
Radio Frequency Emulation System for DARPA SC2

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 69    

Radio Frequency Emulation System for the Defense 
Advanced Research Projects Agency Spectrum 
Collaboration Challenge

Daniel R. Barcklow, Lian E. Bloch, Stephen W. Sweeney, Brian E. Ahr, 
William J. La Cholter, Samuel Berhanu, Hakeem S. Bisyir, Jarriel D. Cook, and 

David M. Coleman

ABSTRACT
The Johns Hopkins University Applied Physics Laboratory (APL) designed and built a wireless com-
munications research test bed, called the Colosseum, for the Defense Advanced Research Projects 
Agency (DARPA) Spectrum Collaboration Challenge (SC2). SC2 aimed to motivate research into 
autonomous wireless communication systems to uncover a new paradigm for managing the 
oversubscribed radio frequency (RF) spectrum. This article describes the Colosseum’s RF Emulation 
System, which mimicked real-world phenomenon such as propagation delay, Doppler shift, and 
power attenuation between 128 two-channel radios, or 65,536 wireless communications chan-
nels. The RF Emulation System emulated isolated virtual environments across multiple concurrent 
experiments, enabling challenge competitors to research, develop, and test next-generation arti-
ficial intelligence solutions for wireless network systems.

suggests, the RF Emulation System emulated realistic 
RF propagation effects among the full complement of 
antennae (65,536 wireless channels). The system pro-
vided users with the ability to emulate radio wave propa-
gation in a 1-km by 1-km region with an excess delay 
of 5.12 μs. This was sufficient to emulate the first four 
taps of an LTE urban propagation model with vehicles 
moving less than 30 miles per hour (at fc = 1 GHz) 
and first responder line-of-sight UHF communications 
during a wildfire, using full-motion video from overhead 
drones. The RF Emulation System, shown in Figure 1, 
received requests from the Resource Manager over the 
Colosseum intranet, and the Resource Manager received 
messages regarding resource availability and status back 
from the RF Emulation System Manager. (See the arti-
cle by Mok et al. in this issue for more on the Resource 

INTRODUCTION
The Defense Advanced Research Projects Agency 

(DARPA) introduced the Spectrum Collaboration 
Challenge (SC2) in 2016, seeking to find new capabili-
ties that enable more efficient allocation and use of the 
contested RF spectrum by taking advantage of artifi-
cial intelligence (AI). Central to the challenge was the 
Colosseum, a research test bed where competitors could 
research and develop their next-generation autonomous 
wireless communication systems, and a series of scenar-
ios designed to mimic real-world challenges a network of 
collaborative autonomous radios would have to contend 
with. (See the article by Coleman et al. in this issue for 
an overview of the Colosseum and SC2 scenarios.)

Designed and built by APL, the test bed consisted 
of 128 two-channel radios and several subsystems, one 
of which was the RF Emulation System. As its name 

http://www.jhuapl.edu/techdigest


D. R. Barcklow et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest70    

Manager.) The server read and processed scenario files, 
and the wireless channel emulator received a real-time 
data stream of scenario parameters.

This article discusses the design and performance of 
the two processes hosted on the application server: the 
RF Emulation System Manager and the channel update 
process (CUP). The wireless channel emulator, built and 
delivered by National Instruments, is outside the scope 
of this article; see Ref. 1 for more information on the 
wireless channel emulator.

REQUIREMENTS
The RF Emulation System had three major require-

ments for operation within the Colosseum.

1. Provide RF channel emulation for each 
experiment—The RF Emulation System had to emu-
late an RF channel between transmitter–receiver 
pairs to mimic the inherent pairwise interactions 
of independent radios in the real world. Emulation 
required a one-time configuration of the radios and 
a real-time data stream of parameters in the wire-
less channel emulator. The one-time configuration 
included radio parameters for standard radio nodes 
(SRNs) and the wireless channel emulator: center 
frequency, sampling rate, and antenna gain settings. 
(See the article by White at al. in this issue for more 
information on SRNs.) These parameters were set at 
the start of an experiment and remained constant 
throughout the experiment. Continuous application 
of channel updates followed the one-time configura-

tion. These updates were applied at a rate of 1000 Hz 
to emulate the time-varying RF channel between all 
transmitter–receiver pairs in the experiment.

2. Handle concurrent experiments—The RF Emu-
lation System had to handle multiple concurrent 
experiments. To be valid and repeatable, each 
experiment had to operate on a noninterference 
(i.e., isolated) basis. This meant that a transmitter or 
receiver in use in one experiment could not be used 
in another experiment at the same time.

3. Monitor and report status—The RF Emulation 
System monitored the status of the emulation hard-
ware and reported it back to the Resource Manager. 
(See the article by Mok et al. in this issue for more 
information on the Resource Manager.) This status 
report included the start time of a scenario, an 
acknowledgment of the radios in use by a scenario, 
and when the scenario stops, whether from error, 
by the user, or because it completed under normal 
cases. Since the Colosseum Resource Manager was 
the single persistent interface to the user, the RF 
Emulation System Manager reported status back to 
the Resource Manager to maintain a list of available 
resources and to verify correct operation within the 
RF Emulation System for each experiment.

