the Colise-
um’s self-play to achieve strong performance. After each 
evaluation period, if the desired win ratio is achieved, 
the Coliseum pushes the curriculum one iteration closer 
to the final game. Using a well-designed curriculum can 
prevent the need to use reward shaping.

DEVELOPMENT OF COMPETITION EVENTS
APL developed the ADT competition structure and 

planned and executed three trials and numerous scrim-
mages for the eight competitors (see Figure 6). During 
ADT 1 and ADT 2, 2-day events held at APL in 
November 2019 and January 2020, respectively, the eight 
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Figure 5. Illustration of adversarial self-play. Self-play is an agent-training pattern in which an 
agent plays against a mixture of historical copies of itself within the simulation environment.
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teams—Aurora Flight Systems, EpiSci, Georgia Tech 
Research Institute, Heron Systems, Lockheed Martin, 
Perspecta Labs, PhysicsAI, and SoarTech—competed 
against APL-developed AI agents in a series of construc-
tive dogfight engagements. During ADT 2.5, a virtual 
scrimmage added in May 2020 after a program exten-
sion resulting from the coronavirus pandemic, competi-
tors submitted their own agents to APL and competed 
against one another in a round-robin competition. 
The finale, ADT 3, was a 3-day virtual competition 
broadcast live from APL via ZoomGov and YouTube in 
August 2020. Events included a flight brief, a series of 
simultaneous batch runs, live performance tracking via 
a dashboard, and playback/debrief of individual runs.

ADT 3—Virtual Finals
The finals were designed to provide critical insight 

into the future of AI’s role in air combat. The event was 
originally planned to take place at the US Air Force’s 
AFWERX innovation hub and then at Nellis Air Force 
Base (both in Nevada) but had to be postponed because 
of the COVID-19 pandemic. Rather than continue to 
postpone the event, DARPA decided to host it virtu-
ally at APL. The APL and DARPA teams collaborated 
to ensure that the 3-day public event was seamless and 
engaging for competitors and spectators alike.

Held on August 18–20, 2020, ADT 3 was broadcast 
live from APL’s Intelligent Systems Center via ZoomGov 
webinar and YouTube. On day 1, the eight teams com-
peted against the APL-developed AI agents. Day 2 
featured a competitor-versus-competitor round-robin 
face-off. Day 3 began with the top four teams competing 

in a single-elimination 
bracket competition, and the 
champion then competed 
against an F-16 pilot in an 
AI-versus-human matchup.

Production Elements
As the TCT, the APL 

team executed a wide range 
of activities to develop, 
advertise, implement, and 
broadcast ADT 3. The 
team, which included staff 
members from various APL 
sectors and departments 
with an array of skills and 
expertise, created a com-
prehensive branded ADT 3 
registration website that 
included a description of 
the event, information on 
the competitors, media 
resources (pictures, videos, 

and press releases), and the ADT visualization display. 
Leading up to the event, APL and DARPA coordinated 
to maximize publicity, with both APL and DARPA issu-
ing public media releases before and during the event. 
APL communications professionals also created visual 
materials, including a promotional video, a competi-
tion logo, and competition photos from the production 
at APL.11 Figure 7 shows some of these elements. In 
addition, the APL team provided technical support to 
ADT 3 registrants before and during the competition.

The layout of the space for the event, in APL’s Intel-
ligent Systems Center Gym, was completely reworked 
to accommodate the shift from an in-person event to 
a virtual live broadcast event. Central to this improved 
layout was the ADT Studio, which housed the “Control 
Zone” stage and displays (discussed in more detail below 

Figure 7. Some of the branded elements for ADT. The APL team 
created various visual materials, including a branded registration 
website, a promotional video, a competition logo, and competi-
tion photos of the event at APL.
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Figure 6. ADT competition overview. The competitors selected by DARPA were Aurora Flight Sys-
tems, EpiSci, Georgia Tech Research Institute, Heron Systems, Lockheed Martin, Perspecta Labs, 
PhysicsAI, and SoarTech. (Source: DARPA ACE program.)
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and shown in Figure 8) as well as the VR competition 
space (Figure 9). Signage, lighting, and other profes-
sional production elements were included in the layout 
to create an immersive competition environment for a 
broadcast using multiple cameras. The dogfights were 
run and displayed in a section the APL production team 
called the AI Arena (Figure 10). Although ADT’s origi-
nal goals did not include demonstrating how to host a 
polished virtual event, the team certainly rose to the 
unforeseen challenge.

