
D. A. White, J. E. Annis, and F. F. Johnson

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest42

Standard Radio Nodes in the Defense
Advanced Research Projects Agency
Spectrum Collaboration Challenge

D. Alexander White Jr., J. Emery Annis, and Freemon F. Johnson

ABSTRACT
One of the major constructs of the Defense Advanced Research Projects Agency (DARPA) Spec-
trum Collaboration Challenge (SC2) framework was the standard radio node (SRN). The Johns
Hopkins University Applied Physics Laboratory (APL) designed the Colosseum, the massive wireless
test bed behind SC2, and the SRN within it. The SRN provided SC2 competitors a software-defined
radio (SDR) as well as compute and storage node resources so that they could develop, test, and
demonstrate collaborative intelligent radio network (CIRN) solutions. The SRN was designed to
dynamically allocate and de-allocate competitors’ container images while providing them com-
plete access to and control of physically attached SDR and network resources. The SRN ensured
the competition’s security, integrity, and fairness and isolated each competitor’s files and software.
This article discusses the SRN’s architecture and its supporting and commanding systems, includ-
ing locally managed services and processes.

a radio, as shown in Figure 1. The SRN is the main com-
petitor platform and served as the competitors’ interface
to Colosseum resources. (See Figure 2 in the article by
Coleman et al. in this issue for an illustration of the
overall architecture of the Colosseum.)

The primary requirements of the SRN were to pro-
vide both the computing and graphics processing unit
(GPU) system to enable competitors to develop and run
advanced radio, collaboration, and machine learning
algorithms for the competition as well as allow them
full access to a software-defined radio (SDR) to trans-
mit over the test bed. The SRN also had to be secure,
protecting competitors’ information and files while also
ensuring that competitors could not access information
and files on the APL network hosting the Colosseum.

INTRODUCTION
The Defense Advanced Research Projects Agency

(DARPA) designed the Spectrum Collaboration Chal-
lenge (SC2) to motivate competitors to develop col-
laborative dynamic spectrum-access algorithms for
intelligent use of the radio frequency (RF) spectrum
beyond a single radio. APL designed and built the col-
laborative intelligent radio network (CIRN) test bed,
known as the Colosseum, for SC2. (For an overview
of SC2 and the Colosseum, see the article by Coleman
et al. in this issue.) By providing competitors access to
equivalent hardware in the Colosseum, DARPA was
able to evaluate CIRN algorithms independent of com-
petitors’ hardware. In the Colosseum, 128 nodes were
available for competitor research. Each node, referred to
as a standard radio node (SRN), comprised a server and

http://www.jhuapl.edu/techdigest

Standard Radio Nodes in the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 43

This article describes the overall SRN architecture in
the Colosseum as well as the individual elements that
enable remote research for collaborative radio networks,
and it discusses the system’s integrity and security.

SRN ARCHITECTURE
Each SRN included a general-purpose computing

server with an Ethernet connection and USB interface
to an SDR peripheral, in addition to Ethernet connec-
tions to the Resource Manager. The Resource Man-
ager, as its names suggests, managed all resources across
the Colosseum via its reservation system, ensuring fair
resource allocation, automated orchestration of experi-
ments, and verification of Colosseum operations. (See
the article by Mok et al. in this issue for more detail on
the Resource Manager.) Thus, the SRN’s connection to
the Resource Manager was persistent, enabling continu-
ous monitoring of SRN status.

During an experiment, the SRNs had four addi-
tional interfaces: the collaboration network, the com-
petitor access network (CAN), the Traffic Generation
System, and the RF Emulation System. The collabora-
tion network was an out-of-band communication chan-
nel among SRNs that allowed competitors to coordinate
efficient use of the spectrum by dynamically reallocating
resources based on load and criticality of transmission.
The RF Emulation System provided the in-band (i.e.,
over-the-air) communication channel among the SRNs
for real-time data exchanges. The CAN provided remote
access during manual practice sessions for each of the