ARCHITECTURE
As shown in Figure 2, the RF Emulation System 

consisted of three processes/components: (1) the RF 
Emulation System Manager, (2) the 
CUP, (3) and a wireless channel 
emulator. APL designed and wrote 
the manager and the CUP, and they 
resided on the RF Emulation System 
server. During phase 1 of the program, 
APL integrated the wireless channel 
emulator. (See the articles by Freeman 
et al. and Plummer and Taylor in this 
issue for more information on project 
phases.) Each component is discussed 
in detail below.

RF Emulation System Manager
The RF Emulation System Man-

ager had three interfaces: an Ethernet 
interface with the Resource Man-
ager over the Colosseum intranet, a 
loop-back interface with the CUP 
residing on the same server with the 
RF Emulation System Manager, and 
an Ethernet interface with the wire-
less channel emulator. The two-way 

RF Emulation System

Wireless
channel emulator

RF Emulation
System server

Management network
Traf�c network
RF connection

SRN SRN

Management network

M
anagem

ent netw
ork

Resource Manager

Figure 1. High-level diagram of the RF Emulation System. This Colosseum subsystem 
mimicked real-world RF phenomenon such as propagation delay, Doppler shift, and 
power attenuation between 128 two-channel radios, or 65,536 wireless communica-
tions channels.

http://www.jhuapl.edu/techdigest


Radio Frequency Emulation System for DARPA SC2

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 71    

connection between the RF Emulation System Manager 
and the Resource Manager used REST (representational 
state transfer) application programming interface end 
points.2 The RF Emulation System Manager received 
requests from the Resource Manager, while the Resource 
Manager received messages regarding resource avail-
ability and status from the RF Emulation System Man-
ager. The Ethernet interface between the RF Emulation 
System Manager and the wireless channel emulator used 
a custom application layer protocol over a ZeroMQ3 

socket connection. This interface was used to config-
ure the radios within the wireless channel emulator, 
intended to be used at the beginning of an experiment. 
The third interface was the control and monitoring 
interface between the RF Emulation System Manager 
and the CUP, implemented as a ZeroMQ socket con-
nection over a loop-back interface on the shared server. 
The RF Emulation System Manager is discussed in more 
detail later in this article.

Channel Update Process
The CUP had three interfaces, shown in Figure 2: 

the loop-back interface on the shared server with the 
RF Emulation System Manager, a RAID (redundant 
arrays of inexpensive disks) controller optimized for 
high-performance (capacity and latency) reading, and 
an Ethernet interface with the wireless channel emu-
lator. As noted, the RF Emulation System Manager 
controlled and monitored the CUP by using a custom 
application layer protocol over a ZeroMQ socket con-
nection on the loop-back interface. For the largest 

experiments with 128 SRNs, the 
RAID controller’s required read 
rate exceeded 14 Gbps to meet 
the coherence rate of the SC2 
scenarios (1 kHz). To achieve this 
high read speed, 10 solid-state 
drives with individual read speed 
ratings over 12 Gbps (Ref. 4) were 
combined in a RAID1+0 configu-
ration.5 Altogether, the storage 
array provided 10 TB of usable 
capacity and was able to maintain 
read speeds over 16 Gbps. Simi-
larly, the high-capacity interface 
between the CUP and the wire-
less channel emulator exceeded 
24 Gbps with 128 SRNs. Four 
10.0-Gbps Ethernet connec-
tions using Transmission Control 
Protocol/Internet Protocol (TCP/
IP) were established between the 
RF Emulation System server and 
the wireless channel emulator 
to meet this requirement while 

providing a continuous and reliable stream of channel 
updates for experiments. The CUP is discussed in more 
detail later in this article.

RF SYSTEM MANAGER
The RF System Manager was the liaison between 

the Resource Manager and the wireless channel emula-
tor (see Figure 2). In this role, the RF System Manager 
had to configure radios in the wireless channel emulator 
ahead of the experiment, initiate and monitor the chan-
nel update process during the experiment, and return the 
radios in the wireless channel emulator to a default state 
at the end of the experiment. Since the wireless channel 
emulator was a shared resource, the RF System Manager 
had to execute its work across multiple independent and 
concurrently running experiments. The configuration, 
execution, and reset of the wireless channel emulator 
during an experiment was encapsulated in a user session 
within the RF Session Manager. The collections of ses-
sions were managed by the RF System Manager.

