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ABSTRACT
Resilience provides a framework to assess a system’s likelihood to succeed in its mission even 
as disruptions perturb the operations. A system’s resilience is therefore essentially a risk proposi-
tion of the mission succeeding and as such can be quantified using probabilistic risk assessment 
(PRA) techniques developed over the past three decades. Reliability engineering methods for 
evaluating hardware are insufficient by themselves, as they do not examine procedural miti-
gations, system margin, or human training applied to overcome anomalies. A resilient system 
needs to address failures, regardless of whether their cause is component malfunction, operator 
error, or external disruption, and continue to operate (perhaps at reduced functionality) within 
off-nominal operating environments. Resilience approaches look beyond hardware-only solu-
tions to generate additional mitigation concepts to prevent, withstand, adapt to, and rapidly 
recover from failures or external disruptions. The methods and techniques used to produce PRAs 
encompass not only the hardware but also the operating procedures, the contingency plans, 
the software, and the physics of the eventual consequences. This article discusses how PRA is 
applied to quantifying system resilience and focuses on two aspects: scenario development and 
uncertainty quantification.

was using fault tree analysis in conjunction with event 
trees in what is now called probabilistic risk assessment 
(PRA). The methods and techniques used to produce 
PRAs apply to not only the hardware but also the oper-
ating procedures, the contingency plans, the software, 
and the physics of the eventual consequences.

Reliability assessments quantify the probability that 
a system will perform its intended functions for a spe-

INTRODUCTION
System resilience is essentially a risk proposition in 

that when we think about it, we seek to understand 
how a system might be affected by an adverse event, its 
potential end states, the associated likelihoods, and the 
impact of mitigations. Reliability assessments of engi-
neered systems began in earnest with the creation of 
fault tree analysis in the early 1960s within the aerospace 
industry. By the late 1970s, the nuclear power industry 
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cific period. Typically, the definition of a system in 
the reliability approach is relegated to hardware com-
ponents operating in their intended environment with 
all the nominal supporting operations performing and 
logistics present as specified. A resilient system needs 
to overcome failures, regardless of whether the cause 
is component malfunction, operator error, or external 
disruption, and continue to operate (perhaps at reduced 
functionality) within an off-nominal operating environ-
ment. This article briefly describes the elements of a 
PRA and focuses on two aspects of PRAs as they relate 
to resilience quantification: scenario development and 
uncertainty propagation.

PROBABILISTIC RISK ASSESSMENT
The Nuclear Regulatory Commission has used PRAs 

since the 1970s to quantify safety risks at nuclear power 
plants. The commission recognized that hardware reli-
ability assessments were not sufficient to understand how 
an adverse event might affect these engineered systems. 
Today PRAs are also being used in the defense, petro-
chemical, and offshore oil drilling industries. The Johns 
Hopkins University Applied Physics Laboratory (APL) 
has used PRA techniques to solve challenges for a vari-
ety of sponsors, including NASA, the Missile Defense 
Agency, Naval Sea Systems Command, the U.S. Air 
Force, and the Space Security and Defense Program.

PRA studies over the past several decades have pio-
neered the inclusion of new analysis tools to examine 
common-cause failures, external events, software reli-

ability, human factors, and consequence modeling. All 
this activity led Bedford and Cooke to state that “the 
trend in all areas is for PRA to support tools for man-
agement decision making, forming the new area of risk 
management.”1 This methodology actively tied PRA to 
specific decisions to reduce risk. Kaplan and Garrick2 
see PRA as a method to answer the following ques-
tions: What can go wrong? How likely is it? What are 
the consequences? How credible are the results pre-
sented? Leadership needs answers to these questions to 
make decisions.

Resilience can be improved with implementation of 
mitigation solutions that enable the system to prevent, 
withstand, adapt to, and/or rapidly recover from adverse 
events.3 With PRA, solutions can be applied and 
evaluated together at the physical system layer (fault 
tree) or at the functional system layer (event) within 
the context of an operation or mission. Each potential 
solution affects the probability that the scenario will 
succeed, and the spectrum of resilient solutions can be 
compared to quantify how each increases the likelihood 
of mission success.