SRNs in a reservation and provided access to the land-
ing zone server, which mounts the competitor network-
attached storage (NAS) for uploading of LXC images
and downloading of logs and files. (See the article by
Mok et al. in this issue for more detail on manual exper-
iments.) The CAN interface was not allocated during
competition scrimmages and formal events to restrict
out-of-band collaboration to only the collaboration net-
work. The Traffic Generation System delivered Internet
Protocol (IP) traffic directly to the SRN with minimal
routing and latency overhead since packet-level scoring
was used to evaluate competitor algorithms. (For more
information on scrimmages and events, see the article by
Coleman et al in this issue. For more details on the RF
Emulation System and the Traffic Generation System,
see the articles by Barcklow et al. and Curtis et al.,
respectively.)

SRN CONTAINERS
To ensure competition security and integrity between,

during, and after competitor experiments, the Resource
Manager deployed competitor-supplied Linux contain-
ers to the SRNs (see Figure 2). A container is analo-
gous to a virtual machine in that it provides full Linux
functionality, enables portability, and eases deployment,
but unlike a virtual machine, a container allows for
direct access to host hardware. Also, a container is more
lightweight than a virtual machine. This allows Linux
users to easily create and manage system or application
packages through the deployment of container images

RF Emulation System

Traf�c Generation
System

SRN

Compute
node SDR

Management network

M
anagem

ent netw
ork

Resource Manager
Competitor

access network
Collaboration

network

Management network
Internet emulation
Traf�c network
External connection
RF connection

Figure 1. SRN architecture. Each SRN was a collection of general-purpose hardware and SDR components. Network interfaces provided
connectivity to various Colosseum functions.

http://www.jhuapl.edu/techdigest

D. A. White, J. E. Annis, and F. F. Johnson

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest44

on the bare-metal host. Furthermore, for SC2 the Linux
containers provided security and integrity by confining
competitors to their own files and information. Contain-
ers were used for two parallel instances on the SRN—
the competitor algorithms and the collaboration server.

COMPETITOR CONTAINERS
Before an experiment, competitors uploaded a Linux

container to the Colosseum and scheduled the experi-
ment. During the experiment run time, competitors
installed their server-side radio software, configured and
programmed the SDR, and accessed approved network
links (i.e., CAN, collaboration network, and Traffic
Generation System). After each experiment, the SRN
controller moved relevant logs and data to the com-
petitor’s shared network drive, the SRN was restored
to a common baseline, and any competitor intellectual
property was removed before the next experiment was
executed (by the same or different competitor). Each
SRN was permitted to host one competitor container
at a time.

Since the container was the competitor’s primary
point of interaction with the Colosseum, the SRN
needed to provide a first line of security. At a mini-
mum, the SRN had to isolate the competitor container
from the Colosseum’s management systems, as well as
ensure security and integrity among teams operating at
the same time. One of the mechanisms used to provide

this security was unprivileged containers.1,2 Inside the
container, the competitor had full access as root. How-
ever, outside the container, the same user had restricted
privileges on the compute node. Even if the competitor
managed to break out of the container, this setup pre-
vented the competitor from having the ability to attack
the underlying server or Colosseum network.

COLLABORATION SERVER
In addition to the competitor container, each SRN

could host a collaboration server (hosted in a parallel
LXC container on the same server). Since only one col-
laboration server was required per experiment, the com-
petitors specified the collaboration server host SRN with

SRN

Compute node

SDR

Competitor
softwareCollaboration

server
container

Competitor
Linux

container

Figure 2. During an experiment, the Resource Manager allo-
cated competitor-supplied Linux containers to the SRNs. The
Linux container provided the competitor full access to the com-
pute node and SDR.

COMPETITOR ACCESS AND COLLABORATION NETWORK
The competitor access and collaboration network was a
single physical interface but was configured as many trunk
ports to serve multiple functions and provide security and
integrity during the competition. The two functions of this
interface were remote competitor access and internet emu-
lation for the collaboration network.

The CAN was accessed from the public internet through
a Linux Secure Shell (SSH) gateway and firewall. Each
competitor was provided a private internal subnet that
connected each of their SRNs for a single reservation. The
Linux SSH gateway was responsible for restricting access to
each SRN based on the competitor’s team ID.