As part of an experiment on the Colosseum, the 
Resource Manager invoked the RF Emulation System 
through a request into the RF Session Manager. After 
validation of the request, the RF Session Manager cre-
ated a session for the experiment. The session was a finite 
state machine (see Figure 3) with 10 states that config-
ured, updated, and reset the wireless channel emulator:

1. Initialization—In the initial state, the session was 
configured using the parameters within the request 
from the Resource Manager. These parameters 

 REST API on
         Ethernet interface

 Custom application
         layer protocol over
         ZeroMQ socket on
 Ethernet interface

 TCP/IP over Ethernet 
 interfaceRF Emulation System

Management network

M
anagem

ent netw
ork

Resource Manager

Status

Request

Wireless
channel
emulator

RF Emulation
System
server

Channel
update

Con�guration

CUP

RAID1+0
controller

St
at

us

Re
qu

es
ts

Sc
en

ar
io

da
ta

RF Emulation
System Manager

Figure 2. RF Emulation System architecture. The system consisted of three components: 
the RF Emulation System Manager, the CUP, and a wireless channel emulator.

http://www.jhuapl.edu/techdigest


D. R. Barcklow et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest72    

included the reservation identifier, the reference to 
the wireless channel emulator, and an object repre-
senting the session, which held the start and stop 
times as well as the competitor identification and 
a mapping of the radios to their current statuses. 
Additionally, a socket connection was established 
with the wireless channel emulator to enable radio 
configuration in the next state. Upon a successful 
port opening, the session transitioned to the Radio 
Configuration state. If any errors occurred, the ses-
sion immediately transitioned to the Error Before 
CUP Began state.

2. Radio Configuration—Before an experiment, 
the radios in the wireless channel emulator inputs 
that corresponded to the individual competitor 
SRNs had to be configured to the 
appropriate sampling rate, center 
frequency, and gain settings on 
the transmit and receive ports. If 
errors were present during configu-
ration, the session either transi-
tioned to an error state or stayed 
in the Initialization state until the 
appropriate changes were made 
and the session could be verified 
and validated. If configuration 
was successful, a trigger was sent 
to move the session into the next 
state. At that time, the radios had 
been configured with the proper 
settings and the RF Session Man-
ager had updated its mapping of 
radios to reflect the radios being 
used by this session.

3. Invoke CUP—At this stage, the 
CUP was notified of the request 
via an inter-process communica-
tion link. The request was popu-
lated with the session parameters 
including the experiment start 
time (used across the Colosseum to 
synchronize services; see the arti-
cle by Mok et al. in this issue for 
details), the path to the scenario, 
and which radio nodes were being 
requested. If errors were present 
when interacting with the CUP, 
the session immediately transi-
tioned to the error state; otherwise 
it moved to the next state.

4. CUP Acceptance—The CUP was 
given an opportunity to validate 
(or reject) the experiment request 
from the RF Session Manager 

before the experiment started. If the request was 
validated and accepted, the RF generation remained 
idle until the experiment start time (at which time 
the session would transition to the next state). If the 
CUP rejected the request, the session immediately 
transitioned to the error state.

5. Error Before CUP Began—When an error occurred 
before the CUP was invoked, the experiment was 
simply abandoned and the session transitioned to 
the closeout state.

6. CUP Active—At the experiment start time, the 
CUP triggered the session to move to its next state. 
This state allowed the RF Session Manager to 
monitor the status of the experiment. The session 

CUP
Completed

CUP
Active

CUP
Acceptance

Invoke
CUP

Radio
Con�gura-

tion

Request received

Stop requested

Finished

Stop requested

Finished notifying

Started

Ready

Radio con�guration 
completed

Alw
ays

Always

Alw
ays

Fatal error

Error Before
CUP

Began

Error After
CUP

Began

CUP
Stopped

by Request

Session
Closeout

Fatal error

Initialization

Figure 3. Session state machine. During an experiment on the Colosseum, the 
Resource Manager invoked the RF Emulation System through a request into the RF 
Session Manager. After validation of the request, the RF Session Manager created a 
session for the experiment. The session was a finite state machine with 10 states that 
configured, updated, and reset the wireless channel emulator.

http://www.jhuapl.edu/techdigest


Radio Frequency Emulation System for DARPA SC2

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 73    

remained in this state until the experiment expired, 
the user requested a stop, or an error occurred.

7. CUP Completed—When the experiment dura-
tion was complete, the CUP triggered the session 
to move to its completed state. The session entered 
this state only if the CUP had completed the entire 
experiment with no errors. The session always tran-
sitioned to the closeout state.

8. CUP Stopped by Request—In manual mode, users 
were able to asynchronously request an immediate 
expiration of the experiment. To account for this 
action, a request through the Resource Manager into 
the RF Session Manager to end an experiment early 
triggered the session to transition into this state. In 
this state, the CUP was immediately suspended and 
the wireless channel emulator channel was aban-
doned for that experiment. No wireless channel 
state was guaranteed while in this state. The session 
always transitioned next to the closeout state.

9. Error After CUP Began—When an error occurred 
during the experiment, the CUP triggered the ses-
sion to transition to this error state. In this state, 
the RF Session Manager was able to collect valu-
able status information, such as last channel update 
applied or the radio in fault for error handling by the 
Resource Manager. After the information was col-
lected, the session transitioned to the closeout state.