A PRA is constructed by integrating several ele-
ments, as shown in Fig. 1. The master logic diagram 
represents the list of events that can perturbate the 
system, be they hardware failures, procedural errors, 
external events, or attacks. Initiating events (green 
spheres) are the disruptions (i.e., threats, failures, or 
adverse environmental impacts). End states (red dia-
monds) are related to the consequences of performance 
degradation and recovery time. A model of scenarios 

 

Results
Gathered 
end states

Systems design 
and operations

 concept

Event sequence diagram

Master logic diagram

Failure history data

Fault tree 
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Figure 1. Integrated PRA components—a cohesive model. [Reproduced from Smith, C. A., “Probabilistic Risk Assessment for the Inter-
national Space Station,” in Proc. Joint ESA-NASA Space-Flight Safety Conf., B. Battrick and C. Preyssi (eds.), European Space Agency, ESA 
SP-486, p. 319 (2002).]
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called an event sequence diagram (ESD) connects the 
initiating event to end states, describing an operation 
or intended mission.

Each event in the ESD is a question about the system 
responses. These questions, called pivotal events, are 
assigned a probability of occurrence either through 
fault tree analysis, data, or simulation results. Resilience 
considerations to improve the robustness, redundancy, 
rapidity, and resourcefulness of the system can therefore 
be poised as pivotal events.4 The end state probability 
and consequences are determined and gathered across 
all initiating events to produce a profile of values. Miti-
gation solutions are evaluated to determine the impact 
of the design change on the consequences affecting the 
end-state probability of success.

PRAs represent risk with Farmer curves or risk pro-
files. These curves plot the magnitude of many different 
consequences against the complementary cumulative 
probability distribution of the scenario. Figure 2 shows a 
famous Farmer curve from the Reactor Safety Study5 used 
to illustrate relative risks of nuclear power plants com-
pared to other risks. The analyst compares the risk of 
nuclear power plant fatalities with frequencies of fatali-
ties attributable to air crashes, fires, dam failures, explo-

sions, chlorine releases, and air crashes. Henley and 
Kumamoto further explain the figure by stating:

Nonnuclear frequencies are normalized by a size of popula-
tion potentially affected by the 100 nuclear power plants; 
these are not frequencies observed on a worldwide scale. 
Each profile in [the figure] is called a Farmer curve; hori-
zontal and vertical axes generally denote the accident 
severity and complementary cumulative frequency per unit 
time, respectively.6

This representation allows an analyst to move away 
from displaying only a single dimension of risk to display-
ing the probability of all possible values of consequence. 
Often, these types of assessments examine a threat or 
vulnerability and assume a causal link to only one con-
sequence. From a resilience viewpoint, initiating events 
take many paths to several consequences because of the 
existence of intrinsic system capabilities and mitigation 
measures. PRA methods consider thousands of scenarios 
that involve multiple failures or events, thus providing 
an in-depth understanding of potential system failure 
modes. Traditional risk matrices do not investigate such 
an enormous number of possible scenarios.

Resilience quantification revolves around assigning 
probability to various events. Since events and scenarios 
of interest are quite infrequent, gathering data based 
on observations is not possible. In the context of PRA 
and resilience quantification, the concept of probability 
is a measure of the degree of belief that an event will 
occur. This is not to say these values can be anything 
one chooses. Jaynes describes it this way:

Probability theory is an extension of logic, which describes 
the inductive reasoning of an idealized being who repre-
sents degrees of plausibility by real numbers. The numeri-
cal value of any probability (A / B) will in general depend 
not only on A and B, but also on the entire background of 
other propositions that this being is taking into account. 
A probability assignment is subjective in the sense that it 
describes a state of knowledge rather than any property of 
the real world; but it is completely objective in the sense 
that it is independent of the personality of the user; two 
beings faced with the same total background of knowledge 
must assign the same probabilities.7

Collecting and analyzing data is critical to supporting 
the ESD development. The best resources for predict-
ing future events are past experiences and tests. While a 
system may have no past relevant experience for a large 
encompassing event, there are usually more accessible 
data for smaller decomposed events. Hardware, software, 
and human performance data are inputs to assess per-
formance of triggers and mitigating events. It must be 
recognized, however, that historical data have predictive 
value only to the extent that the conditions under which 
the data were generated remain applicable. Generally, 
within PRAs, generic data are collected and statistically 
analyzed for relevance to the project at hand. These data 
may also come in the form of modeling and simulation 
results from existing tool suites. Probability distributions 
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Figure 2. Famous PRA Farmer curves example. (Reproduced 
from Ref. 5.)
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are then generated to account for the uncertainty and 
variability. Probability distributions may also be gener-
ated from expert judgment when interviews are con-
ducted properly.8,9 With probability distribution data in 
the model, Bayesian updating techniques can be used, 
not only making predictions for the current project 
better but also building a repository of information for 
future projects.