Control Zone
As noted, one of ADT’s primary goals was to engage 

and excite partners beyond traditional Department of 
Defense contractors. To help realize that goal, ADT was 
structured as an e-sports competition (usually a com-
petitive video gaming event that includes spectators 
and commentators, similar to traditional competitive 
sporting events). At ADT 2, we introduced the Control 

Zone, modeled on ESPN’s SportsCenter, where experts 
in air combat and autonomy provided commentary. The 
Control Zone was named after the area in space where 
pilots can counter any defensive maneuver and remain 
in their controlling position. In ADT’s Control Zone, 
experts discussed the basics of AI and dogfighting, and 
how AI and human pilots train. Commentators in the 
Control Zone were both educational and entertaining as 
they provided analysis and commentary on the dogfight-
ing engagements.

Day 3—ADT Champion and Human-versus-AI Matchup
Day 3 of the trials was expected to have the largest 

viewing audience and was therefore the most highly pro-
duced.12 Pregame activities provided a look ahead at the 
final day of competition, a recap of days 1 and 2, team 
videos for four competitor teams that had already been 
eliminated (EpiSci, Georgia Tech Research Institute, 
Perspecta, and SoarTech), and live interviews with all 
eight teams. Unlike on days 1 and 2, all matches were 
shown sequentially with live commentary from the Con-
trol Zone throughout the competition. In the semifinal 1 
matchup, PhysicsAI, the number-three team, com-
peted against Lockheed Martin, the number-two team. 
Lockheed showed a commanding performance against 

Figure 8. ADT 3 studio where the virtual live event was broad-
cast. In the background are commentators in the Control Zone, 
where experts in air combat and autonomy provided analysis and 
commentary.

Figure 9. ADT  3 VR competition space where human expert 
pilots would dogfight the best AI agent. Shown is a pilot wearing 
the VR headset in combat with an AI agent. The image shown on 
the display is a pilot’s cockpit view of the dogfight.

Figure 10. ADT 3 AI Arena and production spaces. Top, The TCT 
executed the competition from the AI Arena. Bottom, The APL 
production team during production and broadcast of the show.
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PhysicsAI with a 13-to-2 kill ratio over 20 engagements. 
In semifinal 2, the number-one team, Heron Systems, 
faced the number-four team, Aurora, with Heron 
soundly defeating Aurora with a 17-to-2 kill ratio. The 
finals came down to the number-one and number-two 
teams, Heron and Lockheed Martin, for the right to 
be crowned ADT champion. Heron proved victorious, 
achieving a 16-to-4 kill ratio. Key to Heron’s success was 
its ability to execute aggressive and highly accurate for-
ward gun attacks against its opponent.

The final portion of day 3 was the main event—the 
showcase matchup between the ADT champion Heron 
and an F-16 Weapons Instructor Course graduate, 
call sign Banger. Before the matchup, Dr. Tim Gray-
son, director of DARPA’s Strategic Technology Office 
(STO), and Dr. Peter Highnam, who was then the acting 
DARPA director, provided live commentary on the 
impact of ADT. Analysts in the Control Zone recapped 
the finals, gave a mission brief of the event, and inter-
viewed Banger from the VR competition space.

The human-versus-AI matchup was a set of five 
engagements initiated from neutral starting conditions 
at varying altitudes. Figure 11 is a screen capture from 
YouTube during the first engagement. The ACE viewer 
provided an overview of the fight while also showing 
Banger in the competition space and the view from the 
F-16 pilot’s perspective.

In the human-versus-AI matchup, Heron’s AI agent 
dominated, using quick kills at the merge, and won 

5 to 0. The Heron AI agent’s highly accurate weapons 
employment proved too difficult for Banger, who was 
employing F-16 BFM-like tactics. Only on the final 
engagement did Banger manage to survive those early 
merges by using aggressive out-of-plane maneuvering 
to draw out the fight, but the F-16 Weapons Instructor 
Course graduate ultimately lost.

Although the Heron Systems AI agent swept Banger, 
we should note that the goal is not ultimately to replace 
human pilots with automated ones. Rather, it is to 
incorporate AI alongside humans to build a more effec-
tive fighting force—and the results of ADT represent 
one way to build humans’ confidence in their future 
automated counterparts.

CONCLUSION
ADT aimed to develop intelligent autonomous agents 

capable of defeating an adversary aircraft in a simu-
lated dogfight and to demonstrate their capabilities in 
simulated air combat. In doing so, ADT engaged both 
established partners and new ones, increasing technical 
and organizational diversity. We at APL, as the TCT, 
were responsible for evaluating the program; developing 
the simulation infrastructure and adversary autonomy; 
and developing, planning, and hosting three ADT com-
petition events.