10. Session Closeout—The wireless channel emulator 
had to be reset before the session concluded. This 
included configuring the radios to a default state 
(e.g., center frequency, gain, and sampling rate) 
and clearing the wireless channel conditions that 
existed between radios. By taking this step, the ses-
sion ensured that the radios were available for the 
next user and that the channels between radios were 
disconnected. Additionally, the RF Session Manager 
updated its internal radio mapping to reflect that 
these radios were no longer in use, so that checks for 
future session radio requests were allowed. The ses-
sion immediately terminated after this work was com-
plete. If an error occurred in this state, the Resource 
Manager was notified and the radios and channels 
were removed from the pool of available resources.

When a session transitioned to a new state, the RF 
Session Manager logged the change to both system logs 
and Splunk. (See the article by Plummer and Taylor in 
this issue for more details on Splunk.) The RF Session 
Manager ran on the Colosseum as a service—hence the 
necessity for system logs as opposed to standard output. 
These logs were very important, as they were the only 
place that showed what happened within the system 
immediately before an unforeseen error state occurred. 

Each log was denoted with a reservation identifier that 
was unique to a specific session. This information was 
helpful in the debugging process when an error occurred 
during the completion of a session, as the logs could be 
filtered by that unique identifier. In addition to the res-
ervation identifier, each log included a timestamp and 
recorded the state transition occurring.

CHANNEL UPDATE PROCESS
Accurate representation and emulation of the physi-

cal environment for wireless communication required 
three components: (1) RF analysis of the environment, 
(2) a wireless channel emulator capable of represent-
ing the environment in the digital domain, and (3) a 
process to update the parameters of the wireless chan-
nel emulator. The output of the RF analysis stage was 
a power-delay profile (PDP)6 for each wireless channel 
(transmitter–receiver pairing) across the entire experi-
ment duration at regular intervals (often on the order of 
the channel coherence time6). The power-delay profile 
y( t ) was the convolution of the transmit power, x( t ), 
and the channel response, h(, t):

 ( ) ,y t x t th5 =^ ^h h (1)

The channel response was a combination of slow 
fading, s( t ) such as atmospheric attenuation (i.e., oxygen 
and water vapor) and multipath components, c(, t):

 , * ,h t s t c t =^ ^ ^h h h (2)

As such, a wireless channel emulator imparted a com-
plex low-pass filter on the transmitted signal.

For the DARPA SC2 program, the PDP was instanti-
ated in the wireless channel emulator as a finite impulse 
response (FIR) filter with four complex taps and a tapped 
delay line (TDL).1 The approximated PDP with four 
complex coefficients and four delay values at a resolution 
of 1 ms was computed offline and stored on disk for the 
entire duration of each experiment. When an experi-
ment was executed, the corresponding wireless channel 
parameter (WCP) file was read from disk and updates 
were sent to the wireless channel emulator at regular 
intervals. In this manner, an emulated wireless chan-
nel was established between a transmitter and receiver. 
To accommodate the 128 two-channel software-defined 
radios (SDRs) in the Colosseum, the RF Emulation 
System had to support up to 65,536 channel updates on 
each 1-ms interval.

Figure 4 shows the relationship between the radio 
channel pairs and their corresponding PDP that 
represented the emulated RF channel between the 
two radios.

To provide the flexibility to map any of the 256 source 
radio channels to any subset of the 256 potential des-

http://www.jhuapl.edu/techdigest


D. R. Barcklow et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest74    

tination radio channels, a 
matrix of interconnections 
was employed. Each junction 
in the grid of interconnections 
represents a filter output. As 
described above, this FIR filter 
made realistic channel emu-
lation between radio nodes 
possible. Figure 5 illustrates 
the interconnections between 
source radio channels and des-
tination radio channels in the 
wireless channel emulator.

The following subsections 
detail the CUP phases and the 
novel algorithms used to meet 
the 1-ms interval for the world’s 
largest channel emulator.

Data Storage
The WCP file contained 

the time series for the finite 
impulse response and tapped 
delay line complex taps. That 
is, for each interval (1 ms) 
the file specified four real (I), 
imaginary (Q), and delay (D) 
components for the emulated 
channel between each trans-
mitter and receiver pair in the 
experiment. An experiment 
could include up to 128 two-
channel radios and a maximum 
of 65,536 channel updates at 
1-ms intervals. For example, an 
experiment in SC2 could have 
had a run time of 30.0 minutes, 
or 1.18 × 1011 channel updates 
across all 256 radios. Given the 
number of updates required 
for each experiment, data 
needed to be stored efficiently. 
The four real and imaginary 
components were 16-bit fixed 
point values representing 
the range (–1, +1), and the 
four delay components were 
nine bits each representing 
1-μs increments up to 5.12 μs 
of total delay.1 After data 
compression, each channel 
update—a single entry in the 
matrix shown in Figure 4—
had a size of 20.5 bytes. There-
fore, the exemplar experiment 

CUP

conv()

TX (i = 0 to 225)

R
X

 (i
 =

 0
 t

o
 2

25
)

τ0 τ1 τ2 τ3 Excess delay

P
o

w
er

h(τ, t)

x0(t) y0(t) x255(t) y255(t)

hi,j(τ, t)

h1h0

h2

h3

Tx[0] Rx[0] Tx[255] Rx[255]

Channel response
from Tx[i] to Rx[j]

for each t

Radio
channel 0

Radio
channel 255

Figure 4. Wireless channel emulator’s PDP matrix. Each junction in the grid contained the PDP 
that models the wireless channel between its corresponding radio channels.

