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ABSTRACT
With deep neural networks (DNNs) being used increasingly in many applications, it is critical to 
improve our understanding of their failure modes and potential mitigations. A Johns Hopkins Uni-
versity Applied Physics Laboratory (APL) team successfully inserted a backdoor (train-time attack) 
into a common object detection model. In conjunction with this research, they developed a prin-
cipled methodology to evaluate patch attacks (test-time attacks) and the factors impacting their 
success. Their approach enabled the creation of a novel optimization framework for the first-ever 
design of semitransparent patches that can overcome scale limitations while retaining desirable 
factors with regard to deployment and detectability.

increasingly larger roles in their respective applications, 
questions have been raised about their stability and vul-
nerability. Goodfellow et al.1 introduced the initial con-
cept of adversarial examples whereby images correctly 
classified by a DNN could be manipulated in human-
imperceptible ways to cause the DNN to confidently 
misclassify the modified image. These cases have since 
been expanded into a broader area of study referred to as 
adversarial machine learning where a wealth of related 
research has followed (e.g., Refs. 2–7).

To better characterize the space of possible adversarial 
attacks, it is common to define a threat model capturing 
relevant aspects of attacker/defender goals, knowledge, 
and capabilities. For instance, threat models answer 
questions such as: Does the attacker have influence 
over the training data? Does the attacker have access 
to the model parameters? Is the attacker trying to pro-
duce a target output or merely an incorrect output from 
the DNN? Recent research has demonstrated successful 

Artificial intelligence (AI) research of late has largely 
benefited from major advances in deep learning. Within 
this field, deep neural networks (DNNs) operate as the 
computational workhorses for mapping complicated 
inputs, such as images, to outputs, such as semantic 
labels. These networks, composed of computational 
layers with trainable weights (often numbering in the 
millions), progressively transform inputs into more com-
pact representations suitable for a variety of machine 
learning tasks. Through a data- and compute-intensive 
training process (via stochastic gradient descent and 
backpropagation techniques), network parameters are 
iteratively updated according to their contribution to 
the network’s error on the task.

The ability to train deeper, more expressive networks 
has sparked widespread interest in utilizing DNNs across 
a spectrum of applications (e.g., image, video, audio, and 
text domains). However, while DNNs (often used as 
universal function approximators) continue to take on 
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attacks over a range of threat models, thus increasing 
the need to better understand both the source of and 
solutions to these challenges.

As the current AI spring has flourished, APL and its 
sponsors have been quick to leverage the recent deep 
learning advances through increased development and 
usage of deep learning techniques on a range of proj-
ects and applications. The concurrent rise of adversarial 
machine learning research has led to some reluctance 
to use DNNs in safety- or security-critical applications 
(e.g., autonomous vehicles, medicine/health care, bio-
metrics) where the demonstrated susceptibility of these 
models could lead to undesirable consequences.

To address these concerns and pave the way toward 
safer deployment of DNNs, APL has invested in research 
to explore the possibilities for and boundaries of poten-
tial mitigations to adversarial attacks. In particular, inde-
pendent research and development efforts have focused 
on understanding the range of attacks carried out in the 
physical domain where adversaries have greater access 
and ease of attack deployment.

BACKDOOR ATTACKS
In 2019, Gu et al.8 successfully created the first known 

case of a DNN with a backdoor. By introducing a trig-
ger pattern (i.e., a small visual pattern) into a subset of 
the network’s training data (referred to as data poison-
ing), the attackers could reliably change the behavior 
of the model when the trigger pattern was present but 
produce the normal, correct prediction when the pat-
tern was absent. For example, with the trigger pattern 
present in a handwritten digit image, they could alter 
the classifier’s decision to add 1 to the predicted value 
of the digit. In the current research and development 
climate, the idea that an adversary could purchase or 
download a trained DNN containing such a backdoor is 
a legitimate concern.

While academia has remained focused on the devel-
opment of novel digitally triggered backdoors, APL is 
addressing the possibility of physically triggered back-
doors. In such a case, trigger patterns could be fabricated 
(e.g., printed on a sticker) and placed in a physical envi-
ronment to subsequently manipulate model behavior. 
Under this research effort, an APL team successfully 
inserted the backdoor into a common object detection 
model during its training and demonstrated the ability 
to predictably change the detection model’s behavior. 
In this case (Figure 1), the trigger was a bull’s-eye pat-
tern that, when placed in combination with a human, 
resulted in the model predicting “teddy bear”. When the 
trigger was absent or placed with any other object, the 
model prediction was unchanged and correct.