Each SRN was configured with unique virtual local area
networks (VLANs) specific to each competitor. During an
SRN’s idle state, the network remained shut down with no
IP address configured. At the time of allocation, the SRN
controller was informed of a reservation’s team ID, which
was used to configure a team-specific IP and VLAN and
attach to the competitor’s LXC container. This ensured that
all SRNs reserved by a single team could communicate with
each other and could be accessed from the public internet
while also ensuring that no other team could access these
SRNs even during simultaneous reservations.

The collaboration network provided competitors with an
internet emulation network connected to at least one SRN
per reservation. The internet emulation allowed variations
of bandwidth, latency, and jitter to be applied to each inter-
face, which increased the fidelity and forced competitors
to collaborate using emulated wide area network (WAN)
links. The collaboration network also connected the col-
laboration server. There were 128 collaboration servers, one
corresponding to each SRN. At allocation time, one was
selected as the server for each reservation and was restricted
to only nodes in that reservation. The collaboration net-
work was dynamically configured and connected to com-
petitor containers using the SRN ID of the compute node
that was hosting the collaboration server. This provided
both for segmentation for simultaneous reservations and for
competitor collaboration network connectivity without any
required routes on competitor containers. The collabora-
tion network was also monitored for competition scoring
purposes so that scorers could track how often competitors
attempted to collaborate and whether their requests were
acknowledged and acted on. Packet captures recorded
all traffic on the collaboration network for each reserva-
tion. After de-allocation, the files were copied offline for
archiving and analysis.

http://www.jhuapl.edu/techdigest

Standard Radio Nodes in the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 45

their experiment request on the Colosseum website. The
collaboration server acted as a publish/subscribe point
for competitors so that competitors could register their
IP address and query for a list of other competitors to
facilitate real-time spectrum coordination.

TRAFFIC NETWORK
During the competition, competitors were scored on

their ability to transmit IP traffic over the radio net-
work. Thus, IP traffic had to be delivered to each SRN
with minimal routing and latency overhead, and it had
to be collected and measured in a similar fashion. Since
the competitors were responsible for routing IP traffic
over the wireless channel emulator, each SRN served as
the default gateway for the sources and sinks of traffic.
This resulted in the design choice of 128 independent

traffic network VLANs corresponding to the 128 SRNs
that would operate in the SC2 Colosseum. Each SRN
was attached to only one traffic VLAN, and when
an SRN was allocated, this Linux sub-interface was
attached to the competitor container as an LXC “phys”
interface. This means that the competitor essentially
owned the management of the traffic interface during
the reservation and could adjust bandwidth, duplex, or
traffic-shaping characteristics as needed. It also ensured
that there was minimal latency in traffic delivery and
no unnecessary routed hops in the path. The traffic was
sourced and synced by blade servers.

A sample experiment is illustrated in Figure 3 for
two teams (team 12 and team 30) in concurrent manual
experiments on parallel SRNs. Team 12 was allo-
cated SRNs 115 and 116, while team 30 was allocated
SRNs 004, 005, and 006. A collaboration server was

Public internet

SSH gateway provides
networking filtering based on
team globally unique identifier

Competitor (Team 12) Competitor (Team 30)

Competitor
(Team 30)

Competitor
(Team 12)

Collaboration
server

for team 12
(hosted on
SRN 115)

Team 12 traffic
between SRNs
115 and 116

Collaboration
server

for team 30
(hosted on
SRN 006)

Team 12 CAN Team 30 CAN

Competitor SSH gateway

Team 30 traffic
between SRNs
004 and 005,
005 and 006,

and 004 and 006

RF Emulation System

SRN 115 SRN 116 SRN 004 SRN 005 SRN 006

Traf�c
Generation

System
Traf�c generator Traf�c generator Traf�c generator Traf�c generator Traf�c generator