The use of probability and its uncertainty distribu-
tions creates a better picture of what the community of 
experts knows or does not know about the events. The 
measure of uncertainty, and identification of the key con-
tributors to that uncertainty, provides an understanding 
of the quality of results for informed decision-making. 
Alignment of PRA objectives with those of resilience 
engineering is an ideal fit as it formalizes the process of 
identifying and analyzing potential outcomes and deter-
mining the associated uncertainty of those outcomes.

MISSION SCENARIO DEVELOPMENT
The initial step in the developing a scenario is 

to understand and characterize the system. While it 
appears to be intuitive and trivial, this step is imperative 
as it increases the credibility of the results and decreases 
the amount of resources necessary later. Knowledge of 
the physical and functional layout and concept of opera-
tions, as well as fault protection schemes designed to 
protect, prevent, or mitigate hazard exposure conditions, 
is necessary to begin the PRA. All subsystems, struc-
tures, locations, operating procedures, and activities 
expected to play a role in the initiation, propagation, 
or arrest of any adverse condition must be understood 
in enough detail to enable construction of the models 
necessary to capture the possible scenarios. Past major 
failures and abnormal events that have been observed 
with the same or similar systems should be noted and 
studied. This information ensures inclusion of impor-
tant applicable scenarios.

This system information is 
used to create an operational 
or mission scenario. The physi-
cal systems or subsystems, com-
ponents, and interfaces are 
collected in fault tree analyses 
and then mapped to the func-
tions in the ESDs that are nec-
essary to achieve the mission 
scenario. Fault tree analyses 
provide the framework for orga-
nizing the physical system infor-
mation, while the ESDs organize 
the functions in a logical manner, 
such as by procedures necessary 
to complete an operation or mis-
sion scenario.

Mission scenarios are the hypothetical sequence of 
events, constructed for the purpose of focusing atten-
tion on causal processes. They are coherent descriptions 
of alternative images of the future, created from mental 
maps and models reflecting different perspectives on 
past, present, and future developments. To be credible 
as an analytical tool, scenarios must be internally con-
sistent, plausible, and recognizable stories. An analyst 
develops scenarios by analyzing how failures or disrup-
tions can propagate through a system, leading to adverse 
consequences. Along the way, various pivotal events 
can either exacerbate that problem or mitigate it. Cause 
and effect relationships among triggering and mitigat-
ing events or circumstances are investigated, along with 
the impacts of risk-mitigating actions that may be taken. 
The path through the scenario is probabilistic, fulfilling 
the PRA approach to risk as a set of triplets (scenarios, 
probabilities, consequences). By adding resilience miti-
gations as pivotal events, the traditional PRA can be 
leveraged to quantify the improvements the solutions 
bring to increasing the likelihood of mission success.

Events in an ESD can and should be further decom-
posed using methods such as fault tree analysis to obtain 
a credible probability value. In many cases, pivotal 
events may require equipment to function (hardware 
and software), people to perform a task (procedural or 
repair), or testing to succeed, all of which can be mod-
eled. Sometimes, data on failures at these higher-level 
events are not available, and this necessitates that fault 
trees be developed down to a level where data do exist 
to compute a probability at the higher level. Care must 
be taken to explicitly model dependencies, including 
common-cause failures.

Modeling risk scenarios begins with a description 
of the mission success sequence (see Fig. 3). It can be 
thought of as a trajectory of the system as it proceeds 
from start to mission completion. At each point in the 
trajectory, we can ask what can go wrong. These per-
turbations redirect the system to off-nominal trajectories 

Start

Branch point 
(pivotal event)

Perturbation 
(Initiating event)

Performance goal met
Mission success 

System degradation
Mission degradation

Shutdown safely
Mission abort

System accident
Loss of mission

Figure 3. Conceptual mission scenario shows multiple paths from initiating event to various 
end states.
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that could result in performance degradation or mission 
loss. Many engineering systems include safety or backup 
systems meant to be activated in response to various 
events. If backups work as intended, consequences are 
typically insignificant. However, if an event occurs and 
corresponding backup systems fail, there could be seri-
ous consequences. Resilience approaches can provide 
additional mitigations through alternative operating 
procedures or improvement in the rapidity of a failure 
recovery. If the mitigation is able to restore functionality 
within the temporal threshold values, the mission can 
still succeed. For instance, the branch point (marked by 
a star in Fig. 3) is an event that can swing the system 
from success to degradation or failure depending on how 
fast the mitigation restores functionality. The analyst 
would focus on such an event as a potential place to 
increase the resilience of the system.