Radio 
channel 0

Radio 
channel 1

Radio
channel 2

Radio
channel 3

Radio
channel 255

RX RX RX RX RX

TX TX TX TX

FIR[RXO,TX0] FIR[RX2,TX0] FIR[RX3,TX0] FIR[RX255,TX0]

FIR[RXO,TX1] FIR[RX2,TX1] FIR[RX3,TX1] FIR[RX255,TX1]

FIR[RXO,TX2] FIR[RX1,TX2] FIR[RX2,TX2] FIR[RX3,TX2] FIR[RX255,TX2]

FIR[RXO,TX3] FIR[RX1,TX3] FIR[RX2,TX3] FIR[RX3,TX3] FIR[RX255,TX3]

FIR[RXO,TX255] FIR[RX1,TX255] FIR[RX2,TX255] FIR[RX3,TX255] FIR[RX255,TX255]

∑0

∑1

∑2

∑3

∑255

TX

FIR[RX1,TX0]

FIR[RX1,TX1]

Figure 5. PDP matrix summing FIR output contributions for each radio channel.

http://www.jhuapl.edu/techdigest


Radio Frequency Emulation System for DARPA SC2

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 75    

had storage requirements of approximately 2.2 TB. For 
this reason, large storage arrays were used and were opti-
mized for both reading and writing operations.

Reading and Assignment
Reading the WCP file from disk required special-

ized hardware and efficient parallel algorithms to meet 
the 1-ms latency requirement. Also required was an 
assignment of resources 
that mapped the general 1 
to N radios in the WCP to 
the assigned resources on 
the Colosseum, as shown in 
Figure 6. This step required 
data processing between read-
ing and sending each channel 
update to the wireless chan-
nel emulator. To reduce the 
impact of data processing on 
the strict 1-ms latency budget, 
multiple data processing 
threads were spun up at the 
start of an experiment. Each 
thread read a channel update 
(N × N × 20.5 bytes) from the 
WCP and mapped the generic 
transmitter–receiver pairs to 
assigned Colosseum resources. 
In this manner, a set of 1-ms 
updates were processed con-
currently, which reduced 
bottlenecks in software. The 
lifetime of each thread was 
dictated by a session.

Multiple Session Abstraction
Unlike other Colosseum 

resources described in this 

issue (such as the Traffic Generation System and the 
Resource Manager), the wireless channel emulator was 
a physical shared resource and did not natively support 
multiple concurrent sessions. As such, abstraction of 
the multiple concurrent sessions was required, and a 
single time-ordered data stream defined the updates to 
the wireless channel emulator. APL developed a paral-
lel algorithm that used a shared memory buffer between 

Channel response,
h(�, t)

Memory buffer shared across
all shared user sessions

Concurrent
user sessions

256 × 256 × K

256 × 256

k=0
• • •

K-2
K-1

CUP

Wireless
channel
emulator

Radio mapping
Radio

no.
Radio ID

in Scenario
1
2
3

4

17
5

Read/assign

k

k

Read/assign

Experiment
�les

User session

4
for each t

Figure 6. The four CUP phases—storage, reading/assignment, session abstraction, and sending.

TX

R
X

Experiment N Experiment N + 1

Radio
channel 255

Radio
channel 255

Radio
channel 255

Radio
channel 0

Radio
channel 0

f

t

f

t

Figure 7. Coordination of tap updates. The figure shows that the two experiments started and 
stopped at different times and occupy similar frequency and time slots but could still run concur-
rently without interfering with each other.

http://www.jhuapl.edu/techdigest


D. R. Barcklow et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest76    

the threads to hold the updates for an interval and still 
met the rigid 1-ms latency budget, as shown in Figure 6. 
The shared memory buffer was a set of 6000 tables (e.g., 
6 seconds of channel updates) with 256 rows and 256 col-
umns, where each entry held the four complex filter coef-
ficients and four delay values (identical to the matrix 
illustrations in Figures 4 and 5). Given that each read 
thread worked on a unique time slice and each session 
was guaranteed to own a set of mutually exclusive SDRs, 
software locks were not required for the shared memory 
buffer. The algorithm focused on minimizing the amount 
of locks used, as wait times due to thread contention for 
resource access led to losses in performance.

Sending to the Wireless Channel Emulator
When the 1-ms timer expires, the appropriate table in 

the shared memory buffer locked and prepared for trans-
mission to the wireless channel emulator using TCP/IP 
over four 10-Gb Ethernet connections. The table was 
split into four quadrants with respect to the transmitter 
numbers as shown Figure 6. When fully utilized, each 
data stream had a throughput of 4.19 Gb/s, and unused 
entries in the table were replaced with null values to 
guarantee that unused resources in the Colosseum had 
deterministic performance at all times.