Figure 3. Illustration of SRN connections to the CAN, the collaboration network, and the traffic network for two teams. Team 12 and
team 30 were in manual experiments at the same time. Team 12 was allocated SRNs 115 and 116, while team 30 was allocated SRNs 004,
005, and 006. A collaboration server was allocated to each team, and both the CAN and the collaboration gateways were connected.
Further, traffic was connected to each team’s LXC container and was passing over the wireless channel emulator.

http://www.jhuapl.edu/techdigest

D. A. White, J. E. Annis, and F. F. Johnson

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest46

allocated to each team, and both the CAN and the col-
laboration gateways were connected. Further, traffic was
connected to each team’s LXC container and was pass-
ing through the RF Emulation System. If this were an
automated experiment, such as during scrimmages and
match sessions, the CAN would have remained discon-
nected for all SRNs and only one collaboration gateway
would have been connected for each team. Further, the
teams would have been placed into a single experiment
and would have been allocated only one collaboration
server for the entire experiment.

SRN CONTROLLER
The actions of the SRN host were directed by the

Resource Manager and orchestration engine running on
the Colosseum’s management network. These actions
included allocation and de-allocation of competitor res-
ervations, networking configuration and connectivity,
collaboration server configuration, and all administra-
tive system monitoring. For the competitor, the SRN
maintained the state of the container during the res-
ervation, verified that the SDR was in a known state
before and after reservations, and provided a Command
Line Interface (CLI) for competitor manual experiments.

The SRN ran a local process, known as the SRN con-
troller, that performed all management actions. It was
commanded by the Resource Manager through a REST-
ful (representational state transfer) API. Some adminis-
trative functions on the SRN required root access, and
this was provided by a separate process known as the
Root Helper (see Figure 4).

The SRN controller was a system service that ran
on each SRN bare-metal host and, as its name implies,
controlled what the SRN did. The SRN controller was
only in charge of its local SRN and only received REST-
ful formatted commands from the Resource Manager
and any locally instantiated competitor container. It

did not coordinate with any other SRN controller or
other services within the Colosseum. The development
team made the important design decision that the SRN
controller would always be subordinate to the Resource
Manager to ensure that system state was maintained.
If the states of the Resource Manager and the SRN
controller were out of sync, the SRN controller would
align its state with that of the Resource Manager. Typi-
cally this process included ending any existing reserva-
tions, destroying hanging containers, and starting any
processes required to match the state indicated by the
Resource Manager.

The SRN controller was the parent process for the
competitor’s container. To limit the attack surface if a
malevolent competitor broke out of their container, the
SRN controller was launched with limited privileges.
However, some of its tasks, such as ensuring that all
log files from a competitor were removed from the local
SRN after a reservation, required root-level access, so a
second service, named Root Helper, was created with
root access. Root Helper provided REST end points
internally on the compute node and was accessible only
by the SRN controller. These end points allowed the
SRN controller to perform certain tasks that required
root access.

The SRN controller had additional responsibilities
during automated experiments since the competitor con-
tainer did not have access to the CAN. To permit data to
be saved from the containers, a temporary log directory
was created on the compute node and mounted to the
competitor’s container. After the experiment completed
and the competitor’s container was destroyed, the SRN
controller, with the help of the Root Helper, changed
the ownership the log directory and moved it into the
competitor’s shared drive. The size of compute node’s log
partition was limited to 25 GB to prevent a single test
from filling up the competitor’s shared drive.

Traf�c Generation
System

SRN

SDR

Compute node

SRN
controller and
Root Helper

Collaboration
server

Competitor’s
software image

Container solution: LXC
Software: Competitor’s
 software

Competitor’s system10-G Base-T
Qlogic NIC

10-G Base-T
Qlogic NIC

Figure 4. The SRN ran a local process, known as the SRN controller, that performed all management actions. Some administrative func-
tions on the SRN required root access, and this was provided by a separate process known as the Root Helper.

http://www.jhuapl.edu/techdigest

Standard Radio Nodes in the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 47

RESERVATION INDEPENDENCE
One of the requirements was to ensure that competi-

tor systems were always allocated into a predictable state
and that there were no lingering configuration or data
left from previous reservations. Use of a container pro-
vided much of the predictable state as long as the SRN
controller destroyed and deleted all containers and log
directories between reservations. The SRN controller
was designed to allow only one reservation to be active
at a time. If the SRN controller received an allocation
command from the Resource Manager while already
in a reservation, it immediately ended the current res-
ervation and restored the compute node to baseline,
including killing any hung processes and deleting any
remaining competitor files.