Scenarios are useful tools in articulating key consid-
erations, assumptions, and constraints. They provide a 
platform to blend qualitative and quantitative knowl-
edge of systems and their interactions. Analysts still need 
to be cautious to avoid common traps such as narrowly 
examining a situation, applying assumptions inconsis-
tently, or not fully documenting assumptions, thereby 
reducing transparency. One thing to note about scenar-
ios in this context is that they are meant to describe a 
class of situations that can occur. They are not meant to 
explicitly describe every possible permutation of events, 
an infinite set of permutations.

Technical risk analysts formulate scenarios using 
ESDs that are supported with embedded fault trees. ESDs 
are inductive logical constructs 
showing the progression of an 
initiating event through a series 
of uncertain events, system ele-
ments, and procedural steps 
to end states (consequences). 
ESDs provide an excellent visu-
alization of scenarios and facili-
tate communication among 
analysts, engineers, operators, 
and managers.

Figure 4 is an illustration of 
an ESD with a typical struc-
ture. The scenario shows events 
leading to the system stay-
ing in a state that fully meets 
requirements (OK), a state with 
degraded capability (Degraded), 
and a state showing a loss of 
mission (LOM). Scenarios are 
developed for each threat or 
adverse condition while the 
analyst asks about probability of 
the system avoiding or absorb-
ing damage, about other assets 

that can fulfill total or partial functionality, and about 
recovery and reconstitution events. These questions are 
answered quantitatively with conditional probabilities 
and their associated uncertainty distributions. End-state 
probabilities are determined separately for each perfor-
mance metric, which may result in many scenarios for 
the same adverse action.

The top row of this ESD examines whether the system 
will be affected by the initiating event. The second row 
questions the system’s ability to recover from the attack 
and the level of functionality that can be reacquired. 
The third row shows paths where the system attack is 
not going to recover and the system must be augmented 
by capability from another system.

The probabilities can be determined in many ways 
depending on the context of the question. Figure 5 
shows an example ESD and various models used. This 
scenario, stemming from a hypothetical laser attack on a 
spacecraft, explores the response of an optical sensor to 
meet imaging requirements. We ask questions about the 
spacecraft bus (could increased heat load on the solar 
array cause failure?) and then the sensor (could mate-
rial liberated from the spacecraft deposit on the optics 
in sufficient quantity to cause failure?). We then exam-
ine whether a heater on the sensor can liberate material 
from the optics to carry out its mission.

The figure shows that three different methodologies—
fault tree analysis, physics modeling, and expert 
opinion—are combined to determine the probabili-
ties of the pivotal events. The analysts do not need to 
tie themselves to any methodology. A fault tree of the 
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Does system 
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within require-
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Does
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meet mission 
objectives?
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Figure 4. Example ESD suggests the types of questions the analyst needs to address.
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spacecraft is used to determine bus failure from damaged 
solar arrays. The probability of the sensor functioning is 
the result of several physics models of the relationship 
between the laser properties and the sensor. Finally, the 
recovery of the sensor is addressed with subject-matter 
expert input in the form of a probability distribution sig-
nifying the expert’s degree of belief in the probability of 
recovery, which is informed by past experience and/or a 
modeling exercise.

A tool like this allows for the exploration of alterna-
tive mitigations to such an attack. Analysts can com-
pare different materials on solar arrays (option A) or a 
shutter to cover the sensor (option B). Note, a shutter 
would temporarily prevent the system from carrying out 
its mission, necessitating a trade between the need to 
gather data during the attack or keep the sensor ability 
safe for later use (see Fig. 6b).

For each of the scenarios, the feasibility, cost, and 
schedule impacts can be quantified through traditional 
methods. Through the use of PRA, the impacts to 

improved mission success can all be evaluated against 
one another as shown in Fig. 6. This approach provides 
decision-makers a quantifiable and comparable assess-
ment of a broad spectrum of solutions (e.g., procedural, 
hardware, software, or maintenance solutions) to inform 
the best design or mitigation change to achieve the 
desired mission results. Additionally, after the system 
is built, if new threats emerge, system or procedural 
changes can similarly be evaluated to assess the impact 
to improved mission success.

UNCERTAINTY
Quantitative analyses of system resilience and the 

phenomena occurring in many engineering applica-
tions are based on mathematical models that depend 
on a number of assumptions and approximations. Sys-
tems under analysis cannot be characterized exactly—
knowledge of the underlying phenomena is incomplete. 
This leads to uncertainty in both the values of the 
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Figure 5. ESD events can be quantified using a variety of models (fault trees, physics models, expert opinion).
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model parameters and the hypotheses supporting the 
model structure defining the scope of the uncertainty 
analysis. Uncertainty is an unavoidable reality affect-
ing the behavior of systems, particularly with respect 
to their limits of operation.10 Despite how much dedi-
cated effort is put into improving the understanding 
of systems, components, and processes through the 
collection of representative data, the appropriate char-
acterization, representation, propagation, and interpre-
tation of uncertainty remains a fundamental element 
of the risk analysis of any system. Following this view, 
uncertainty analysis is considered an integral part 
of PRA.