The coordination of tap updates provided separate 
and isolated RF channels for each user request. As shown 
in Figure 7, two experiments could be run side by side 
without interfering with each other. The figure shows 
that the two experiments started and stopped at differ-
ent times and occupied similar frequency and time slots. 
Without coordination between the RF Session Manager 
and wireless channel emulator, this type of channel allo-
cation and emulation would not have been possible.

SYSTEM PERFORMANCE
The channel update rate within the wireless channel 

emulator was measured to ensure proper synchroniza-
tion between the CUP and the wireless channel emu-
lator’s internal field-programmable gate array (FPGA) 
values. The wireless channel emulator was advertised to 
have a 1.0-kHz update rate.1

To evaluate this performance, APL created a custom 
RF scenario with channel coefficients alternating 
between H( t ) = 1.0 and H( t ) = 0.0. When H( t ) = 1.0, 
the signal simply passed through the wireless chan-
nel emulator (see Equation 2). When H( t ) = 0.0, the 
signal was blocked in the wireless channel emulator and 
only noise was present at the receiver. Signal processing 
blocks similar to those used in verification and valida-
tion testing were used to count the number of samples in 
each update. With an advertised 1-kHz update rate and a 
sample rate of 5 MHz, each channel update should have 
encompassed 5,000 samples.

Figure 8 shows the received time domain signal from 
one SRN in the on–off update rate test. Each segment 
lasted almost 5,000 samples. In an aggregate data collec-
tion of Colosseum performance with over 13,000 mea-
surements, the update rate of the wireless channel 
emulator measured at 1.00002 kHz with a standard devi-
ation of 0.08 Hz.

CONCLUSION
As part of the Colosseum test bed, the RF Emulation 

System provided accurate RF propagation between all 
radios for isolated yet concurrent experiments. The RF 
Emulation System contained three elements—the RF 
Emulation Manager, the CUP, and a wireless channel 
emulator. Wireless channels could be shared between 
a maximum of 128 two-channel radios simultane-
ously. The RF Emulation Manager handled experiment 
requests, configured the wireless channel emulator for 
each experiment, and monitored the status of the CUP 
during an experiment. In conjunction, the CUP and 
wireless channel emulator achieved a 1.0-kHz update 
rate for realistic RF emulation.

ACKNOWLEDGMENTS: We thank Paul Tilghman (DARPA SC2 
program manager) and Craig Pomeroy and Kevin Barone 
(Systems Engineering and Technical Assistance at DARPA) 
for their invaluable collaboration and support. We also 
thank the many APL SC2 contributors, whose names are 
listed on the inside back cover of this issue of the Digest. 
This research was developed with funding from the 
Defense Advanced Research Projects Agency (DARPA). 
The views, opinions, and/or findings expressed are those 
of the authors and should not be interpreted as repre-
senting the official views or policies of the Department of 
Defense or the US government.

�10

�15

�20

�25

�30

�35

�40

�45

�50
0 1 2 3 4 5 6 7 8 9 10

d
B

m

Samples (×104)

On–off scenario

Figure 8. Time domain plot of update rate test results. This 
plot shows the received time domain signal from one SRN in 
the on–off update rate test. Measuring the on–off periods in the 
time-domain confirmed synchronization between the CUP and 
wireless channel emulator.

http://www.jhuapl.edu/techdigest


Radio Frequency Emulation System for DARPA SC2

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 77    

REFERENCES

 1A. Chaudhari, D. Squires, and P. Tilghman, “Colosseum: A battle-
ground for AI let loose on the RF spectrum,” Microwave J., vol. 61, 
no. 9, pp. 19–24, 2018.

 2“REST API tutorial.” https://restfulapi.net/ (accessed Jul. 12, 2019).
 3“ZeroMQ.org, learn the basics.” http://zeromq.org/intro:read-the-

manual (accessed Jul. 12, 2019).

 4“Dell 1.92TB SSD SAS read intensive 12Gbps 512e 2.5in hot-plug 
drive KPM5XRUG1T92.” Dell. http://accessories.dell.com/sna/pro-
ductdetail.aspx?c=us&l=en&s=bsdr&cs=04s2&sku=400-BBQP 
(accessed Jul. 12, 2019).

 5R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, “Redundant arrays 
of inexpensive disks (RAIDs),” in Operating  systems:  Three  Easy 
Pieces. Madison, WI: Arpaci-Dusseau Books, 2015, ch. 38, pp. 1–18.

 6T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd 
ed. Upper Saddle River, NJ: Prentice Hall, 2002.

Daniel R. Barcklow, Asymmetric Opera-
tions Sector, Johns Hopkins University 
Applied Physics Laboratory, Laurel, MD

Daniel R. Barcklow is a wireless commu-
nications engineer in APL’s Asymmetric 
Operations Sector. He holds a BS in com-
puter engineering from George Mason 
University and expects to complete an MS 

in electrical engineering at Johns Hopkins University in 2019. 
Daniel has experience in field-programmable gate array (FPGA) 
and software development for wireless channel emulation, wire-
less receiver design, embedded signal processing, FPGA devel-
opment, RFNoC block development on Ettus X310 software-
defined radios, script development to protect Red Hat Enterprise 
Linux systems against software exploits and to limit system 
vulnerabilities, and formal testing on large Java-based systems. 
Before joining the Lab in 2016, he interned at NIST and Micron 
Technology. His email address is daniel.barcklow@jhuapl.edu.