SHARED DRIVE
A network file system (NFS) shared drive was created

on a NAS to provide a centralized location for competi-
tors to store their data. The shared drive was mounted
to the landing zone server, which allowed competitors
to access the shared drive independently of an active
reservation. The drive was used to store images for res-
ervation container allocation, miscellaneous competitor
files, log files from each SRN, traffic generation statis-
tics, and packet captures from the collaboration inter-
face. During manual experiments, the shared drive was
mounted to the competitor’s containers. During auto-
mated experiments, competitors were provided a local
partition on the SRN to store logs that would be copied
to the NAS at de-allocation time.

RADIO COMMAND AND CONTROL API
Since all automated experiments were launched

and commanded without user interaction, competitors
required a way to trigger state changes within their con-
tainers. State changes included the allocation, run time,
and de-allocation state of the container as well as initial-
ization of the radio. It could also trigger the launching
and stopping of RF and traffic scenarios.

To communicate with competitor systems, the SRN
controller called a set of scripts on the competitor’s con-
tainer to signal state changes. These scripts were called
the Radio API scripts. APL provided samples of Radio
API scripts, but competitors could customize these
scripts. The SRN controller expected a standard format
returned from the Radio API scripts, but failure of cus-
tomized scripts to adhere to this standard did not result
in SRN operation failure.

The two best examples of Radio API scripts are start.
sh and stop.sh. Start.sh was called when all the compo-

nents in the Colosseum had been initialized for a res-
ervation and at the exact moment that the traffic and
RF scenarios were starting. The example start.sh script
simply returned a code indicating acknowledgment.
This script provided a hook for the competitor to start
programs at the beginning of a scenario instead of just at
the initialization of the container. Stop.sh was called at
the end of the reservation and informed the competitor
that the container would be destroyed in 2 minutes so
that they could copy any files they wished to keep to the
log directory in the container.

CONCLUSION
SC2 challenged competitors to develop and demon-

strate novel dynamic and collaborative spectrum-shar-
ing techniques. The SRN served as the competitor’s
primary interface for all development and testing of
these algorithms and radios, as well as the range for
competing in events. The SRN was secure and ensured
competition integrity and fairness, as well as isolation
of all competitor files and software at all times. The
SRN was dynamic, supporting many reservations for
many competitors over the competition period. Using
containers for competitor images was integral to ensur-
ing portability and also provided security and isolation.
Multiple networks for each SRN provided isolation
while also supporting collaboration and traffic genera-
tion. The successful SRN design offers much insight
for the development of other test beds with dynamic
instantiation and automation requirements involving
multiple users and use cases.

ACKNOWLEDGMENTS: We thank Paul Tilghman (DARPA SC2
program manager) and Craig Pomeroy and Kevin Barone
(Systems Engineering and Technical Assistance at DARPA)
for their invaluable collaboration and support. We also
thank the many APL SC2 contributors, whose names are
listed on the inside back cover of this issue of the Digest.
This research was developed with funding from the
Defense Advanced Research Projects Agency (DARPA).
The views, opinions, and/or findings expressed are those
of the authors and should not be interpreted as repre-
senting the official views or policies of the Department of
Defense or the US government.

REFERENCES

 1M. Byazit. “Linux containers – A comparison of LXC and Docker.”
Robin. Jul. 26, 2016. https://robin.io/blog/linux-containers-comparison-
lxc-docker/.

