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ABSTRACT
One of the major constructs of the Defense Advanced Research Projects Agency (DARPA) Spec-
trum Collaboration Challenge (SC2) framework was the standard radio node (SRN). The Johns 
Hopkins University Applied Physics Laboratory (APL) designed the Colosseum, the massive wireless 
test bed behind SC2, and the SRN within it. The SRN provided SC2 competitors a software-defined 
radio (SDR) as well as compute and storage node resources so that they could develop, test, and 
demonstrate collaborative intelligent radio network (CIRN) solutions. The SRN was designed to 
dynamically allocate and de-allocate competitors’ container images while providing them com-
plete access to and control of physically attached SDR and network resources. The SRN ensured 
the competition’s security, integrity, and fairness and isolated each competitor’s files and software. 
This article discusses the SRN’s architecture and its supporting and commanding systems, includ-
ing locally managed services and processes.

a radio, as shown in Figure 1. The SRN is the main com-
petitor platform and served as the competitors’ interface 
to Colosseum resources. (See Figure 2 in the article by 
Coleman et al. in this issue for an illustration of the 
overall architecture of the Colosseum.)

The primary requirements of the SRN were to pro-
vide both the computing and graphics processing unit 
(GPU) system to enable competitors to develop and run 
advanced radio, collaboration, and machine learning 
algorithms for the competition as well as allow them 
full access to a software-defined radio (SDR) to trans-
mit over the test bed. The SRN also had to be secure, 
protecting competitors’ information and files while also 
ensuring that competitors could not access information 
and files on the APL network hosting the Colosseum. 

INTRODUCTION
The Defense Advanced Research Projects Agency 

(DARPA) designed the Spectrum Collaboration Chal-
lenge (SC2) to motivate competitors to develop col-
laborative dynamic spectrum-access algorithms for 
intelligent use of the radio frequency (RF) spectrum 
beyond a single radio. APL designed and built the col-
laborative intelligent radio network (CIRN) test bed, 
known as the Colosseum, for SC2. (For an overview 
of SC2 and the Colosseum, see the article by Coleman 
et al. in this issue.) By providing competitors access to 
equivalent hardware in the Colosseum, DARPA was 
able to evaluate CIRN algorithms independent of com-
petitors’ hardware. In the Colosseum, 128 nodes were 
available for competitor research. Each node, referred to 
as a standard radio node (SRN), comprised a server and 
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This article describes the overall SRN architecture in 
the Colosseum as well as the individual elements that 
enable remote research for collaborative radio networks, 
and it discusses the system’s integrity and security.

SRN ARCHITECTURE
Each SRN included a general-purpose computing 

server with an Ethernet connection and USB interface 
to an SDR peripheral, in addition to Ethernet connec-
tions to the Resource Manager. The Resource Man-
ager, as its names suggests, managed all resources across 
the Colosseum via its reservation system, ensuring fair 
resource allocation, automated orchestration of experi-
ments, and verification of Colosseum operations. (See 
the article by Mok et al. in this issue for more detail on 
the Resource Manager.) Thus, the SRN’s connection to 
the Resource Manager was persistent, enabling continu-
ous monitoring of SRN status.

During an experiment, the SRNs had four addi-
tional interfaces: the collaboration network, the com-
petitor access network (CAN), the Traffic Generation 
System, and the RF Emulation System. The collabora-
tion network was an out-of-band communication chan-
nel among SRNs that allowed competitors to coordinate 
efficient use of the spectrum by dynamically reallocating 
resources based on load and criticality of transmission. 
The RF Emulation System provided the in-band (i.e., 
over-the-air) communication channel among the SRNs 
for real-time data exchanges. The CAN provided remote 
access during manual practice sessions for each of the 

SRNs in a reservation and provided access to the land-
ing zone server, which mounts the competitor network-
attached storage (NAS) for uploading of LXC images 
and downloading of logs and files. (See the article by 
Mok et al. in this issue for more detail on manual exper-
iments.) The CAN interface was not allocated during 
competition scrimmages and formal events to restrict 
out-of-band collaboration to only the collaboration net-
work. The Traffic Generation System delivered Internet 
Protocol (IP) traffic directly to the SRN with minimal 
routing and latency overhead since packet-level scoring 
was used to evaluate competitor algorithms. (For more 
information on scrimmages and events, see the article by 
Coleman et al in this issue. For more details on the RF 
Emulation System and the Traffic Generation System, 
see the articles by Barcklow et al. and Curtis et al., 
respectively.)