Lian E. Bloch, Asymmetric Operations 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Lian E. Bloch is a computer engineer in 
APL’s Asymmetric Operations Sector. She 
completed a BS in computer engineering 
from Lehigh University in 2016 and is 
currently pursuing an MS in computer 

science with a telecommunications and networking focus 
from Johns Hopkins University. Bloch has experience with 
software development in Python and Java, as well as network 
management in Unix environments. Her email address is lian.
bloch@jhuapl.edu.

Stephen W. Sweeney, Asymmetric Opera-
tions Sector, Johns Hopkins University 
Applied Physics Laboratory, Laurel, MD

Stephen W. Sweeney is an embedded com-
munications and signals processing engi-
neer at APL. He earned a BS in computer 
engineering from University of Maryland, 
Baltimore County and an MS in electrical 

engineering from Johns Hopkins University. He has contrib-
uted to multiple efforts to develop collaborative communica-
tions, including the DARPA SC2 Colosseum and Programma-
ble Intelligent Collaborative Engagement Munitions (PICEM). 
He regularly contributes to efforts involving custom radio emu-
lation design and implementation and is interested in signal 
detection and classification using traditional statistical meth-
ods as well as machine learning. His email address is stephen.
sweeney@jhuapl.edu.

Brian E. Ahr, Asymmetric Operations Sector, Johns Hopkins 
University Applied Physics Laboratory, Laurel, MD

Brian E. Ahr is a software engineer in APL’s Air and Missile 
Defense Sector. He earned a BS in computer science and math-
ematics from the University of Arizona and an MS in computer 
science from Johns Hopkins University. He has extensive expe-
rience with software design and development, modeling and 
simulation, cross-platform software development, C++, and 
Python. He has a passion for software engineering, building 
high-quality software, Linux, and open-source software. His 
work on SC2 focused on performance optimizations and cor-
rectness enhancements to the scenario data streaming compo-
nent. His email address is brian.ahr@jhuapl.edu

William J. La Cholter, Asymmetric Oper-
ations Sector, Johns Hopkins University 
Applied Physics Laboratory, Laurel, MD

William J. La Cholter is a senior computer 
scientist in APL’s Asymmetric Operations 
Sector. He has a BS in computer science 
and philosophy from the University of 
Maryland and an MS in computer sci-

ence from Johns Hopkins University. Since 2011 he has been 
a member of the Senior Professional Staff at APL, where he 
has conducted research and development (R&D) in software 
diversity, cyber operations, malware attribution, and informa-
tion security; performed security assessments of US govern-
ment systems; and developed software for many domains and 
missions. For the DARPA SC2 program, Mr. La Cholter was a 
lead for a phase 1 RF Emulation System subteam, developer for 
the Traffic Generation System, and a software quality subject 
matter expert. He has led other APL teams as a section supervi-
sor, project manager, and technical lead. Before joining APL, 
he conducted R&D in law enforcement systems, cross-domain 
solutions, security incident response, applied cryptography, 
adaptive networks, firewalls, and high-assurance operating sys-
tems. His email address is william.la.cholter@jhuapl.edu.

Samuel Berhanu, Asymmetric Operations Sector, Johns Hop-
kins University Applied Physics Laboratory, Laurel, MD

Samuel Berhanu is a software-defined radio engineer in APL’s 
Asymmetric Operations Sector. He has a BS in engineering 
from Messiah College and an MEng in electrical engineer-
ing from Morgan State University. For the DARPA SC2 pro-
gram, he contributed to Colosseum validation and verification 
efforts: debugging test apparatus built to interface with the RF 
Emulation System and migrating and modifying existing test 
artifacts for building and executing full Colosseum (128-node) 
validation and verification. Other experience includes imple-
menting a Goertzel variant in a USRP X310 for holography 

http://www.jhuapl.edu/techdigest
https://restfulapi.net/
http://ZeroMQ.org
http://zeromq.org/intro
http://accessories.dell.com/sna/productdetail.aspx?c=us&l=en&s=bsdr&cs=04s2&sku=400-BBQP
http://accessories.dell.com/sna/productdetail.aspx?c=us&l=en&s=bsdr&cs=04s2&sku=400-BBQP
mailto:daniel.barcklow@jhuapl.edu
mailto:lian.bloch@jhuapl.edu
mailto:lian.bloch@jhuapl.edu
mailto:stephen.sweeney@jhuapl.edu
mailto:stephen.sweeney@jhuapl.edu
mailto:brian.ahr@jhuapl.edu
mailto:william.la.cholter@jhuapl.edu


D. R. Barcklow et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest78    

imaging using centimeter waves at near video frame rate; devel-
oping a 3G ALE demodulation and detector circuitry targeted 
for a Xilinx 7-series Virtex chip; and developing a test bench for 
verification of latency between crossbar and downstream AXI-
stream-based blocks within the RFNoC framework in X310. 
Samuel is currently developing an N310 board support pack-
age for the OpenCPI framework. His email address is samuel.
berhanu@jhuapl.edu.