This competition-based risk-reduction activity sought 
to answer three core questions:

Figure 11. ADT 3 human-vs.-AI screen capture from YouTube. This snapshot from the first engagement shows the ACE viewer, which 
provided an overview of the fight while also showing the human pilot, Banger, in the competition space and the view from the F-16 
pilot’s perspective. In this final matchup, the AI agent’s highly accurate weapons employment proved too difficult for the human pilot, 
and Heron Systems won 5 to 0.
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1.	 Is	 it	 possible	 to	 teach	 an	 AI	 algorithm	 to	 perform	
within-visual-range	air	combat?

2.	 Can	we	engage	a	diverse	group	of	partners	to	capture	
innovative	AI	concepts?

3.	 Can	a	novel	program	structure	accelerate	the	devel-
opment	of	new	AI	technologies	and	applications?

At	 the	 conclusion	 of	 the	 trials,	 we	 can	 confidently	
answer	yes	to	all	three	of	those	questions:

1.	 By	 ADT	 2,	 the	 leading	 teams	 had	 produced	 algo-
rithms	that	resembled	BFM	after	just	4	months.	By	
ADT	3,	most	of	the	teams	had	produced	agents	capa-
ble	 of	 executing	 a	 diverse	 set	 of	 offensive,	 neutral,	
and	defensive	BFM.	In	addition,	the	top	teams	dem-
onstrated	the	ability	to	go	head-to-head	with	expert	
human	pilots	and	win,	albeit	with	some	unrealistic	
characteristics,	such	as	perfect	state	information.

2.	 The	winning	 team,	Heron	Systems,	was	not	a	 tra-
ditional	 Department	 of	 Defense	 partner,	 nor	 was	
PhysicsAI,	which	ranked	in	the	top	four.	Both	teams	
developed	 novel	 approaches	 to	 train	 and	 develop	
their	 algorithms,	 allowing	 them	 to	 compete	 and	
excel	against	their	peers.	Lockheed	Martin,	a	large,	
established	 defense	 partner,	 showed	 that	 the	 big	
companies	could	also	assemble	teams	able	to	rapidly	
develop	new	technology.

3.	 A	competition	structure	with	a	common	simulation	
environment	allowed	the	government	to	assess	per-
formance	throughout	the	program.	Despite	the	lack	
of	prize	money,	the	competition	structure	itself	was	
a	 significant	motivator	 to	drive	 team	performance.	
A	more	traditional	approach	with	a	final	delivery	at	
the	program’s	conclusion	probably	would	have	lim-
ited	discovery	and	performance.

In	short,	ADT	exceeded	its	stated	goals,	and	ADT	3	
reached	an	audience	vastly	wider	than	imagined	at	the	
program’s	inception.	The	keys	to	success	in	executing	the	
trials	were	the	drive	for	constant	improvement	via	itera-
tion	and	the	collaborative	spirit	among	APL,	DARPA,	
and	 the	 competitors.	 After	 the	 event,	 Dr.	 Tim	 Gray-
son	 noted	 that	 the	 “outcome	 shows	 great	 promise	 for	
future	airborne	combat	systems	and	concepts	involving	
human-machine	symbiosis.”13	But	the	work	of	bringing	
AI	to	air	combat	has	only	begun.	As	impressive	as	ADT	
was,	there	are	still	technical	and	cultural	challenges	to	
overcome	before	this	technology	is	ready.

In	 the	 follow-on	 DARPA	 ACE	 program,	 APL	 will	
serve	as	the	Experimentation	Integration	Team.	We	will	
leverage	ADT	development	and	analysis	to	reduce	tech-
nical	 risk	 by	 evaluating	 autonomous	 control	 algorithms	
across	multiple	program	phases,	beginning	with	modeling	
and	simulation	and	progressing	to	subscale	live	UAVs	and	
then	ultimately	to	full-scale	live	aircraft,	with	the	goal	to	
develop	trusted,	scalable	AI	capabilities	for	air	combat.

The	future	of	warfare	will	be	defined	by	advanced	AI	
and	 autonomous	 systems	 that	 outthink,	 outmaneuver,	
and	outperform	conventional	manned	forces.	These	sys-
tems	will	not	replace	humans	but	will	work	in	tandem	
with	 them.	 Future	 battles	 will	 be	 fought	 at	 machine	
speeds	with	compressed	timelines	and	more	maneuver-
able	and	agile	systems.	With	sophisticated	behaviors	and	
decision-making,	 these	 systems	will	have	near-optimal	
decision-making	 and	 complex	 collaborative	 dynamic	
behaviors.	ADT	provided	a	first	look	at	what	is	possible	
at	the	intersection	of	AI	and	air	combat.	As	these	capa-
bilities	evolve,	 lessons	 learned	 from	ADT	will	 serve	as	
the	 foundation	 for	 future	 developments,	 ensuring	 that	
AI	 air	 combat	 solutions	 are	 robust,	 secure,	 effective,	
and	trusted.
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