SRN CONTAINERS
To ensure competition security and integrity between, 

during, and after competitor experiments, the Resource 
Manager deployed competitor-supplied Linux contain-
ers to the SRNs (see Figure 2). A container is analo-
gous to a virtual machine in that it provides full Linux 
functionality, enables portability, and eases deployment, 
but unlike a virtual machine, a container allows for 
direct access to host hardware. Also, a container is more 
lightweight than a virtual machine. This allows Linux 
users to easily create and manage system or application 
packages through the deployment of container images 
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Figure 1. SRN architecture. Each SRN was a collection of general-purpose hardware and SDR components. Network interfaces provided 
connectivity to various Colosseum functions.
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on the bare-metal host. Furthermore, for SC2 the Linux 
containers provided security and integrity by confining 
competitors to their own files and information. Contain-
ers were used for two parallel instances on the SRN—
the competitor algorithms and the collaboration server.

COMPETITOR CONTAINERS
Before an experiment, competitors uploaded a Linux 

container to the Colosseum and scheduled the experi-
ment. During the experiment run time, competitors 
installed their server-side radio software, configured and 
programmed the SDR, and accessed approved network 
links (i.e., CAN, collaboration network, and Traffic 
Generation System). After each experiment, the SRN 
controller moved relevant logs and data to the com-
petitor’s shared network drive, the SRN was restored 
to a common baseline, and any competitor intellectual 
property was removed before the next experiment was 
executed (by the same or different competitor). Each 
SRN was permitted to host one competitor container 
at a time.

Since the container was the competitor’s primary 
point of interaction with the Colosseum, the SRN 
needed to provide a first line of security. At a mini-
mum, the SRN had to isolate the competitor container 
from the Colosseum’s management systems, as well as 
ensure security and integrity among teams operating at 
the same time. One of the mechanisms used to provide 

this security was unprivileged containers.1,2 Inside the 
container, the competitor had full access as root. How-
ever, outside the container, the same user had restricted 
privileges on the compute node. Even if the competitor 
managed to break out of the container, this setup pre-
vented the competitor from having the ability to attack 
the underlying server or Colosseum network.

COLLABORATION SERVER
In addition to the competitor container, each SRN 

could host a collaboration server (hosted in a parallel 
LXC container on the same server). Since only one col-
laboration server was required per experiment, the com-
petitors specified the collaboration server host SRN with 
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Figure 2. During an experiment, the Resource Manager allo-
cated competitor-supplied Linux containers to the SRNs. The 
Linux container provided the competitor full access to the com-
pute node and SDR.

COMPETITOR ACCESS AND COLLABORATION NETWORK
The competitor access and collaboration network was a 
single physical interface but was configured as many trunk 
ports to serve multiple functions and provide security and 
integrity during the competition. The two functions of this 
interface were remote competitor access and internet emu-
lation for the collaboration network.

The CAN was accessed from the public internet through 
a Linux Secure Shell (SSH) gateway and firewall. Each 
competitor was provided a private internal subnet that 
connected each of their SRNs for a single reservation. The 
Linux SSH gateway was responsible for restricting access to 
each SRN based on the competitor’s team ID.

Each SRN was configured with unique virtual local area 
networks (VLANs) specific to each competitor. During an 
SRN’s idle state, the network remained shut down with no 
IP address configured. At the time of allocation, the SRN 
controller was informed of a reservation’s team ID, which 
was used to configure a team-specific IP and VLAN and 
attach to the competitor’s LXC container. This ensured that 
all SRNs reserved by a single team could communicate with 
each other and could be accessed from the public internet 
while also ensuring that no other team could access these 
SRNs even during simultaneous reservations.

The collaboration network provided competitors with an 
internet emulation network connected to at least one SRN 
per reservation. The internet emulation allowed variations 
of bandwidth, latency, and jitter to be applied to each inter-
face, which increased the fidelity and forced competitors 
to collaborate using emulated wide area network (WAN) 
links. The collaboration network also connected the col-
laboration server. There were 128 collaboration servers, one 
corresponding to each SRN. At allocation time, one was 
selected as the server for each reservation and was restricted 
to only nodes in that reservation. The collaboration net-
work was dynamically configured and connected to com-
petitor containers using the SRN ID of the compute node 
that was hosting the collaboration server. This provided 
both for segmentation for simultaneous reservations and for 
competitor collaboration network connectivity without any 
required routes on competitor containers. The collabora-
tion network was also monitored for competition scoring 
purposes so that scorers could track how often competitors 
attempted to collaborate and whether their requests were 
acknowledged and acted on. Packet captures recorded 
all traffic on the collaboration network for each reserva-
tion. After de-allocation, the files were copied offline for 
archiving and analysis.
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their experiment request on the Colosseum website. The 
collaboration server acted as a publish/subscribe point 
for competitors so that competitors could register their 
IP address and query for a list of other competitors to 
facilitate real-time spectrum coordination.

