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ABSTRACT
A Johns Hopkins Applied Physics Laboratory (APL) team developed infrared (IR) metasurface 
imaging lenses designed to selectively focus specific states of polarized light (linear and circular) 
to different locations on a detector array. The lenses’ operational characteristics make them well 
suited to miniaturize future optical sensor systems planned for deployment on small platforms or 
personnel that cannot support the volume or mass of large optical sensor systems.

to focus two different states of linear polarized light, 
transverse magnetic (TM) and transverse electric (TE), 
to separate locations on a common focal plane. This 
flat, submicron-thick lens exhibits exceptional discrimi-
nation between the two polarization states with near 
diffraction limited focusing from ~4.2 to 4.7 µm. This 
component’s diffraction limit, a parameter defined as 
the minimum-sized feature that can be resolved with 
the lens, is ~ 60 µm.

The details associated with the design, electromag-
netic modeling, and nano-fabrication of the mid-IR lens 
can be found in a previous publication on this topic.11 An 
optical image of a portion of the 1 cm2 metalens is shown 
in Figure 1, where the inset shows a scanning electron 
micrograph (SEM) image from a small region within the 
lens surface area. Each of the geometric shapes in the 
SEM image, referred to as “unit cells,” imparts a carefully 
engineered “optical phase” to the light that is scattered 
from this element. For this particular metasurface, the 
unit cells have been designed and spatially distributed to 
enable focusing of mid-IR radiation a distance of 12 cm 
from the lens. Additionally, the array has the ability to 
deflect TE and TM polarized light to opposite sides of 

Applications associated with infrared (IR) light con-
tinue to increase within the civilian and military sectors 
due, in part, to the need for accurate detection of bio-
logical1 and chemical species2 as well as the monitoring 
and control of thermal signatures.3 In the latter domain, 
for example, thermal signatures are key indicators of 
objects and are routinely used for targeting applications.4 
As a result of this interest, technical advances associ-
ated with IR sources,5 detectors,6–7 and system hardware 
have continued to emerge over the past decade.

Regarding hardware, a new class of materials based 
on metasurface technology is currently under intense 
development to address the miniaturization of opera-
tional systems and introduce multifunctional behav-
ior that is not typically available with conventional 
bulk components.8–10 Investigators at APL are actively 
involved in this technical discipline, and through APL 
independent research and development funding have 
developed IR metasurface imaging lenses designed to 
selectively focus specific states of polarized light (linear 
and circular) to different locations on a detector array. 
This article reviews results from a recently developed 
mid-IR polarization-sensitive reflective lens designed 
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the surface normal (±15°) when the lens is illuminated 
at normal incidence. This latter feature is the basis for 
polarization selective imaging.

A graphical illustration of the metalens’s operational 
performance under mid-IR illumination is shown in 
Figure 2. As noted above, normally incident TE and 
TM beams will deflect by ~15° to their respective focal 
planes on either side of the surface normal. APL devel-
oped a simple procedure for characterizing the polar-
ization selectivity of the metalens within two narrow 
spectral regions of the mid-IR (4.26 and 4.67 µm), 
which enabled the use of a single 
mid-IR detector to collect images 
associated with the four combina-
tions of input polarization/sample ori-
entation arrangements. First, with a 
linear polarizer in the incident beam 
and the sample orientated as shown 
in Figure 2, the metalens was illumi-
nated with a sequence of TE and TM 
inputs. TM light was deflected to the 
detector while the TE response was 
directed away from the TM focal 
plane. After collecting these two 
images, the sample was rotated 180° 
about the source normal, which pro-
duced a corresponding rotation of the 
TE and TM focal planes. The sample 
was then illuminated by the TE and 
TM sequences of polarized mid-IR 
light to generate the final two images 
at the detector plane.

Figure 3 shows the four images cap-
tured using this measurement proce-
dure and the two narrowband filters. 
The metalens exhibited high selectiv-
ity with regard to the input state of 

the polarization source. The dynamic 
range for discriminating between co- 
and cross-polarized signals (i.e., beam 
deflection) was determined to be 
~400, which was derived by determin-
ing the ratio of the maximum signal 
count under co-polarized detection 
and the minimum detectable count. 
These results highlight the high dis-
crimination capability of the met-
alens over a relatively wide band of 
wavelengths, where imaging quality 
is primarily limited by the intrinsic 
spectral dispersion of the diffractive 
nature of the lens design.

The operational characteristics 
associated with this type of IR lens—
high numerical aperture, polariza-
tion selectivity, and low weight and 

volume—are attributes well suited for the miniatur-
ization of future optical sensor systems. Such systems 
are critical for deployment on small platforms (e.g., 
unmanned aerial vehicles) or personnel that cannot sup-
port the volume or mass of large optical sensor systems. 
In addition to developing this polarization-sensitive 
metalens, the APL team is developing meta-based com-
ponents that will enable miniaturized imaging systems 
for operation on unmanned aerial vehicle platforms, as 
well as spectrally selective gratings for sensor protection 
against high-power lasers.

TE focal 
plane

TM focal 
plane

IR metalens

y

x

Metalens

Mid-IR

Figure 2. Illustration of the mid-IR metalens’s performance when illuminated by an 
unpolarized source. Under this sample orientation, the two different states of linear 
polarization are deflected and imaged to the TE and TM focal planes. The actual met-
alens is shown on the right side.

TE

TM

Figure 1. Optical micrograph and SEM images from the 1-cm-diameter metalens. The 
yellow scale bar in the SEM image is 3 µm in length. The TM and TE polarization designa-
tions are shown on the right.
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Figure 3. The images captured. Images of the 4.26-µm (top four panels) and 4.67-µm (bottom four panels) 
reflected from the metalens associated with the following polarization sequences: (a) TE input, TE detect; (b) 
TE input, TM detect; (c) TM input, TM detect; and (d) TM input, TE detect.
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