Uncertainty is split into two different types: random-
ness due to inherent variability in the system (i.e., in 
the population of outcomes of its stochastic process of 
behavior) and imprecision due to lack of knowledge 
about and information on the system. The former type 
of uncertainty is often referred to as objective, aleatory, 
or stochastic, whereas the latter is often referred to as 
subjective, epistemic, or state of knowledge. Probability 
models are introduced to represent the aleatory uncer-
tainties, such as a Poisson model to represent the varia-
tion in the number of events occurring in a period of 
time. The epistemic uncertainties arise from a lack of 
knowledge of the parameters of the probability models. 
Whereas epistemic uncertainty can be reduced by 
acquiring knowledge of and information on the system, 
the aleatory uncertainty cannot, and for this reason it is 
sometimes called irreducible uncertainty.

Resilience metrics are esti-
mates and subject to the uncer-
tainties discussed above, and 
therefore analysts must tell the 
decision-maker what uncertain-
ties exist and how they affect 
the results. Probability distribu-
tions are the mathematically 
correct way to communicate to 
the decision-maker the assump-
tions and approximations and to 
give a sense of how reliable the 
numbers are. It is also easier to 
justify central tendency to reach 
consensus on a range and distri-

bution than it is on a point value. Take, for example, 
the four probability distribution curves in signifying the 
resilience of separate alternative architectures. Each 
has the same mean value. So if only the number were 
provided to a decision-maker, all four options would be 
identical. However, the uncertainty about them tells 
a different story, both in the amount of spread and 
the shape.

We often think about uncertainty coming from the 
data used as input to the various models. The models 
themselves may be uncertain as well. Figure 8 shows 
hypothetical relationships based on the ESD example 
provided earlier, wherein a key laser parameter trans-
lates to the probability of success of an on-orbit sensor. 
The same model is shown in Fig. 9, with 5th and 95th 
confidence bounds on the curves in addition to the 
uncertainty about the laser parameter. All propagate 
through the model yielding a probability distribution 
for a result.

Once the system PRA is developed, the system’s resil-
ience to failures, natural events, and adverse actions can 
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physics models.
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sible if no credit is taken for a given component. It 
is the change in risk assuming that the component 
is not there.

•	 The Fussell-Vesely is a fractional contribution of a 
component to total risk.

CONCLUSION
Resilience design or system change considerations 

are able to be quantified and assessed by the increased 
likelihood of mission success generated. A cross col-
laborative team of engineering, operators, analysts, 
and managers may conceive numerous mitigations to 
improve mission success. Resilience approaches help 
to generate more mitigation concepts so that a system 
can prevent, withstand, adapt to, and rapidly recover 
from failures or external disruptions. Often after the 
ideas are generated the question is asked: What solu-
tion is the best to achieve the desired results? PRAs 
have proved to be an invaluable tool for industry and 
projects at APL. As applied to quantifying resilience, 
they provide a systematic, traceable, and defendable set 
of metrics with uncertainty.
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be quantified. The metric is provided as a probability dis-
tribution where various statistics, such as the expected 
value and quantiles, can be derived and used for plan-
ning, engineering trades, and decisions. The ability to 
rank order elements with respect to their resilience sig-
nificance is one of the most useful aspects of this method-
ology. It represents one of the major improvements over 
current practices. In PRA parlance, values computed to 
perform rankings are called importance measures.

An importance measure gives an indication of a cer-
tain component’s contribution to the total system resil-
ience. PRA analysts have created a set of importance 
measures to evaluate risk contributions of any given item 
in a model. Most applications of importance measures 
aim to provide management insight into three broad 
areas: design or redesign optimization, test and main-
tenance strategy development, and daily configuration 
control.11 Several risk assessment texts contain detailed 
explanations and derivations of these measures.1,12 They 
can also be applied to provide insights for a particular 
risk item and constituent elements.

•	 Risk reduction worth measures change in risk assum-
ing that an event of interest is perfect (will not fail). 
In other words, it measures how much improvement 
can be made to a system by fixing one event.

•	 Risk achievement worth is the inverse of risk reduc-
tion worth in that it measures improvement pos-
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Figure 9. Physics models can show how uncertainty in initial 
parameters and models can propagate to probability of success.
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