TRAFFIC NETWORK
During the competition, competitors were scored on 

their ability to transmit IP traffic over the radio net-
work. Thus, IP traffic had to be delivered to each SRN 
with minimal routing and latency overhead, and it had 
to be collected and measured in a similar fashion. Since 
the competitors were responsible for routing IP traffic 
over the wireless channel emulator, each SRN served as 
the default gateway for the sources and sinks of traffic. 
This resulted in the design choice of 128 independent 

traffic network VLANs corresponding to the 128 SRNs 
that would operate in the SC2 Colosseum. Each SRN 
was attached to only one traffic VLAN, and when 
an SRN was allocated, this Linux sub-interface was 
attached to the competitor container as an LXC “phys” 
interface. This means that the competitor essentially 
owned the management of the traffic interface during 
the reservation and could adjust bandwidth, duplex, or 
traffic-shaping characteristics as needed. It also ensured 
that there was minimal latency in traffic delivery and 
no unnecessary routed hops in the path. The traffic was 
sourced and synced by blade servers.

A sample experiment is illustrated in Figure 3 for 
two teams (team 12 and team 30) in concurrent manual 
experiments on parallel SRNs. Team 12 was allo-
cated SRNs 115 and 116, while team 30 was allocated 
SRNs 004, 005, and 006. A collaboration server was 
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Figure 3. Illustration of SRN connections to the CAN, the collaboration network, and the traffic network for two teams. Team 12 and 
team 30 were in manual experiments at the same time. Team 12 was allocated SRNs 115 and 116, while team 30 was allocated SRNs 004, 
005, and 006. A collaboration server was allocated to each team, and both the CAN and the collaboration gateways were connected. 
Further, traffic was connected to each team’s LXC container and was passing over the wireless channel emulator.
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allocated to each team, and both the CAN and the col-
laboration gateways were connected. Further, traffic was 
connected to each team’s LXC container and was pass-
ing through the RF Emulation System. If this were an 
automated experiment, such as during scrimmages and 
match sessions, the CAN would have remained discon-
nected for all SRNs and only one collaboration gateway 
would have been connected for each team. Further, the 
teams would have been placed into a single experiment 
and would have been allocated only one collaboration 
server for the entire experiment.

SRN CONTROLLER
The actions of the SRN host were directed by the 

Resource Manager and orchestration engine running on 
the Colosseum’s management network. These actions 
included allocation and de-allocation of competitor res-
ervations, networking configuration and connectivity, 
collaboration server configuration, and all administra-
tive system monitoring. For the competitor, the SRN 
maintained the state of the container during the res-
ervation, verified that the SDR was in a known state 
before and after reservations, and provided a Command 
Line Interface (CLI) for competitor manual experiments.

The SRN ran a local process, known as the SRN con-
troller, that performed all management actions. It was 
commanded by the Resource Manager through a REST-
ful (representational state transfer) API. Some adminis-
trative functions on the SRN required root access, and 
this was provided by a separate process known as the 
Root Helper (see Figure 4).

The SRN controller was a system service that ran 
on each SRN bare-metal host and, as its name implies, 
controlled what the SRN did. The SRN controller was 
only in charge of its local SRN and only received REST-
ful formatted commands from the Resource Manager 
and any locally instantiated competitor container. It 

did not coordinate with any other SRN controller or 
other services within the Colosseum. The development 
team made the important design decision that the SRN 
controller would always be subordinate to the Resource 
Manager to ensure that system state was maintained. 
If the states of the Resource Manager and the SRN 
controller were out of sync, the SRN controller would 
align its state with that of the Resource Manager. Typi-
cally this process included ending any existing reserva-
tions, destroying hanging containers, and starting any 
processes required to match the state indicated by the 
Resource Manager.