 2S. Graber. “Custom user mappings in LXD containers.” Stéphane Gra-
ber’s website. Jun. 15, 2017. https://stgraber.org/2017/06/15/custom-user-
mappings-in-lxd-containers/.

http://www.jhuapl.edu/techdigest
https://robin.io/blog/linux-containers-comparison-lxc-docker/
https://robin.io/blog/linux-containers-comparison-lxc-docker/
https://stgraber.org/2017/06/15/custom-user-mappings-in-lxd-containers/
https://stgraber.org/2017/06/15/custom-user-mappings-in-lxd-containers/

D. A. White, J. E. Annis, and F. F. Johnson

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest48

D. Alexander White Jr., Asymmetric Operations Sector, Johns
Hopkins University Applied Physics Laboratory, Laurel, MD

Alex White is a Senior Professional Staff member and acting
assistant supervisor of the Operational Systems Section in
APL’s Asymmetric Operations Sector. He has a BS in electri-
cal engineering, from Washington University. Alex has over
20 years of systems engineering experience focused on military
wireless communications systems. He has expertise in network
architecture, performance, security, and integration and often
consults with customers on network design and analysis. Alex
also has deep knowledge of wireless communications proto-
cols and technology development and experience leading and
managing engineering teams. While leading software teams
supporting DARPA’s SC2 program, he integrated LXC deploy-
ment code to instantiate competitors’ designs and developed
code to start, collect data during, and clean up individual res-
ervations. His email address is alex.white@jhuapl.edu.

J. Emery Annis, Asymmetric Operations
Sector, Johns Hopkins University Applied
Physics Laboratory, Laurel, MD

Emery Annis is a communications systems
engineer at APL with a BS in electrical
engineering from the University of Hous-
ton. He is currently studying for a master’s
in electrical engineering with a focus in

communications from Johns Hopkins University. Emery has
contributed to multiple efforts to develop network emulation
environments including an Army Wideband Global Satellite

(WGS) control system, the DARPA SC2 Colosseum, and an
end-to-end networking analysis framework. He regularly con-
tributes to efforts involving RF spectrum coexistence analy-
sis and is interested in applying concepts from both the RF
communications domain and IP networking to develop new
standards and architectures centered on an intelligent con-
trol plane and network maneuver. His email address is emery.
annis@jhuapl.edu.

Freemon F. Johnson, Asymmetric Operations Sector, Johns
Hopkins University Applied Physics Laboratory, Laurel, MD

Freemon Johnson was a senior software engineer in APL’s
Asymmetric Operations Sector. He has a BS in electrical
engineering from New Jersey Institute of Technology, an
MS in communication and information studies from Rutgers
University, and an MS in computer science from Johns Hop-
kins University. Freemon has over 21 years of experience that
encompasses software development and information assur-
ance. His experience can be categorized as follows: 15 years
of systems engineering, 11 years of software development, and
4 years of agile development using Scrum/Kanban process
methods. His last role at APL focused on multiple research
tasks across software development, data engineering, and
networking engineering. His work included machine and
deep learning application development for cyber analytics,
orchestration/automation, and security research for SDN
and NFV. Freemon was a primary software developer for the
DARPA SC2 Colosseum platform for the standard radio node
(SRN) subsystem.

http://www.jhuapl.edu/techdigest

	Standard Radio Nodes in the Defense Advanced Research Projects Agency Spectrum Collaboration Challenge
	D. Alexander White Jr., J. Emery Annis, and Freemon F. Johnson
	ABSTRACT
	INTRODUCTION
	SRN ARCHITECTURE
	SRN CONTAINERS
	COMPETITOR CONTAINERS
	COLLABORATION SERVER
	TRAFFIC NETWORK
	SRN CONTROLLER
	RESERVATION INDEPENDENCE
	SHARED DRIVE
	RADIO COMMAND AND CONTROL API
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	BOX. COMPETITOR ACCESS AND COLLABORATION NETWORK
	Author Bios
	Figure 1. SRN architecture.
	Figure 2. During an experiment, the Resource Manager allocated competitor-supplied Linux containers to the SRNs.
	Figure 3. Illustration of SRN connections to the CAN, the collaboration network, and the traffic network for two teams.
	Figure 4. The SRN ran a local process, known as the SRN controller, that performed all management actions.

