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ABSTRACT
Liquid crystal elastomer (LCE)–based soft robots with reversible actuation could be beneficial 
for both Department of Defense and civilian applications, including in exploration of confined 
spaces, payload delivery, remote sensing and data collection, and small biomedical devices. In 
the work described in this article, we developed a first-principle model for designing high-work-
capacity LCEs. Further, we built bilayer structures for actuation applications. We then built a 
Bluetooth-controlled soft robotic system and quantified its performance. The article also discusses 
the outlook for LCE-based soft robotics for Department of Defense applications.

been truly untethered autonomous systems. In addition, 
these systems suffer from slow response kinetics. All 
these issues greatly limit the use of LCEs for untethered 
robotics applications.

Thermo-responsive liquid crystal elastomers (LCEs) 
have high potential for use in soft robotic applications as 
programmable, smart, phase-changing materials. These 
LCEs consist of two phases: a mesogenic liquid crystal 
phase and an elastomeric network. LCE alignment can 
be programmed by mechanical straining,1 electric fields,2 
and magnetic fields,3 among others. Once alignment has 
been programmed, a final network crosslinking reaction 
is introduced to lock in the programmed strain lead-
ing to polymer chains in an oblate conformation. Upon 
the input of thermal energy, the aligned LCE network 
will change from an ordered liquid crystalline state to 
the unordered isotropic state.4 The result of this phase 
change is a macroscopic shape change in which the 
aligned chains contract along the orientation direction 
and expand perpendicular to the orientation direction.

Since Yakacki et al.5 developed a “simplified LCE 
synthesis” method using the thiol-Michael chemistry, 
there have been many reports on using LCEs as novel 
phase-changing materials for actuator applications.6 
However, none of these LCE-based robotic systems have 
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Figure 1. Bilayer structures made of LCE and silicone tape for 
demonstration of bending actuation in a flower shape. Conduc-
tive heat transfer to/from liquid enables rapid switching between 
open and closed state.
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This work aims at developing an untethered auton-
omous robot that uses LCE as an actuator for unique 
Department of Defense applications by leveraging APL’s 
expertise in thiol-Michael chemistry and system design 
and optimization. Our overall effort comprised two 
steps: (1) LCE optimization and (2) LCE-enabled unte-
thered soft robotic system development.

LCE OPTIMIZATION
We took a fundamental polymer physics approach, 

with a focus on investigating ways of improving the work 
capacity of LCEs. Based on ideal rubber theory and the 
first law of thermodynamics, we developed a first-princi-
ple model showing that the work capacity (W) of an LCE 
increases with increasing network stretchability () but 
decreases with increasing specific heat (Cp) (Eq. 1).7 Using 
this relationship, we synthesized a series of LCEs with 
different compositions and determined that the experi-
mentally measured work capacity correlated well with the 
model-predicted values. In addition, we developed LCEs 
with a maximum work capacity of 150 kJ/m3—an impres-
sive value compared with the value of 50 kJ/m3 in pub-
lished literature.8

 W  
1
 2 NT 2max

2 – CpT (1)

LCE-ENABLED UNTETHERED SOFT ROBOTIC 
SYSTEM DEVELOPMENT

To leverage the phase-changing behavior of LCEs, 
we fabricated bilayer structures (Figure 1) to achieve 

simple bending upon thermal activation. These systems 
demonstrated quick shape change induced by thermal 
conduction.

Next, we designed and built an untethered soft 
robotic snail with LCE/Kapton bilayer films as actuators. 
The actuation was triggered via Bluetooth-controlled 
Joule heating of two stainless steel wires adhered to the 
surface of the LCE legs (Figure 2).9 Upon activation, the 
robotic snail was able to move a load of 55 g using two 
4 cm × 1 cm LCE/Kapton bilayers.

Last, to overcome the intrinsically slow response of 
LCE, we developed a snapping robot based on a meta-
stable, constrained bilayer design10 (Figure 3). Upon acti-
vation, a fast actuation (<2 s) was successfully achieved, 
resulting in jumping.

FUTURE OUTLOOK
The use of advanced, robust, soft materials in robot 

components or systems promises a significant leap in 
functionality approaching human-like capabilities. 
The field is popular, with fundamental research of bio-
inspired form factors (e.g., eel, octopus, jellyfish, spider, 
inchworm, and flowers) and novel actuation by various 
mechanisms (thermal, hydration, pressure, magnetic). 
However, the field is still in its infancy, with some prog-
ress being made but significant opportunities remaining. 
Often these systems lack appropriate onboard power, 
processing, and sensing such that they rely on tethers. 
Additionally, significant challenges remain with control 
theory, inverse kinematics of infinite-degree-of-freedom 
constructs, appropriate accuracy/repeatability, and dura-
bility in complex environments.
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Figure 2. Bluetooth-controlled untethered soft robotic systems. Left, Snail robot with the 
printed circuit board (PCB) not encapsulated. Middle, The same system with the PCB fully 
encapsulated. Right, a close-up of leg construction. The controlling unit is encapsulated inside 
the white shell made by 3-D printing.

Figure 3. A snapping robot using a bilayer LCE/Kapton structure adhered to a polymeric rectangular frame. Activation led to a fast 
actuation (<2 s) resulting in jumping.
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By leveraging APL’s expertise and capabilities in 
novel materials and manufacturing, sensing, novel 
power sources, controls, and artificial intelligence and 
robotics, complex untethered soft robotic systems such 
as the robosnake (Figure 4) can be realized. By advanc-
ing and integrating the component-level capabilities, we 
can take the first step toward enabling the vision of soft, 
silent, untethered robot fleets. Additionally, this tech-
nology can lead to exquisite manipulation such as soft 
touch for classic robot systems, most certainly bringing 
new capabilities to the warfighter.
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