The SRN controller was the parent process for the 
competitor’s container. To limit the attack surface if a 
malevolent competitor broke out of their container, the 
SRN controller was launched with limited privileges. 
However, some of its tasks, such as ensuring that all 
log files from a competitor were removed from the local 
SRN after a reservation, required root-level access, so a 
second service, named Root Helper, was created with 
root access. Root Helper provided REST end points 
internally on the compute node and was accessible only 
by the SRN controller. These end points allowed the 
SRN controller to perform certain tasks that required 
root access.

The SRN controller had additional responsibilities 
during automated experiments since the competitor con-
tainer did not have access to the CAN. To permit data to 
be saved from the containers, a temporary log directory 
was created on the compute node and mounted to the 
competitor’s container. After the experiment completed 
and the competitor’s container was destroyed, the SRN 
controller, with the help of the Root Helper, changed 
the ownership the log directory and moved it into the 
competitor’s shared drive. The size of compute node’s log 
partition was limited to 25 GB to prevent a single test 
from filling up the competitor’s shared drive.
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Figure 4. The SRN ran a local process, known as the SRN controller, that performed all management actions. Some administrative func-
tions on the SRN required root access, and this was provided by a separate process known as the Root Helper.
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RESERVATION INDEPENDENCE
One of the requirements was to ensure that competi-

tor systems were always allocated into a predictable state 
and that there were no lingering configuration or data 
left from previous reservations. Use of a container pro-
vided much of the predictable state as long as the SRN 
controller destroyed and deleted all containers and log 
directories between reservations. The SRN controller 
was designed to allow only one reservation to be active 
at a time. If the SRN controller received an allocation 
command from the Resource Manager while already 
in a reservation, it immediately ended the current res-
ervation and restored the compute node to baseline, 
including killing any hung processes and deleting any 
remaining competitor files.

SHARED DRIVE
A network file system (NFS) shared drive was created 

on a NAS to provide a centralized location for competi-
tors to store their data. The shared drive was mounted 
to the landing zone server, which allowed competitors 
to access the shared drive independently of an active 
reservation. The drive was used to store images for res-
ervation container allocation, miscellaneous competitor 
files, log files from each SRN, traffic generation statis-
tics, and packet captures from the collaboration inter-
face. During manual experiments, the shared drive was 
mounted to the competitor’s containers. During auto-
mated experiments, competitors were provided a local 
partition on the SRN to store logs that would be copied 
to the NAS at de-allocation time.

RADIO COMMAND AND CONTROL API
Since all automated experiments were launched 

and commanded without user interaction, competitors 
required a way to trigger state changes within their con-
tainers. State changes included the allocation, run time, 
and de-allocation state of the container as well as initial-
ization of the radio. It could also trigger the launching 
and stopping of RF and traffic scenarios.

To communicate with competitor systems, the SRN 
controller called a set of scripts on the competitor’s con-
tainer to signal state changes. These scripts were called 
the Radio API scripts. APL provided samples of Radio 
API scripts, but competitors could customize these 
scripts. The SRN controller expected a standard format 
returned from the Radio API scripts, but failure of cus-
tomized scripts to adhere to this standard did not result 
in SRN operation failure.

The two best examples of Radio API scripts are start.
sh and stop.sh. Start.sh was called when all the compo-

nents in the Colosseum had been initialized for a res-
ervation and at the exact moment that the traffic and 
RF scenarios were starting. The example start.sh script 
simply returned a code indicating acknowledgment. 
This script provided a hook for the competitor to start 
programs at the beginning of a scenario instead of just at 
the initialization of the container. Stop.sh was called at 
the end of the reservation and informed the competitor 
that the container would be destroyed in 2 minutes so 
that they could copy any files they wished to keep to the 
log directory in the container.

CONCLUSION
SC2 challenged competitors to develop and demon-

strate novel dynamic and collaborative spectrum-shar-
ing techniques. The SRN served as the competitor’s 
primary interface for all development and testing of 
these algorithms and radios, as well as the range for 
competing in events. The SRN was secure and ensured 
competition integrity and fairness, as well as isolation 
of all competitor files and software at all times. The 
SRN was dynamic, supporting many reservations for 
many competitors over the competition period. Using 
containers for competitor images was integral to ensur-
ing portability and also provided security and isolation. 
Multiple networks for each SRN provided isolation 
while also supporting collaboration and traffic genera-
tion. The successful SRN design offers much insight 
for the development of other test beds with dynamic 
instantiation and automation requirements involving 
multiple users and use cases.
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