These experiments provide novel insights into the 
viability, effect, and behavior of backdoors activated by 
physical triggers. Through this demonstration, APL has 

opened the door for further research into the backdoor 
insertion mechanism, the ability to detect and remove 
physically triggered backdoors from DNNs, and the 
extension of these forms of attacks to other research 
areas such as reinforcement learning.

PHYSICAL PATCH-BASED ATTACKS
In contrast to the DNN backdoor approach (consid-

ered a train-time attack), test-time attacks occur when 
the adversary optimizes a pattern to be placed in the 
image so as to confuse the DNN at inference time. Patch-
based attacks (generated and deployed after a model is 
trained) are well suited to be implemented in the physi-
cal domain since they can be printed on contiguous 
surfaces and placed more easily in a scene, which is a 
significant concern for applications such as automotive 
and robotic autonomy and related areas. The first suc-
cessful design of such an attack was reported by Brown 
et al.,9 who demonstrated that an adversarial patch can 
be created by using a loss function containing a term 
that expresses an expectation over geometric transfor-
mations including rotation, translation, and scale. This 
was based on work originally reported by Athalye et al.3

To more systematically study these patch attacks, 
APL developed a principled methodology for evaluating 
patch attacks and the train-/test-time factors that impact 
their success. Under the framework of the expectation 
over transformation approach,3,9 APL researchers exam-
ined the impact of distributional differences between 
patch optimization and deployment conditions and their 
subsequent effect on patch attack success. This research 
has enabled new insights into factors leading to attack 
success and, in particular, demonstrates that among all, 

Figure 1. Example of DNN prediction when backdoor behavior 
is triggered. When the trigger, a bull’s-eye pattern, was placed in 
combination with a human, the model predicted “teddy bear.” 
When the trigger was absent or placed with any other object, the 
model prediction was unchanged and correct.

http://www.jhuapl.edu/techdigest


N. G. Drenkow et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 4 (2021), www.jhuapl.edu/techdigest428    

patch scale is a driving factor for success and that rota-
tion factors suffer from a “jack-of-all-trades, master of 
none” pathology (Figure 2).

Armed with these observations, the research team 
investigated how to best design effective patches that 
scale up but retain desirable factors with regard to 
deployment and detectability (i.e., unobtrusiveness). 
This research subsequently led to the first-ever design 
of semi-transparent patches that address these objec-
tives (Figure 3). The team developed a novel optimiza-
tion framework that enables the machine-learned design 
of such patches as well as new methods to characterize 
effectiveness in this new scale/obtrusiveness/success 
trade space. Given scale as a key limiting factor of patch 
attacks, the team developed a novel measure for patch 

obtrusiveness to quantify the trade-off between patch 
transparency and effectiveness.

CONCLUSIONS
These results further underscore the importance 

of generating attacks (and subsequent defenses) not as 
a means for defeating visual recognition systems, but 
rather as a way to improve understanding of the robust-
ness of these systems and gain greater insight into their 
inner workings and possible defenses. Looking toward 
the future, APL remains focused on studying and 
defending against attacks in the physical domain as they 
pose the greatest threat to the real-world deployment of 
intelligent systems. APL’s research continues to expand 
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Figure 2. Impacts of rotation (left) and scale (right) on patch attack effectiveness. APL research shows that patch scale is a driving factor 
for attack success and that optimization over in-plane rotations leads to a “jack-of-all-trades, master of none” pathology. EOT, expecta-
tion over transformation.
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Figure 3. The first-ever design of semitransparent patches. Left, Examples of partial patches. The bottom row includes the mask for 
achieving patch transparency. Right, Patch attack success versus obtrusiveness.
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to studying threat models of greater complexity includ-
ing black-box, dynamic, and system-level attacks. As 
the accelerated pace of machine learning research and 
development appears to remain sustainable for the fore-
seeable future, it is critical to achieve a deeper under-
standing of DNNs, their associated failure modes, and 
potential mitigations. APL is well poised to tackle these 
challenges, especially as these methods are applied to 
increasingly diverse domains.
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