Hakeem S. Bisyir, Asymmetric Opera-
tions Sector, Johns Hopkins University 
Applied Physics Laboratory, Laurel, MD

Hakeem S. Bisyir is a communication 
and networking engineer in APL’s Asym-
metric Operations Sector. He has a bach-
elors degree from Virginia Tech where he 
focused on signal processing and micro-

controller programming. During his time at APL, Hakeem has 
worked on the system test architecture on the SC2 project, on 
establishing and distributing live wireless nodes throughout 
APL’s campus, and on several networking and systems tasks. 
He has facilitated a machine learning workshop for his group 
and plans to pursue expertise in this field. His research areas of 
interest include RF signature tracking and encrypted network 
analysis. Hakeem led the characterization effort described in 
this article, designing both the scenario and container used 
to produce the timing metrics. His email address is hakeem.
bisyir@jhuapl.edu.

Jarriel D. Cook, Asymmetric Operations 
Sector, Johns Hopkins University Applied 
Physics Laboratory, Laurel, MD

Jarriel D. Cook is the supervisor of the 
Wireless Cyber Capabilities Group in APL’s 
Asymmetric Operations Sector. He has a 
BS in electrical engineering from Univer-

sity of Maryland, College Park and an MS in electrical and com-
puter engineering from Johns Hopkins University. As supervi-
sor, Jarriel aligns staff with appropriate tasking, coaches and 
mentors staff, reviews technical products, and works to foster an 
engaging and supportive work environment for staff. He collab-
orates with program management and sponsors to grow existing 
business relationships and develop new business opportunities. 
He has also served as a project manager, technical lead, and 
software developer on projects spanning Internet of Things pro-
tocols, software-defined radios, electronic warfare applications, 
and geospatial signal prediction algorithms. Before joining the 
Lab, Jarriel served in a variety of roles, including principal engi-
neer, as a contractor for the US Naval Research Laboratory. His 
email address is jarriel.cook@jhuapl.edu.

David M. Coleman, Asymmetric Opera-
tions Sector, Johns Hopkins University 
Applied Physics Laboratory, Laurel, MD

David M. Coleman is research area lead 
for spectrum operations and supervisor of 
the Communication Systems Concepts 
Section in APL’s Asymmetric Opera-
tions Sector. He earned a BS in computer 

engineering from Elizabethtown College, an MS in computer 
engineering from the University of Arkansas, and a PhD in 
electrical engineering from University of Maryland, College 
Park. For the DARPA SC2 effort, Dr. Coleman led the software 
development for the Colosseum’s RF Emulation System as well 
as the Interface Control Document definition between this 
subsystem and the Colosseum. He also led code reviews, tech-
nical exchange meetings, and sponsor engagements. His pre-
vious experience includes work on Link-16 current and future 
capabilities to support autonomous platforms, wireless channel 
emulation capabilities in other hardware-in-the-loop test beds, 
and modeling and simulation of millimeter-wave and free-
space optical backhaul networks. Dr. Coleman has presented 
at many conferences and has been published in journals and 
proceedings. His email address is david.coleman@jhuapl.edu.

http://www.jhuapl.edu/techdigest
mailto:samuel.berhanu@jhuapl.edu
mailto:samuel.berhanu@jhuapl.edu
mailto:hakeem.bisyir@jhuapl.edu
mailto:hakeem.bisyir@jhuapl.edu
mailto:jarriel.cook@jhuapl.edu
mailto:david.coleman@jhuapl.edu

	Radio Frequency Emulation System for the Defense Advanced Research Projects Agency Spectrum Collaboration Challenge
	Daniel R. Barcklow, Lian E. Bloch, Stephen W. Sweeney, Brian E. Ahr, William J. La Cholter, Samuel Berhanu, Hakeem S. Bisyir, Jarriel D. Cook, and David M. Coleman
	ABSTRACT
	INTRODUCTION
	REQUIREMENTS
	ARCHITECTURE
	RF Emulation System Manager
	Channel Update Process

	RF SYSTEM MANAGER
	CHANNEL UPDATE PROCESS
	Data Storage
	Reading and Assignment
	Multiple Session Abstraction
	Sending to the Wireless Channel Emulator

	SYSTEM PERFORMANCE
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	Author Bios
	Figure 1. High-level diagram of the RF Emulation System. 
	Figure 2. RF Emulation System architecture.
	Figure 3. Session state machine. 
	Figure 4. Wireless channel emulator’s PDP matrix.
	Figure 5. PDP matrix summing FIR output contributions for each radio channel.
	Figure 6. The four CUP phases.
	Figure 7. Coordination of tap updates. 
	Figure 8. Time domain plot of update rate test results.




